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MULTIFRACTAL ANALYSIS OF GENERALISED TAKAGI FUNCTIONS ON THE

REAL LINE

JOHANNES JAERISCH AND HIROKI SUMI

ABSTRACT. We investigate the random iteration of finitely many expanding \mathscr{C}^{1+\varepsilon} diffeomorph‐

isms on the real‐line without a common fixed point. We derive the spectral gap property of the

associated transition operator on Hölder spaces. As an application we introduce generalised Tak‐

agi functions on the real‐line and investigate their regulanty properties by means of the pointwise

Hölder exponents of these functions.

1. INTRODUCTION AND STATEMENT OF RESULTS

For  s\geq 1 ,  I:=\{1, s+1\} and  \varepsilon>0 let  f_{i} :  \mathbb{R}arrow \mathbb{R},  i\in l , be  \mathscr{C}^{1+\varepsilon} diffeomorphisms with
 \varepsilon‐Hölder continuous derivatives. Throughout, we assume that  (f_{i})_{i\in J} is expanding, that is, there
exists  \lambda>1 such that  f_{i}'(x)\geq\lambda>1 , for all  x\in \mathbb{R} and  i\in I. Further, we assume that  (f_{i})_{i\in 1} has
no common fixed point in  \mathbb{R} . To state our third standing assumption we denote by  \overline{\mathbb{R}}:=\mathbb{R}\cup\{\pm\infty\}
the two‐point compactification of  \mathbb{R} and we define  f_{i}(\pm\infty)  :=\pm\infty,  i\in l . We assume that  (f_{i})_{i\in I} is
contracting near infinity, that is, there exist neighbourhoods  V^{\pm} of  \pm\infty such that   f_{i|V}\pm has Lipschitz
norm strictly less than one. Here,  \overline{\mathbb{R}} is endowed with a metric  d which is strongly equivalent to the
Euclidean metric on compact subsets of  \mathbb{R}.

For  p=(p_{1}, \ldots,p_{\Delta})\in(0,1)^{s} with   \sum_{i=1}^{s}p_{i}<1 , let  p_{s+1}:=1- \sum_{i={\imath}}^{s}p_{i} . Let  \mu_{p} denote the Bernouıli
measure on  I^{\mathbb{N}} with probability vector  (p_{i})_{i\in I} . Let  \mathscr{C}(\overline{\mathbb{R}}) denote the Banach space of continuous
function endowed with the supremum norm  \Vert\cdot\Vert_{\infty} . We define the transition operator for the random
walk on  \overline{\mathbb{R}} associated with  \mu_{p},

 M_{p}: \mathscr{C}(\overline{\mathbb{R}})arrow \mathscr{C}(\overline{\mathbb{R}
}) , M_{p}h=\int hof_{\omega_{\dot{I}}}d\mu_{p}(\omega)=\sum_{i\in J}p_{i}\cdot 
hof_{i}, h\in \mathscr{C}(\overline{\mathbb{R}}) .

Note that, for each  \alpha>0 , we have  M_{p}(\mathscr{C}^{\alpha}(\overline{\mathbb{R}}))\subset \mathscr{C}^{\alpha}(
\overline{\mathbb{R}}) , where  \mathscr{C}^{\alpha}(\overline{\mathbb{R}}) denotes the Banach
space of  \alpha ‐Hölder continuous functions. To state our first main result we say that   M_{p}:\mathscr{C}^{\alpha}(\overline{\mathbb{R}})arrow
 \mathscr{C}^{\alpha}(\overline{\mathbb{R}}) has the spectral gap property if its spectrum consists of finitely many eigenvalues of mod‐
ulus one, and the rest of the spectrum is contained in a ball of radius strictly less than one. For
 a\in \mathbb{R}^{S} and  \delta>0 we denote by  B(a, \delta)\subset \mathbb{R}^{s} the open ball of radius  \delta with centre a in  \mathbb{R}^{s}.

Theorem 1.1. For every  p_{0}\in(0,1)^{s} there exist  \delta>0 and  \alpha>0 such that  M_{p}:\mathscr{C}^{\alpha}(\overline{\mathbb{R}})arrow \mathscr{C}^{\alpha}
(\overline{\mathbb{R}})
has the spectral gap property for every  p\in B(p_{0}, \delta) .

