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1 Introduction

In this paper, we consider a perturbed dynamical system in which noise is applied to the Nagum (\succ Sato

(NS) model [11],  tha*t is,

 x_{t+1} = S_{\alpha,\beta}(x_{t})+\xi_{t} (mod 1) , (1.1)

 S_{\alpha,\beta}(x)  =  \alpha x+\beta(mod 1) for  (\alpha, \beta)\in(0,1)^{2} , (1.2)

where  \{\xi_{t}\} are independent random variables each having same density  g satisfying  supp\{g\}=[0, \theta]
with  \theta\in[0,1] . The piecewise linear map  S_{\alpha,\beta} is called Nagumo‐Sato model which corresponds to a

special cas.  e of Caianiello’s model [4], and it describes the simplified dynamics of a single neuron. It

is known that the system (1.2) shows periodic behavior of the trajectory for almost every  (\alpha, \beta) . The
transformation has one discontinuous point when  \alpha+\beta>1 , and it leads to a complicated structure for

a periodicity on the parameter space. This structure is presented graphically in Fig.1(pp.6) which shows
regions in which  S_{\alpha_{)}\beta} has a periodic point. An important feature of the structure is that there exists a

region in which  S_{\alpha,\beta} has a periodic point with period  (m+n) between the region with period  m and  n.

In the paper [12], we stated the definition of the structure for the NS model as a Farey structure, and
gives a detailed analysis of these regions. Indeed, considering the properties of a rational characteristic

sequence which is one of our mathematical techniques, we calculate boundaries of each region on the

parameter space in which the NS model has a periodic point for any period. Then we succeeded to find

explicit parameter regions in which  S_{\alpha,\beta} has rational rotation number  l/n for all  l/n in  (0,1) . In 1987,
Ding and Hemmer [5] studied similar piecewise linear maps and these regions, and our result gives more
detailed analysis of their works.

We discuss two important asymptotic properties for the Markov operator [10] corresponding to the
model (1.1). It is well known that the Markov operator describes asymptotic behaviors of a trajectory.
Especially, we focus on the properties of asymptotic periodicity and asymptotic stability which are

introduced in section 2. These asymptotic behaviors for the NS model are also observed and discussed

in [6, 10]. The asymptotic periodicity with period 1 is equivalent to the asymptotic stability, and it is
important problem to classify the system as the case with period 1 or more than 1 since these two ca,ses

give different mixing properties of the system.

The main result in this paper (Theorem 5.1) shows that the sufficient condition for which the Markov

operator corresponding to the perturbed NS system has either asymptotic periodicity (period  >1 ) or
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asymptotic stability (period  =1 ). More precisely, for almost all  (\alpha, \beta)\in(0,1)^{2} , there exists a critical value
 \theta_{*}(\alpha, \beta) such that the Markov operator generated by the system (1.1) displays asymptotic periodicity
if  \theta is less than  \theta_{*}(\alpha, \beta) . On the other hand, if  \theta is greater than  \theta_{*}(\alpha, \beta) , the Markov operator shows

asymptotic stability. In 1991, Provatas and Mackey [14] have already showed the same result as Theorem
5.1 in the case that rotation numbers is  1/n . Thus, our theorem extends their result to all cases of

rotation numbers  l/n by using Theorem 4.3.

2 Asymptotic behavior of Markov operator

In this section, we prepare some mathematical tools, Markov operator, Perron‐Frobenius operator

and their asymptotic properties, to state our main results (Theorem 5.1). The Markov operator is an
important tool which describes a density evolution generated by a system, and its convergence gives an

existence of an invariant measure for the system. The topics in the section are mainly based on [10].
Let  (X, \mathcal{A}, \mu) be a measure space, that is,  \mathcal{A} is a  \sigma‐algebra of subsets of  X and  \mu is a measure on  \mathcal{A}.

Moreover, assume that measure space  (X, \mathcal{A}, \mu) is finite,  \mu(X)<\infty . We first introduce the definition of

Markov operator and its basic properties. Let  L^{1}(X)=L^{1}(X, \mathcal{A}, \mu) be a space of all integrable functions

on  X , i.e.  \Vert f\Vert_{L^{1}}  := \int_{X}|f(x)|d\mu(x)<\infty.

