THE FIXED POINT PROPERTY OF
A-DIRECT SUMS OF
N UNIFORMLY NON-SQUARE
BANACH SPACES

TAKAYUKI TAMURA
Graduate School of Social Sciences, Chiba University
ttakayuki@faculty.chiba-u.jp and
MIKIO KATO
Kyushu Institute of Technology
katom@mns.kyutech.ac.jp

Abstract
We shall show the fixed point property of A-direct sums of N uniformly non-square Banach spaces by characterizing the nontrivialness of Dominguez-Benavides coefficient $R(1, (X_1 \oplus \cdots \oplus X_N)_A)$, that is, $R(1, (X_1 \oplus \cdots \oplus X_N)_A) < 2$.

A norm $\| \cdot \|$ on \mathbb{R}^N is called monotone if $\|a\| \leq \|b\|$ for all $a = (a_j), b = (b_j) \in \mathbb{R}^N$ with $|a_j| \leq |b_j| (j = 1, \ldots, N)$. For $a = (a_j)$, $|a| = (|a_j|) \in \mathbb{R}^N$. A norm $\| \cdot \|$ on \mathbb{R}^N is called absolute if $\|a\| = \| |a| \|$ for all $a \in \mathbb{R}^N$ and normalized if $\|e_j\| = 1$ for all $1 \leq j \leq N$, where e_j is the j-th unit vector in \mathbb{R}^N.

In [4] and [10] A-direct sums and AN-direct sums of N Banach spaces were introduced respectively by the following: Let $\| \cdot \|_A$ be an arbitrary norm on \mathbb{R}^N. The A-direct sum $(X_1 \oplus \cdots \oplus X_N)_A$ is the direct sum of X_1, \ldots, X_N equipped with the norm

$$\|(x_1, \ldots, x_N)\|_A = \|(x_1\|, \ldots, \|x_N\|)\|_A, \quad (x_1, \ldots, x_N) \in X_1 \oplus \cdots \oplus X_N$$

and an AN-direct sum is an A-direct sum whose norm is defined from some absolute normalized norm $\| \cdot \|_{AN}$ on \mathbb{R}^N. It is known that a norm $\| \cdot \|_A$ on \mathbb{R}^N is absolute if and only if it is monotone ([2],[4],[14]).

In [13] Z-direct sums were introduced by the following: Let $\| \cdot \|_Z$ be a monotone norm on \mathbb{R}^N. The Z-direct sum $(X_1 \oplus \cdots \oplus X_N)_Z$ is the direct sum of X_1, \ldots, X_N equipped with the norm

$$\|(x_1, \ldots, x_N)\|_Z = \|(x_1\|, \ldots, \|x_N\|)\|_Z, \quad (x_1, \ldots, x_N) \in X_1 \oplus \cdots \oplus X_N$$

Then we see that Z-direct sum and AN-direct sum are A-direct sum. Since an A-direct sum is isometric isomorphic to some AN-direct sum ([4]), then we have the following theorem.

Theorem 1 (cf. [4]). Let X_1, \ldots, X_N be Banach spaces. Let $\| \cdot \|_A$ be an arbitrary norm on \mathbb{R}^N. Then the norm of $(X_1 \oplus \cdots \oplus X_N)_A$ is monotone, that is,

$$\|(x_1, \ldots, x_N)\|_A \leq \|(y_1, \ldots, y_N)\|_A$$
for \((x_1, \ldots, x_N), (y_1, \ldots, y_N) \in (X_1 \oplus \cdots \oplus X_N)_A\) with \(\|x_j\| \leq \|y_j\|\) \((j = 1, \ldots, N)\).

As usual \(S_X\) and \(B_X\) stand for the unit sphere and the closed unit ball of \(X\), respectively. A Banach space \(X\) is said to have the fixed point property (resp. weak fixed point property) for nonexpansive mappings if every nonexpansive self-mapping \(T\) of any nonempty bounded closed (resp. weakly compact) convex subset \(C\) of \(X\) has a fixed point \((T\) is called nonexpansive if \(\|Tx - Ty\| \leq \|x - y\|\) for all \(x, y \in C\)). In [6] the coefficient \(R(a, X)\) called as Dominguez-Benavides coefficient (cf. [3]) was introduced by the following: For \(0 \leq a \leq 1\) let

\[
R(a, X) = \sup \left\{ \liminf_{n \to \infty} \|x_n + x\| \right\},
\]

where the supremum is taken over all \(x \in X\) with \(\|x\| \leq a\) and all weakly null sequences \(\{x_n\}_n\) in the unit ball of \(X\) such that

\[
\lim_{n, m \to \infty; n \neq m} \|x_n - x_m\| \leq 1.
\]