As in [Sumll] we define the probability of tending to infinity

(1.1)  T_{p}: \overline{\mathbb{R}}arrow[0,1], T_{p}(x):=\mu_{p}\{\omega\in l^{\mathbb
{N}}|\lim_{narrow\infty}f_{\omega_{n}}o\cdots of_{\omega_{1}}(x)=\infty\}.
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By combining Theorem 1.1 with perturbation theory for linear operators we can derive that  T_{p}
depends real analytically on  p . This allows us to make the following definition.

Definition 1.2. We denote by  \mathscr{T}:=\mathscr{T}_{p} the  \mathbb{R}‐vector space of generalised Takagi functions gener‐

ated by

 C_{n}(x):=C_{n,p}(x):= \frac{\partial^{\Sigma_{I=1}^{s}.n_{I}}}{\partial u_{1}^
{1\iota_{1}}\partial u_{2}^{n_{2}}..\partial u_{s}^{n_{s}}}T_{(u_{1},\ldots,
u_{s})}(x)|_{(u_{1},\ldots,u_{s})=p},  n=(n_{1},\ldots,n_{\Delta})\in \mathbb{N}_{0}^{s},  x\in\overline{\mathbb{R}}.

We then proceed to investigate the regularity of elements of  \mathscr{T} . The pointwise Hölder exponent

of  C\in \mathscr{T} at  x\in \mathbb{R} is denoted by Höl(C,  x). By [JS15, Lemma 5.1] we have for every  x\in \mathbb{R},

(1.2) Höl  (C,x)= \lim_{rarrow}\inf_{0}\frac{\log\sup_{y\in B(x,r)}|C(y)-C(x)|}{\log r}.
We denote by  G:=\{f_{1}, f_{s+1}\} the semigroup generated by  f_{1},  f_{s+1} where the semigroup

operation is the composition of functions. The Julia set of  G is defined as

 J:= {  x\in\overline{\mathbb{R}}|G is not equicontinuous in any neighborhood  U of  x}.

For the definition of the positive numbers  \alpha_{-} and  \alpha_{+} we refer to Section 2.3. By  t^{*} we denote the

Legendre transform of the function  t=t(\beta),  \beta\in \mathbb{R} , defined implicitly by the pressure formula

 \mathscr{P}(t(\beta)\varphi+\beta\psi)=0 (see Section 2.3 for the definition). We say that  (f_{i})_{i\in l} satisfies the open set

condition if there exists a non‐empty bounde d open interval  O\subset \mathbb{R} such that  f_{i}^{-1}(O)\subset O for all
 i\in l, and   f_{i}^{-1}(O)\cap f_{j}^{-{\imath}}(O)=\emptyset for all  i,j\in l with  i\neq j . We denote by  \dim_{H}(A) the Hausdorff

dimension of a set  A\subset \mathbb{R} with respect to the Euclidean metric.

Theorem 1.3. Suppose that  (f_{i})_{i\in l} satisfies the open set condition. Let  C\in \mathscr{T}\backslash \{0\} . Then for

every  \alpha\in[\alpha_{-}, \alpha_{+}] we have

 \dim_{H} { x\in J| Höl  (C,x)=\alpha }  =-t^{*}(-\alpha) ,

andfor  \alpha\not\in[a_{-}, \alpha_{+}] we have

{ x\in J| Höl  (C,x)=\alpha }  =\emptyset.

For the global Hölder continuity of elements of  \mathscr{T} we prove the following.

Theorem 1.4. Suppose that  (f_{i})_{i\in I} satisfies the open set condition. Then for every  C\in \mathscr{T}\backslash \{0\}

  \alpha_{-}=\sup\{\alpha\geq 0|C\in \mathscr{C}^{\alpha}(\overline{\mathbb{R}})
\}.
Moreover, we have  T\in \mathscr{C}^{\alpha_{-}}(\overline{\mathbb{R}}) .

We denote by  \Vert\cdot\Vert_{\alpha} the  \alpha ‐Hölder norm on  \mathscr{C}^{\alpha}(\overline{\mathbb{R}}) .

Corollary 1.5. Suppose that  (f_{i})_{i\in I} satisfies the open set condition. lf  \alpha_{-}<1 then we have for

every  \alpha_{-}<\alpha<1,

  \sup_{n\geq 1}\Vert M^{n}\Vert_{\alpha}=\infty.
Regarding the existence of points of non‐differentiability of elements of  \mathscr{T} we prove the folıowing.
Let  e_{k}\in \mathbb{N}^{s} denote the k‐th unit vector in  \mathbb{N}_{0}^{s} ,  1\leq k\leq s.
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Proposition 1.6. Suppose that  (f_{i})_{i\in l} satisfies the open set condition.