Definition 2.1. A linear operator  P :  L^{1}(X)arrow L^{1}(X) is calıed a Markov operator if  P satisfies

 Pf\geq 0 and  \Vert Pf\Vert_{L^{1}}=\Vert f\Vert_{L} ı for  f\in L^{1} with  f\underline{>}0.

Definition 2.2. Let the set  D(X, \mathcal{A}, \mu) be defined by  D(X, \mathcal{A}, \mu)=\{f\in L{\imath} (X, \mathcal{A}, \mu)|f\geq 0, \Vert 
f\Vert_{L^{1}}=1\}.
Any function  f\in D(X, \mathcal{A}, \mu) is called a density. The set  D(X, \mathcal{A}, \mu) is sometimes denoted by  D simply.

Definition 2.3. A measurable transformation  S :  Xarrow X is nonsingular if  \mu(S^{-1}(A))=0 for all
 A\in \mathcal{A} such that  \mu(A)=0.

Under these definitions, a Perron‐Frobenius operator corresponding to a nonsingular transformation

can be defined as follows, which plays a role to consider the evolution of density functions generated by

a deterministic dynamicaı system.

Definition 2.4. If  S:Xarrow X is nonsingular transformation, the operator  P:L^{1}arrow L^{1} defined by

  \int_{A}Pf(x)d\mu(x)=\int_{s-1}(A)f(x)d\mu(x) , for  A\in \mathcal{A} , (2.1)

is called the Perron‐Frobenius operator corresponding to  S.

For some interval maps on  [a, b] , corresponding Perron‐Frobenius operator  P allows us to obtain an

explicit form Pf. If one takes the interval  [a, x] as  A in the equation (2.1) and by differentiating, then
we have

 Pf(x)= \frac{d}{dx}\int_{S([a,x])}-1f(s)ds.
Next, we explain a relation between important properties in an ergodic theory, ergodicity, mixing and

exactness, and the convergence of  \{P^{n}f\}.

Definition 2.5. Let  (X, \mathcal{A}, \mu) be a measure space and  S:Xarrow X be a nonsingular transformation. Then
 S is called ergodic if either  \mu(A)=0 or  \mu(X\backslash A)=0 holds for every invariant set  A\in \mathcal{A},  S^{-1}(A)=A.
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Definition 2.6. Let  (X, \mathcal{A}, \mu) be a normalized measure space and  S:Xarrow X be a measure preserving.

Then  S is called mixing, if

  \lim_{narrow\infty}\mu(A\cap S^{-n}(B))=\mu(A)\mu(B) for all  A,  B\in \mathcal{A}.

Definition 2.7. Let  (X, \mathcal{A}, \mu) be a normalized measure space and  S:Xarrow X be a measure preserving
transformation such that  S(A)\in \mathcal{A} for each  A\in \mathcal{A} . Then  S is called exact if

  \lim_{narrow\infty}\mu(S^{n}(A))=1 for every  A\in \mathcal{A},  \mu(A)>0.

Proposition 2.8. ([10], Theorem 4.4.1) Let  (X, \mathcal{A}, \mu) be a normalized measure space and  S:Xarrow X a
measure preserving transformation, and  P the Perron‐Frobenius operator corresponding to S. Then

(a)  S as ergodic if and only if the sequence  \{P^{t}f\} is Cesàro convergent to 1 for all  f\in D.

(b)  S is mixing if and only if the sequence  \{P^{t}f\}iS weakly convergent to 1 for all  f\in D.

(c)  S is exact if and only if the sequence  \{P^{t}f\} is strongly convergent to ı for all  f\in D.

Therefore, one can cıassify ergodicity, mixing and exactness by using the concepts of a convergence for

Perron‐Frobenius operator corresponding to the system.

Next, we define two important properties of Markov operator and collect sufficient conditions for

satisfying these two properties.

Definition 2.9.  \{P^{t}\} is said to be asymptotically periodic if there exists an integer  r , two sequences

of nonnegative functions  g_{i}\in D and  h_{t}\in L^{\infty}(X),  i=1,  \cdot\cdot\cdot ,  r , and an operator  Q :  L^{1}(X)arrow L^{1}(X)
such that for every  f\in L{\imath} (X), Pf can be written in the form

 Pf(x)= \sum_{i=1}^{r}\lambda_{t}(f)g_{i}(x)+Qf(x) ,

where

  \lambda_{\iota}(f)=\int_{X}f(x)h_{t}(x)\mu(dx) .