In this paper we shall show the fixed point property for nonexpansive mappings of \(A\)-direct sums of \(N\) uniformly non-square Banach spaces by characterizing the nontrivialness of Dominguez-Benavides coefficient (cf. [3]) was introduced by the following: For \(0 \leq a \leq 1\) let

\[
R(a, X) = \sup \left\{ \liminf_{n \to \infty} \|x_n + x\| \right\},
\]

where the supremum is taken over all \(x \in X\) with \(\|x\| \leq a\) and all weakly null sequences \(\{x_n\}_n\) in the unit ball of \(X\) such that

\[
\lim_{n, m \to \infty; n \neq m} \|x_n - x_m\| \leq 1.
\]

In this paper we shall show the fixed point property for nonexpansive mappings of \(A\)-direct sums of \(N\) uniformly non-square Banach spaces by characterizing the nontrivialness of Dominguez-Benavides coefficient (cf. [3]) was introduced by the following: For \(0 \leq a \leq 1\) let

\[
R(a, X) = \sup \left\{ \liminf_{n \to \infty} \|x_n + x\| \right\},
\]

where the supremum is taken over all \(x \in X\) with \(\|x\| \leq a\) and all weakly null sequences \(\{x_n\}_n\) in the unit ball of \(X\) such that

\[
\lim_{n, m \to \infty; n \neq m} \|x_n - x_m\| \leq 1.
\]

Theorem 2 ([6]). Let \(X\) be a Banach space. If \(R(a, X) < 1 + a\) for some \(a > 0\), then \(X\) has the weak fixed point property for nonexpansive mappings.

A Banach space \(X\) is called uniformly non-square ([9]) if there exists a constant \(\varepsilon > 0\) such that

\[
\min\{\|x + y\|, \|x - y\|\} \leq 2(1 - \varepsilon) \quad \text{for all} \quad x, y \in S_X.
\]

By Theorem 2 García-Falset et. al. [8] obtained the following remarkable result.

Theorem 3 ([8]). Let \(X\) be a uniformly non-square Banach space. Then \(R(1, X) < 2\) and hence \(X\) has the fixed point property for nonexpansive mappings.

In [7] the following notions were introduced.

Definition 4 ([7]). For \(a = (a_j) \in \mathbb{R}^N\) let \(\text{supp } a = \{j : a_j \neq 0\}\).

(i) A norm \(\| \cdot \|\) on \(\mathbb{R}^N\) is said to have Property \(T_1^N\) if

\[
\|a\| = \|b\| = \frac{1}{2}\|a + b\| = 1, \quad a, b \in \mathbb{R}^N \implies \text{supp } a \cap \text{supp } b \neq \emptyset.
\]

(ii) A norm \(\| \cdot \|\) on \(\mathbb{R}^N\) is said to have Property \(T_\infty^N\) if

\[
\|a\| = \|b\| = \|a + b\| = 1 \implies \text{supp } a \cap \text{supp } b \neq \emptyset.
\]
To show our key result we need the following propositions.

Proposition 5 ([11]). Let \(\{x_{n}^{(k)}\}_{n,k}, \{y_{n}^{(k)}\}_{n,k} \) be double sequences with nonzero terms in a Banach space \(X \) such that
\[
\lim_{k \to \infty} \lim_{n \to \infty} \|x_{n}^{(k)}\| > 0, \quad \lim_{k \to \infty} \lim_{n \to \infty} \|y_{n}^{(k)}\| > 0.
\]
Then the following are equivalent.