(1) If  \alpha_{-}<1 then there exists a dense subsetE  \subset J ofpositive Hausdorffdimension such that,
for every  C\in \mathscr{T}\backslash \{0\} and every  x\in E,  C is not differentiable at  x.

(2) If  \alpha_{-}=1 then  C_{e_{k}} is nowhere differentiable on  J, for  1\leq k\leq s . Moreover, if  s=1 then
 C_{m} is nowhere differentiable on  J, for every  m\geq 1.

Higher order derivatives of the classical Takagi function have been considered in [AK06], where

it is shown that the classical Takagi function and the higher order derivatives of the Lebesgue
singular function for  p=1/2 are nowhere differentiable and  \alpha ‐Hölder continuous for every  \alpha<1.

These results can be derived from our general theory. In fact, let  s=1 , p  = ı/2 and let  f_{1}(x)=2x
and  f_{2}(x)=2x-1 . Then we have  \alpha_{-}=1 and Theorem 1.4 implies   \mathscr{T}\subset\bigcap_{\alpha<1}\mathscr{C}^{\alpha}(\overline{\mathbb{R}}
) . Further,

by Proposition 1.6 (2) we have that the higher order derivatives of the classical Takagi function
 C_{m},  m\geq 1 , are nowhere differentiable on  J=[0,1].

Generalized Takagi functions have also been introduced in [HY84]. In [SS91] it is shown that

the Lebesgue singular function depends real analytically on the parameter, and its higher order

derivatives are considered. We point out that our theory for the space of functions  \mathscr{T} is a far‐

reaching generalization, where we consider an arbitrary finite number of  \mathscr{C}^{1+\varepsilon} diffeomorphisms

and arbitrary ıinear combinations of higher‐order partial derivatives of the probability of tending

to infinity with  s\geq 1 probability parameters.

Our results have applications to conjugacies of interval maps. In fact, if  (f_{i})_{i\in I} satisfies the open

set condition, then  T_{p} is the conjugacy map between the expanding dynamical system defined by

 (f_{i})_{i\in I} on  J and the piecewise linear map on  [0,1] with (s  + ı) full branches and sıopes given by
 (1/p_{i})_{i\in I}.

The proofs and detailed statements of the results of this paper will be published elsewhere. In the

next section, we briefly outline the methods and ideas used to derive our results.

2. ON THE PROOFS OF THE MAIN RESULTS

Let  \Sigma:=I^{\mathbb{N}} . Let  I^{*}:= \bigcup_{n\in \mathbb{N}}I^{n} . For  \omega\in I^{*} we denote by  |\omega| the unique  n\in \mathbb{N} such that  \omega\in l^{n}.

For  \omega=(\omega_{1}, \ldots, 0\}_{?})\in\Gamma^{\iota} we let  f_{(\omega_{1},\ldots,\omega_{n})}  :=f_{\omega_{n}}o\cdots of_{\omega_{1}} . Aıso, for  \omega\in l^{\mathbb{N}} and  n\in \mathbb{N} we put

 \omega_{|n}:=(\omega_{1}, \ldots, \omega_{\iota})\in I^{n} . We define the coding map  \pi:\Sigmaarrow \mathbb{R} given by

(2.1)   \bigcap_{n\in \mathbb{N}}(f_{\omega_{|n}})^{-1}(\overline{\mathbb{R}}
\backslash V)=\{\pi(\omega)\}, \omega\in\Sigma,
where  V  :=V^{+}\cup V^{-} and  V^{\pm} are the neighbourhoods of  \pm\infty witnessing that  (f_{i})_{i\in} , is contracting

near infinity. Note that, since  (f_{i})_{i\in I} is expanding, the left hand side of (2.1) is a singleton. Thus,
 \pi is well defined. It is easy to see that

 J=\pi(\Sigma) .

2.1. Spectral gap property. The kernel Julia set of  G ([Sumll]) is given by

  J_{ker}:=\bigcap_{g\in G}g^{-1}(J)\subset J.
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Our assumptions on  (f_{i})_{i\in I} imply that  J_{ker}=\emptyset . By using results of [Sumı 1] we can show that  M_{p}
is almost periodic. To derive the spectral gap property, we prove the following key lemma, which
is motivated by [Sum13].