Moreover functions  g_{i} and operator  Q satisfy the following properties;

(i)  g_{t}(x)g_{j}(x)=0 for all  i\neq j ;

(ii) There exists a permutation  \rho of  \{ 1,  \cdot\cdot ,  r\} such that  Pg_{x}=g_{\rho(\iota)}.

(iii)  ||P^{t}Qf||_{L^{1}}arrow 0 as   tarrow\infty for every  f\in L^{1}(X) .

Remark 2.10. When  \{P^{t}\} is an asymptotically periodic Markov operator, then  P has a stationary

density  f_{*}

 f_{*}(x)= \frac{1}{r}\sum_{z=1}^{r}g_{\iota}(x) .

Definition 2.11.  \{P^{t}\} is said to be asymptotically stable if there exists a unique  f_{*}\in D such that

 Pf_{*}=f_{*} and   \lim_{tarrow\infty}||P^{t}f-f_{*}||_{L^{{\imath}}}=0 for every  f\in D.

Proposition 2.12.  \{P^{t}\} is asymptotlcally stable if and only if  \{P^{t}\} is asymptotically periodvc with  r=1.
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Example 2.13. Consider the generaıized tent map defined by, for a parameter  a\in(1,2],

 S(x)=\{\begin{array}{l}
ax for x\in[0,1/2]
a(1-x) for x\in[1/2,1].
\end{array}
This map  ws_{\mathfrak{l}}s considered in [15] and they showed that  \{P^{t}\} is asymptotically periodic for the Perron‐
Frobenius operator  P corresponding to this map  S . More precisely, when the parameter  a satisfies

 2^{1/2^{n+{\imath}}}<a\underline{<}2^{1/2^{n}} for  n=0,1,2,  \cdot\cdot\cdot ,

then  \{P^{t}\} is asymptotically periodic with the period  2^{n}  \square 

Next, we introduce a sufficient condition for the asymptotic periodicity.

Definition 2.14. Let  (X, \mathcal{A}, \mu) be a finite measure space,  \mu(X)<\infty . A Markov operator  P is called

constrictive if there exists a  \delta>0 and  \kappa<1 such that for every  f\in D there is an integer  t_{0}(f) for
which

  \int_{E}P^{t}f(x)\mu(dx)\leq\kappa for all  t\geq t_{0}(f) and  E with  \mu(E)\leq\delta.

Proposition 2.15. ([10], Theorem 5.3.1) If  P is a constrictive Markov operator, then  \{P^{t}\} is asymp‐
totically periodic.

The next proposition gives a sufficient condition for an asymptotic stability which plays an important

role for the proof of Theorem 5.1(ii).

Proposition 2.16. ([10], Theorem 5.6.1) Let  P be a constrictive Markov operator. Assume there is a
set  A\subset X of nonzero measure,  \mu(A)>0 , with the property that for every  f\in D there  1S an integer  t_{0}(f)

such that  P^{t}f(x)>0 for almost all  x\in A and all  t>t_{0}(f) . Then  \{P^{t}\} is asymptotically  \mathcal{S}table.

Finally, we mention relations between asymptotically periodic and some ergodic properties as follows.

Proposition 2.17. ([10], Theorem 5.5.1) Let  (X, \mathcal{A}, \mu) be a normalized measure space and  P:L^{1}arrow L^{1}

a constrictive Markov operator. Then  P\iota s ergodic if and only if the permutataon  \rho of  \{ 1, ,  r\} (see

Definition 2.9)  \prime\iota s cyclical, that  iS,  \rho has no invariant subset.

Proposition 2.18. ([10], Theorem 5.5.2 and Theorem 5.5.3) Let  (X, \mathcal{A}, \mu) be a normahzed measure
space and  P:L^{1}arrow L^{1} a constrvctive Markov operator. Then following are equivalent.

 r=1\Leftrightarrow Pi_{\mathcal{S}} mixing  \Leftrightarrow P is exact,

where  r is defined in Definition2.9.