(i) \[
\lim_{k \to \infty} \lim_{n \to \infty} \inf_{\infty} \|x_{n}^{(k)} + y_{n}^{(k)}\| = \lim_{k \to \infty} \inf_{\infty} (\|x_{n}^{(k)}\| + \|y_{n}^{(k)}\|).
\]

(ii) \[
\lim_{k \to \infty} \lim_{n \to \infty} \inf_{\infty} \frac{x_{n}^{(k)}}{\|x_{n}^{(k)}\|} + \frac{y_{n}^{(k)}}{\|y_{n}^{(k)}\|} = 2.
\]

Proposition 6 ([5]; see also [1, Chapter III, Theorem 1.5]). Let \(\{x_{n}\} \) be a bounded sequence in a Banach space \(X \). Then \(\{x_{n}\} \) contains a subsequence \(\{x_{n_{k}}\} \) such that \(\lim_{k,l \to \infty; k \neq l} \|x_{n_{k}} - x_{n_{l}}\| \) exists.

Proposition 7 ([16]). Let \(\{x_{n}\} \) be a weakly null sequence in a Banach space \(X \). Assume that \(\lim_{n \to \infty; n \neq m} \sup_{\infty} \|x_{n}\| \leq \lim_{n \to \infty; n \neq m} \|x_{n} - x_{m}\| \).

Proposition 8 ([12]). Let \(a = (a_{j}), b = (b_{j}) \in \mathbb{R}^{N} \) and let a norm \(\|\cdot\|_{A} \) on \(\mathbb{R}^{N} \) be monotone. If \(\|a\| = \|b\|, |a_{j}| \leq |b_{j}| \) \((j = 1, \ldots, N) \) and \(|a_{j_{0}}| < |b_{j_{0}}| \) then \(\|\chi_{N \setminus \{j_{0}\}}(j)a_{j}\| = \|b_{j}\| \), where \(N = \{1, \ldots, N\} \) and \(\chi_{N \setminus \{j_{0}\}} \) is the characteristic function of \(N \setminus \{j_{0}\} \).

By Theorem 1, Propositions 5, 6, 7 and 8 we can prove the following key result.

Theorem 9. Let \(X_{1}, \ldots, X_{N} \) be Banach spaces and let a norm \(\|\cdot\|_{A} \) on \(\mathbb{R}^{N} \) have Property \(T_{1}^{N} \). Then \(R(1, (X_{1} \oplus \cdots \oplus X_{N})_{A}) < 2 \) if and only if \(R(1, X_{j}) < 2 \) for all \(1 \leq j \leq N \).

Corollary 10 (cf. [15]). Let \(X \) and \(Y \) be Banach spaces and let a norm on \(\mathbb{R}^{2} \) be not \(\ell_{1} \)-norm. Then \(R(1, (X \oplus Y)) < 2 \) if and only if \(R(1, X) < 2 \) and \(R(1, Y) < 2 \).

Theorem 9 combined with Theorem 3 yields nontrivialness of Dominguez-Benavides coefficient of A-direct sums of uniformly non-square Banach spaces.

Theorem 11. Let \(X_{1}, \ldots, X_{N} \) be uniformly non-square Banach spaces and let a norm \(\|\cdot\|_{A} \) on \(\mathbb{R}^{N} \) have Property \(T_{1}^{N} \). Then \(R(1, (X_{1} \oplus \cdots \oplus X_{N})_{A}) < 2 \).

By Theorem 11 and Theorem 2 we obtain our main results.

Theorem 12. Let \(X_{1}, \ldots, X_{N} \) be uniformly non-square Banach spaces and let a norm \(\|\cdot\|_{A} \) on \(\mathbb{R}^{N} \) have Property \(T_{1}^{N} \). Then \((X_{1} \oplus \cdots \oplus X_{N})_{A} \) has the fixed point property for nonexpansive mappings.
Theorem 13. Let X_1, \ldots, X_N be uniformly non-square Banach spaces and let a norm $\| \cdot \|_A$ on \mathbb{R}^N have Property T_{∞}^N. Then $(X_1^* \oplus \cdots \oplus X_N^*)_A$ has the fixed point property for nonexpansive mappings, where $(X_1^* \oplus \cdots \oplus X_N^*)_A$ is an A-direct sum of X_1^*, \ldots, X_N^* whose norm is defined by the dual norm $\| \cdot \|_A$.

Acknowledgments

The authors were supported in part by JSPS KAKENHI (C) Grant number JP26400131.

REFERENCES

[12] M. Kato and T. Tamura, Weak nearly uniform smoothness of the ψ-direct sums $(X_1 \oplus \cdots \oplus X_N)_\psi$, Comment. Math. 52 (2012), 171-198.