Lemma 2.1. For every  p_{0}\in(0,1)^{s} there exist  \delta>0,  \alpha>0,  n\in \mathbb{N} and constants  0<c<1 and
 C>0 such that, for every  p\in B(p_{0}, \delta) andfor every  h\in \mathscr{C}^{\alpha}(\overline{\mathbb{R}}) ,

 |M^{n}h(x)-M_{p}^{n}h(y)|\leq(c\Vert h\Vert_{\alpha}+C\Vert h\Vert_{\infty})
d(x,y)^{\alpha} , x,y\in\overline{\mathbb{R}}.

The spectraı gap property then follows from [ITM50]. The analyticity of  p\mapsto T_{p} is a consequence
of the perturbation theory for linear operators (see [Kat76]).

2.2. Functional equations and matrix cocyle estimates. The next lemma can be proved exactly
as in [JS17, Lemma 4.1].

Lemma 2.2. For every  n\in \mathbb{N}_{0}^{\Delta} we have

 C_{n}=M_{p}C_{n}+ \sum_{i=1}^{s}n_{i}(C_{n-e}, of_{i}-C_{n-e}, of_{s+1}) .

The previous lemma is best stated in terms of a matrix cocycle as in [JSI7]. We use  n=(n_{1}, \ldots,n_{s})
to denote an element of  \mathbb{N}_{0}^{s} and we write  |n|  := \sum_{i=1}^{\Delta}n_{i} . Let  e_{i}\in \mathbb{N}_{0}^{s} denote the element whose ith

component is 1 and all other components are  0 . We denote by  1_{n,m}\in \mathbb{R}^{\mathbb{N}_{0}^{s}\cross \mathbb{N}_{0}^{s}} the matrix such that

for every  (x,y)\in \mathbb{N}_{0}^{s}\cross \mathbb{N}_{0}^{\Delta} the  (x,y) ‐component of  1_{n,m} is given by

 (1_{n,m})_{x,y}=\{\begin{array}{l}
1 , n=x, m=y
0, else.
\end{array}
We define the matrix cocycle  A_{0}:\Sigma\cross \mathbb{N}arrow \mathbb{R}^{\mathbb{N}_{0}^{s}\cross \mathbb
{N}_{0}^{s}} given by

 A_{0}(\omega, 1):=\{\begin{array}{ll}
\sum_{n\in \mathbb{N}_{0}^{s}}(p_{\omega_{1}}1_{n,n}+n_{\omega_{1}}1_{n,n-
e_{\omega_{1}}}) ,   \omega_{1}\in\{1, s\}
\sum_{n\in \mathbb{N}_{0}^{s}}(p_{\omega_{1}}1_{n,n}-\sum_{i=1}^{s}n_{i}1_{n,n-
e},) ,   \omega_{1}=s+1
\end{array}
and we set

 A_{0}(\omega,k):=A_{0}(\omega, 1)A_{0}(\sigma\omega, 1)\ldots A_{0}(\sigma^{k-
1}\omega, {\imath})\in \mathbb{R}^{\mathbb{N}_{0}^{s}\cross \mathbb{N}_{0}^{s}}.
We also define

 A(\omega,k):=(p_{\omega_{|k}})^{-1}A_{0}(\omega,k)\in \mathbb{R}^{N_{0}^{s}
\cross \mathbb{N}_{0}^{s}}.
Moreover, for all  a,b\in \mathbb{R} we define the matrix

 U(a,b)  :=(u_{n}(a,b))_{n\in \mathbb{N}_{0}^{s}}\in \mathbb{R}^{N_{0}^{s}} given by  u_{n}(a,b)  :=C_{n}(a)-C_{n}(b) .

The purpose of the above definitions is the following.

Lemma 2.3. Suppose that  (f_{i})_{i\in I} satisfies the open set condition. Let  k\in \mathbb{N},  \omega\in l^{k} and   x,y\in

 f_{\overline{\omega}}^{{\imath}}(\overline{O}) . Then we have  U(x,y)=A_{0}(\overline{\omega},k)U(f_{\omega}(x),f_{\omega}(y)) .