Interestingly, the mixing and exactness are equivalent in the class of a constrictive Markov operator

from the above proposition. These propositions suggest that it is important to classify the case  r>1 or
 r=1 of the asymptotic periodicity.

3 Rational characteristic sequence

The rational characteristic sequence is known as mechanical words, rotation words or Christoffel words

[3] and good sequence in [12], and if  l/n is replaced by an irrational number, then it is known as Sturmian

words or characteristic sequence [2]. Two series of functions  A_{x}(\alpha) and  F_{n,l} (i) (see Eq.(3.3) and (3.4))
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generated by the sequence are important tools to prove Farey structure on a parameter space of NS model

(Proposition 4,3), and consequently leads our main result (Theorem 5.1). We first introduce the definition
and some useful properties of the rational characteristic sequence. Let  Pr(n) be a set of numbers  l<n

satisfying  l and  n are mutualıy prime,  Pr(n)  :=\{l<n| GCD  (n, l)=1\} for each  n\in \mathbb{N}.

Definition 3.1. For  n\in N and  l\in Pr(n) , we define a sequence  \{k_{i}\}_{\iota\in \mathbb{Z}} with  k_{v}\in\{0,1\} for all  i\in \mathbb{Z} by

 k_{x}  :=[ \frac{(i+1)l}{n}]  [ \frac{\dot{i}l}{n}] for  i\in \mathbb{Z} , (3.1)

where  [x] is the integer part of  x . The sequence  \{k_{z}\}_{i\in \mathbb{Z}} is called a Rational characteristic sequence

with respect to  (n, l) . Obviously,  k_{0}=0 and  k_{n-1}=1 always hold.

In this paper, if we write  (n, l) , then  n and  l always satisfy  n\in \mathbb{N}_{\geq 2} and  l\in Pr(n) .

Proposition 3.2.  ([12], Prop_{oS\uparrow j}t_{1}on2.2) Let  \{k_{i}\}_{i\in \mathbb{Z}} be a rational characteristic  \mathcal{S} equence with respect

to  (n, l) . We then have the following properties.

(i)  k_{\iota\pm n}=k_{\iota} for  i\in \mathbb{Z},

(ii)  k_{n-1-u}=k_{t} for  i\in \mathbb{Z},  i\not\in n\mathbb{Z},  n\mathbb{Z}-1,

(iii)  k_{x-\hat{l}}=k_{t} for  i\in \mathbb{Z},  i\not\in n\mathbb{Z},  n\mathbb{Z}-1,

where î  = min{t  \in \mathbb{N}  |  tl=1(mod n) }.

Proposition 3.3. ([12], Propositaon 2.3) Let  \{k_{i}\}_{x\in \mathbb{Z}} be a rational characteristic  \mathcal{S} equence with respect
to  (n, l) and  \{k_{l}'\}_{\iota\in \mathbb{Z}} be another rational characteristic sequence with respect to  (n', l') . If   \frac{l}{n}<\frac{l'}{n'} and
 nl'-n'l=1 , then the  \mathcal{S} equence {  \hat{k}_{i}\}_{\iota\in \mathbb{Z}} defined by

 \hat{k}_{x}:=\{\begin{array}{ll}
k_{l}   for i=0, \cdot\cdot\cdot , n-1
k_{\iota-n}^{I}   for i=n, \cdot\cdot\cdot , n+n^{I}-1
\end{array} (3.2)

and  \hat{k}_{m}  :=\hat{k}_{i} if  m=i+t(n+n') with  i=0,  \cdot\cdot\cdot ,  n+n'-1 and  t\in \mathbb{Z}\backslash \{0\} , is the ratlonal characteristac

sequence with respect to  (n+n', l+l') .

Example 3.4. The rational characteristic sequence for  (n, l) with  n=2,3,4,5 are followings. Here we

write only  k_{0},  \cdot ,  k_{n-1} with the bracket  \{\cdot\rangle since their 01 words are repeated.

(2, 1):  \langle 01\rangle , (3, 1): {001}, (3, 2):  \langle 011  \} , (4, 1):  \langle0001  \} , (4, 3):  \langle 0111\rangle,

(5, 1):  \langle 00001\rangle , (5, 2):  \langle 00101\rangle , (5, 3):  \langle 01011\rangle , (5, 4):  \{01111\rangle,
One can immediately see that the sequence for (5, 2),  \langle 00101\rangle , can be made the sequence of (3, 1) and

(2, 1), that is,  \{00101\}= {00ı}  + {0l}. Similarly, we have foılowing examples.
 ( 7,   3)=(5,2)+(2,1):\langle 00101\rangle+\langle 01\rangle=\langle 0010101\rangle
 ( 12,  5)=(5,2)+(3,7):\{00101\rangle+\{0010101\rangle=\langle 001010010101\}  \square 

We next define two sequences  \{A_{\tau}(\alpha)\}_{i=0}^{n-{\imath}} of length  n and  \{F_{n,l}(i)\}_{l=2}^{n} as follows, and prepare a few

lemmas which give some properties of the sequences.

 A_{i}( \alpha)=\frac{1}{1-\alpha^{n}}(\sum_{rn=0}^{\iota-{\imath}}k_{m}
\alpha^{x-m-1}+\sum_{m=l}^{n-{\imath}}k_{m}\alpha^{n+i-{\imath}-m}) (3.3)

 F_{n,l}(i)= \frac{1}{1-\alpha^{i}}\sum_{m={\imath}}^{\iota-{\imath}}k_{m}
\alpha^{m}, \alpha\in(0,1) , i=2, \cdot\cdot\cdot , n . (3.4)
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Lemma 3.5. ([12], Lemma 2.6) We can write

  \{\iota|k_{l}=0\}\min A_{x}(\alpha)
 =   \frac{1}{1-\alpha^{n}}\sum_{l=1}^{n-{\imath}}k_{\iota}\alpha z‐ı and (3.5)

  \max_{\{\iota|k_{l}={\imath}\}}A_{\iota}(\alpha) = \frac{1}{1-\alpha^{n}}
(\sum_{l=1}^{n-1}k_{\iota}\alpha^{i-1}-\alpha^{n-2}+\alpha^{n-1}) (3.6)

Lemma 3.6. ([13], Lemma 2.3) For any  (n, l) , the mequahty

  \frac{\alpha^{n-1}-\alpha^{n}}{1-\alpha^{n}}<F_{n,l}(n)-F_{n,l}(i)
<\frac{\alpha^{l}}{1-\alpha^{i}} (3.7)

holds for  \alpha\in(0,1) and  i=2,  \cdot\cdot\cdot ,  n-1.

We give the proof of Lemma 3.6 by using a special type of induction based on the Farey series as
follows;

Step(1) The inequality holds for ( n , ı) and  (n, n-1) for  n\in \mathbb{N}_{\geq 2}.

Step(2) Assume that the inequality holds for  (n, l) and  (n', l') with  nl'-n^{l}l=1 . Then, the inequality
holds for  (n+n', l+l') .

By the definition of the Farey series [1], it is obvious that the above induction shows the inequality holds
for all  (n, l) .

4 Deterministic Nagumo‐Sato Model

In this section, we show that the system (1.2) possesses the Farey structure in the parameter space
which is a layered structure (see Fig.1) and gives the regions of parameter space in which  S_{\alpha,\beta} has
a periodic point. After that, we show a property for a preimage of zero for deterministic NS model

(Proposition 4.7).

Period 5

Period 7

Figure 1: The region of the parameter space  (\alpha, \beta) in which  S_{\alpha,\beta} has a periodic point with period
 n=2,  \cdot\cdot\cdot 7.

Let  \pi ı,  \pi_{2} :  \mathbb{R}^{2}arrow \mathbb{R} be two proj.ections with  \pi_{1}(\alpha, \beta)=\alpha and  \pi_{2}(\alpha, \beta)=\beta , and define a Farey
structure as follows. Let  E be a bounded subset of  \mathbb{R}^{2} and let  \{D_{n,l}\}_{n\in N,l\in Pr(n)} be a family of subsets of
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 E satisfying the following properties. For each  \alpha\in\pi_{1}(E) , there exist real numbers  B_{n,l}^{U}(\alpha) and  B_{n,l}^{L}(\alpha)
such that

 \pi_{2}(D_{n,l}\cap\pi_{{\imath}}^{-1}\{\alpha\})=[B_{n,l}^{L}(\alpha), B_{n,l}
^{U}(\alpha)) (4.1)

We denote  D_{n,l}\prec D_{n',l'} if  B_{n,l}^{U}(\alpha)<B_{n,l}^{L}(\alpha) holds for any  \alpha\in\pi ı (E) . We then consider a two parameter

family of transformations of  [0,1 ),  \{T_{\alpha,\beta} : [0,1)arrow[0,1)\}_{(\alpha,\beta)\in E}.