Remark 2.4. The following lemma can be proved as in [JS17, Lemma 4.8].
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Lemma 2.5. There exists a constant  K\geq 1 which depends only on  p\in(0,1)^{s} and  q\in \mathbb{N}^{s} such

thatfor all  \tau\in\Sigma and all  k\in \mathbb{N},

 |A(\tau,k)_{q,r}|\leq Kk^{|q|}.

Moreover, we can derive the following key lemma from the proof of [JS17, Lemma 5.2]. Note that

in [JS17, Lemma 5.2] the Julia set  J_{\omega} should be replaced by  J(G) . An element  C\in \mathscr{T} is called,
non‐trivial if there exists  (\beta_{n})_{n}\neq 0 such that  C= \sum_{n}\beta_{n}C_{n}.

Lemma 2.6. Suppose that  (f_{i})_{i\in l} satisfies the open set condition. Let  C= \sum_{n}\beta_{n}C_{n}\in \mathscr{T} be non‐

trivial. Let   j(k)arrow\infty be a sequence ofpositive integers. Let  \omega\in\Sigma . In any non‐empty neighbour‐
hood  V in  \mathbb{R} which intersects  J there exist  a,b\in V\cap O with  a\neq b such that

  \eta :=1\dot{{\imath}}m\sup_{karrow\infty}|\sum_{m}\sum_{n}\beta_{n}A(\omega,j
(k))_{n,m}u_{m}(a,b)|\in(0,\infty].
2.3. Multifractal analysis. To key is to establish a dynamical characterisation of the pointwise

Hölder exponent. To this end, we define the potentials

 \varphi :  \Sigmaarrow \mathbb{R},  \varphi(\omega):=-\log|f_{\omega_{1}}'(\pi(\omega))| , and  \psi:=\psi_{p}:\Sigmaarrow \mathbb{R},  \psi(\omega):=\log p_{\omega},\cdot

We define the shift map  \sigma :  \Sigmaarrow\Sigma,  \sigma((\omega_{1}, \omega_{2}, \ldots))  :=(\omega_{2}, \omega_{3}, . . .) . For  u:\Sigmaarrow \mathbb{R} and  n\in \mathbb{N} we

denote by  S_{n}u:= \sum_{k=0}^{n-1}uo\sigma^{k} the nth ergodic sum. Further we let

  \alpha_{-}:=\alpha_{-}(p):=\inf_{\omega\in\Sigma}\lim_{narrow}\inf_{\infty}
\frac{S_{n}\psi_{p}(\omega)}{S_{n}\varphi(\omega)}, \alpha_{+}:=\alpha_{+}(p):=
\sup_{\omega\in\Sigma}\lim_{narrow}\sup_{\infty}\frac{S_{n}\psi_{p}(\omega)}
{S_{n}\varphi(\omega)},
and we refer to  \alpha_{-} as the bottom of the spectrum. We define

  \mathscr{F}(\alpha):=\mathscr{F}_{p}(\alpha):=
\pi\{\omega\in\Sigma|_{narrow\infty}Jim\frac{S_{n}\psi(\omega)}{S_{n}
\varphi(\omega)}=\alpha\}.
It is well known that the multifractal spectrum is complete ([Sch99]), that is, we have  \mathscr{F}(\alpha)\neq\emptyset
if and only if  \alpha\in[\alpha_{-}, \alpha_{+}] . For every  \beta\in \mathbb{R} there exists a unique  t(\beta)\in \mathbb{R} such that  \mathscr{P}(t(\beta)\varphi+
 \beta\psi)=0 , where  \mathscr{P}(u) refers to the topological pressure of a continuous function  u with respect to

the dynamical system  (\Sigma, \sigma) (see [Wa182]). It is well known that the function  t is real‐analytic and

convex function with  t'( \beta)=-\int\psi d\mu_{\beta}/\int\varphi d\mu_{\beta} where  \mu_{\beta} denotes the unique Gibbs probability

measure on  \Sigma associated with   t(\beta)\varphi+\beta\psi . The function  t is strictly convex if and only if  \alpha_{-}<\alpha_{+},

and have that  \alpha_{-}=\alpha_{+} if and only if  \delta\varphi and  \psi are cohomologous, where

 \delta:=t(0)=\dim_{H}(J) .