Definition 4.1.  \{T_{\alpha,\beta}\}_{(\alpha,\beta)\in E} possesses a Farey structure in a parameter subspace  E\subset \mathbb{R}^{2} if there

exists  \{D_{n,l}\}_{(n,l)}\subset E satisfying the property (4.1) such that

(i)  Leb(D_{n,l})>0 for all  (n, l) ,

(ii)  T_{\alpha,\beta} with  (\alpha, \beta)\in D_{n,l} has a periodic point with period  n for each  (n, l) ,

(iii)  D_{n+1,1}\prec D_{n,1} and  D_{n,n-1}\prec D_{n+1,n} hold for every  n\in \mathbb{N} . If  (n, l) and  (n', l') satisfying  nl'-n'l=1

and  D_{n,l}\prec D_{n',l'} , then  D_{n,l}\prec D_{n+n',l+l'}\prec D_{n',l'}.

To state the next Theorem 4.3, which shows that  \{S_{\alpha,\beta}\} has this Farey structure, we define two

functions  B_{n,l}^{U}(\alpha) and  B_{n,l}^{L}(\alpha) and sets  \{D_{n,l}\}_{(n,l)} as follows;

 B_{n,l}^{U}( \alpha) = (1-\alpha)(\frac{1}{1-\alpha^{n}}\sum_{m=1}^{n-1}k_{m}
\alpha^{m}+1) , (4.2)

 B_{n,l}^{L}( \alpha) = (1-\alpha)(\frac{1}{1-\alpha^{n}}\sum_{m=1}^{n-1}k_{m}
\alpha^{m}+1-\frac{\alpha^{n-1}-\alpha^{n}}{1-\alpha^{n}}) , (4.3)

and

 D_{n,l}=\{(\alpha, \beta)\in(0,1)^{2}|B_{n,l}^{L}(\alpha)\leq\beta<B_{n,l}^{U}(
\alpha)\} , (4.4)

where the sequence  \{k_{i}\}_{i\in \mathbb{Z}} is a rational characteristic sequence (3.1) with respect to  (n, l) . Note that

these functions can be rewritten as follows by using the equations (3.5) and (3.6);

 B_{n,l}^{U}( \alpha) = (1-\alpha)(\alpha\min_{\{\iota|k_{\iota}=0\}}A_{z}
(\alpha)+1) , (4.5)

 B_{n,l}^{L}( \alpha) = (1-\alpha)(\alpha\max_{\{i|k_{?}={\imath}\}}A_{i}
(\alpha)+1) (4.6)

The parameter regions in Fig.1 correspond to above sets  \{D_{n,l}\} for  n=2,3 , , 7. The next proposition

derives the property of  \{D_{n,l}\} defined above which implies (iii) of Farey structure.

Proposition 4.2. ([12], Lemma 3.2) Let   D_{n},\iota be defined by  (4\cdot 2),  (4\cdot 3) and  (4\cdot 4) . Then, for every
 n\in \mathbb{N}_{\geq 2} , relations  D_{n+{\imath},1}\prec D_{n,{\imath}} and  D_{n,n-1}\prec D_{n+1,n} hold. Moreover, if  D_{n,l}\prec D_{n',l'} and satisfy

 nl'-n'l=1_{f} then there exists a region  D_{n+n',l+l'} such that  D_{n,f}\prec D_{n+n',l+l'}\prec D_{n',l'}.

Proposition 4.3. ([12], Theorem 4.1)  \{S_{\alpha,\beta}\}_{(\alpha,\beta)\in E} possesses the Farey structure an   E=\{(\alpha, \beta)\in
 (0,1)^{2}  \alpha+\beta>1\} with  \{D_{n,l}\}_{n\in N,l\in Pr(n)} defined by  (4\cdot 4) .

The next corollary leads a zero Lebesgue measure of parameter sets for which  S_{\alpha,\beta} has no periodic

point.

Corollary 4.4. ([12], Corollary 4.2) For Leb—a.e.  (\alpha, \beta)\in E,  S_{\alpha,\beta} has a  period\iota c point.
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Remark 4.5. The Proposition 4.2 show that the following relations hold for rational characteristic

sequences  \{k_{m}\},  \{k_{m}'\} and  \{\hat{k}_{m}\} with respect to  (n, l),  (n', l') and  (n+n', l+l') , respectively, with
 nl'-n'l=1 ;

 B_{n,l'}^{L}(\alpha) > B_{n,l}^{U}(\alpha) ,

 B_{n,l}^{L},  (\alpha)  >  B_{n+n,l+l}^{U},  (\alpha) , for  \alpha\in(0,1) .

 B_{n+n',l+l'}^{L}(\alpha) > B_{n,l}^{U}(\alpha) ,

By using explicit formulas (4.2), (4.3) and (3.4), these can be rewritten as follows respectively; for

 \alpha\in(0,1) ,

 \alpha^{n'-1}-\alpha^{n'}
 F_{n_{)}'l'}(n')-F_{n,l}(n) > (4.7) 1-\alpha^{n'}

 \alpha^{n'-1}-\alpha^{n'}
 F_{n'} , l'(n')-F_{n+n'} , l+l'(n+n') > (4.8) 1-\alpha^{n'}

 \alpha^{n+n'-1}-\alpha^{n+n'}
 F_{n+n',l+l'}(n+n')-F_{n,l}(n) > (4.9) 1-\alpha^{n+n'}

These inequalities will be useful for proving the Lemma 3.6 whose proof are written in appendix. Note

that these inequalities (4.7),(4.8) and (4.9) are the properties of a rational characteristic sequence, which
is not necessary to the NS model.

Remark 4.6. The system  S_{\alpha,\beta} has a periodic point with period  n when  (\alpha, \beta)\in D_{n,l} . The set of these

periodic points with period  n is given by

  Per_{n}.(S_{\alpha,\beta})=\{\frac{\beta}{1-\alpha}-A_{t}(\alpha) i=0, 
\cdot\cdot\cdot , n-1\} . (4.10)

In [9], Keener showed that if the set of preimages of a discontinuous point is finite, then the map has a
periodic solution. The next proposition gives a new property of the preimage of zero for the NS model,

which concludes that the set of preimages is finite for any parameter  (\alpha, \beta)\in D_{n,l} . Remark that zero is

a preimage of the discontinuity point of NS model. This result is used for the proof of Lemma 5.3.

Proposition 4.7. ([13], Proposition 4) Assume that  (\alpha, \beta)\in D_{n,lz} then

 S_{\alpha,\beta}^{-\prime\iota}(0)= \sum_{7n=1}^{i}\frac{k_{n-i+m-1}-\beta}
{\alpha^{m}}\in[0,1], (i=1, \cdots , n-1) , (4.11)

where  \{k_{m}\} is a ratvonal characteristic sequence  w\iota th respect to  (n, l) .

Moreover, for  i=n,  S_{\alpha,\beta}^{-n}(0) is not  1n[0,1].

5 Perturbed Nagumo‐Sato Model

In this section, we introduce our main theorem which states that a Markov operator generated by the

system (1.1) has one of two different asymptotic properties depending on the maximum value  \theta of the

noise. We come to consider our random dynamical system (1.1). From [7], we have already known that
the Markov operator  \overline{P}:L^{1}([0,1])arrow L^{1}([0,1]) defined by

  \overline{P}f(x)=\int_{[0,1]}f(y)\sum_{\iota=0}^{{\imath}}g(x-T(y)+i)dy for  f\in L^{1} (5.1)

which is generated by (ı.ı) is asymptotically periodic. Therefore, the following main theorem gives a
sufficient condition for  r>1 (asymptotic periodicity) and for  r=1 (asymptotic stability).
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Theorem 5.1. ([13], Theorem 3.6) Let  \overline{P} be the Markov operator  corre\mathcal{S}pond_{1}ng to system (1.1).  F\prime\iota x

 n\in \mathbb{N} and  l\in Pr(n) . Assume that  (\alpha, \beta)\in D_{n,l} . Then there exlsts  \theta_{*}(\alpha, \beta)=\theta_{*}(\alpha, \beta, n, l)\in[0,1] such

that

(i) if  \theta\leq\theta_{*}(\alpha, \beta) , then  r=n>1_{f} and  \{\overline{P}^{t}\}lS asymptotically periodic  w\iota th period  n,

(ii) if  \theta>\theta_{*}(\alpha, \beta) , then  r=1 , and  \{\overline{P}^{t}\} is asymptotically stable,

where  r is the number defined  mDefinit\iota on2.9, and

  \theta_{*}(\alpha, \beta)=\frac{\alpha^{n-1}({\imath}-\alpha)^{2}}{1-
\alpha^{n}}-\beta+B_{n,l}^{L}(\alpha) . (5.2)

Remark 5.2. Note that the inequality  \theta\leq\theta_{*}(\alpha, \beta) means  (\alpha, \beta+\xi)\in D_{n},\iota with arbitrary  \xi\in[0, \theta].

To prove Theorem 5.1(i), we prepare the following key lemma.

Lemma 5.3. ([13], Lemma 3. 7) Assume that  (\alpha, \beta),  (\alpha, \beta+\theta)\in D_{n},\iota for  n\in \mathbb{N} and  l\in Pr(n) . For
 i=0,  \cdot\cdot ,  n-1 , let  G_{i} be an anterval defined by

 G_{i}=[ \frac{\sqrt{}}{1-\alpha}-A_{\iota}(\alpha), \frac{\beta+\theta}{1-
\alpha}-A_{\iota}(\alpha)] , (5.3)

where  A_{\iota}(\alpha)i\mathcal{S} defined by (3.3). Then, for  i=0,1,  \cdot\cdot\cdot ,  n-2,

 x_{t+1}\in G_{i+1} if  x_{t}\in G_{\iota} and  xt+{\imath}\in G_{0} if  x_{t}\in G_{n-1} , (5.4)

where  x_{t+1}\iota s determined by the system (1.1). Moreover, there exists a number  N\in \mathbb{N} such that   x_{t+1}\in

  \bigcup_{l=0}^{n-1}G_{\iota} for  t>N and a.e.  x_{0} \in[0,1]\backslash \bigcup_{l=0}^{n-1}G_{i}.

Let  c be the discontinuity point of NS model, i.e.  c= —ı -\beta\alpha . Then we have the following corollary of
Lemma 5.3.

Corollary 5.4. ([13], Corollary 1)  A_{\mathcal{S}}sume that  (\alpha, \beta)\in D_{n,l} and  \theta\leq\theta_{*}(\alpha, \beta) . Then the rotation

number of the perturbed  NS model (1.1) is given by

  \rho=\lim_{tarrow\infty}\frac{1}{t}\sum_{l=0}^{t-{\imath}}1_{[c} , ı  )(x_{\iota})= \frac{l}{n} , (5.5)

for  \mu-a.e.x_{0} and almost every reahzatlon of the system.

In addition to Theorem 5.1, the argument used in the proof of Theorem 5.1 (ii) plays a role to obtain
the following result which shows an asymptotic behavior for the parameter satisfying  \beta=B_{n,l}^{U}(\alpha) .

Theorem 5.5. ([13], Theorem 3.8) Let  \overline{P} be the Markov operator corresponding to system (1.1) and give
a parameter  (\alpha, \beta)\in[0,1]^{2} satisfyvng  \beta=B_{n,l}^{U}(\alpha) . Then,  \{\overline{P}^{t}\} is asymptotlcally stable for any  \theta>0.

Remark 5.6. The condition  \beta=B_{n,l}^{U}(\alpha) implies that  S_{\alpha,\beta} does not have periodic point. The case

 \alpha=1/2,  \beta=B_{4,1}^{U}(1/2)= 17/30,  \theta=1/15 of behavior was observed numerically in [10, 12]. Aıthough
these observations showed us a periodic behavior with period 3, Theorem 5.5 indicates the asymptotic

stability for the case. And recently, Kaijser [8] showed that it displays asymptotic stabiıity in this special
case  \alpha=1/2,  \beta=17/30 and  \theta=1/15.
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