Here, we say that  \delta\varphi and  \psi are cohomologous if there exists a continuous function  K:\Sigmaarrow \mathbb{R} such

that  \delta\varphi=\psi+\kappa-\kappa 0\sigma . Note that we have  -t'(\mathbb{R})=(\alpha_{-}, \alpha_{+}) if  \alpha_{-}<\alpha_{+} , and  -t'(\mathbb{R})=\{\alpha_{-}\},
otherwise. We also define the level sets

 \mathscr{F}^{\#}(\alpha):=\{\begin{array}{ll}
\pi\{\omega\in\Sigma|\lim\sup_{narrow\infty}\frac{S_{n}\psi(\omega)}
{S_{\uparrow}\varphi(\omega)}\geq\alpha\},   \alpha\geq\alpha_{0}
\pi\{\omega\in\Sigma 1\lim\inf_{narrow\infty}\frac{S_{n}\psi(\omega)}{S,\varphi(
\omega)}\leq\alpha\},   \alpha\geq\alpha_{0},
\end{array}
where we have set  \alpha_{O}  := \int\psi d\mu_{0}/\int\varphi d\mu_{0}.We denote the convex conjugate of  t ([Roc70]) by

 t^{*}(u):= \sup\{\beta u-t(\beta)|\beta\in \mathbb{R}\}\in \mathbb{R}\cup\{+
\infty\}.
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It is well‐known (see e.g. [Pes97, Sch99]) that for  \alpha\in[\alpha_{-}, \alpha_{+}],

(2.2)  \dim_{H}(\mathscr{F}(\alpha))=\dim_{H}(\mathscr{F}^{\#}(\alpha))=-t^{*}(-
\alpha)\geq 0,

and that  \mathscr{F}(\alpha)=\mathscr{F}^{\#}(\alpha)=\emptyset for  \alpha\not\in[\alpha_{-}, \alpha_{+}] . To prove this, it is shown that if  -t'(\beta)=a , for

some  \beta\in \mathbb{R} , then for the corresponding Gibbs measure  \mu_{\beta} we have  \mu_{\beta^{o}}\pi^{-1}(\mathscr{F}(\alpha))=1 and

(2.3)  \dim_{H}(\mathscr{F}(\alpha))=\dim_{H}(\mu_{\beta^{o}}\pi^{-{\imath}})>0.
We refer to [JS15, JS17] for a closely related framework for random complex dynamical systems.

If  \alpha_{-}=\alpha_{+} then  \mathscr{F}(\alpha_{-})=J and for every  \beta\in \mathbb{R},

 \dim_{H}(\mathscr{F}(\alpha_{-}))=\dim_{H}(\mu_{\beta^{\circ}}\pi_{1}^{-1})=
\dim_{H}(J)=t(0)=\delta.

By using Lemma 2.6 we are able to prove the following.

Proposition 2.7. Suppose that  (f_{i})_{i\in I} satisfies the open set condition. Let  C= \sum_{n}\beta_{n}C_{n}\in \mathscr{T} be

non‐trivial. For every  x\in J we have

Höl  ( C,x)\leq\underline{\min_{\omega\in\pi^{1}(x)}}\lim_{narrow}\inf_{\infty}\frac
{S_{n}\psi(\omega)}{S_{n}\varphi(\omega)}.
The reverse inequality does not hold in general (see Example (3.1) in Section 3). However, we

can verify the reverse inequality for almost every  x\in J with respect to  \mu_{\beta} by using Lemma 2.3
and Lemma 2.5. Combining this with Proposition 2.7 and the mass distribution principle, we can

prove the following lower bound for the Hausdorff dimension in Theorem 1.3.

Proposition 2.8. Suppose that  (f_{i})_{i\in I} satisfies the open set condition. Let  C= \sum_{n}\beta_{n}C_{n} be non‐

trivial. Then for all  \alpha\in[\alpha_{-}, \alpha_{+}] we have

 \dim_{H} { x\in J| Höl(C,   x)=\alpha }  \geq-t^{*}(-\alpha) .

Finally, to complete the proof of Theorem 1.3 we extend a result of Allaart ([A1117]) for selfsimilar

measures to our setting.

Proposition 2.9. For  \alpha\in \mathbb{R} and  C\in \mathscr{T} we have  \dim_{H} { x\in J| Höl(C,   x)=\alpha }  \leq-t^{*}(-\alpha) .

2.4. Hölder class and non‐differentiability. By using Lemma 2.3 and Lemma 2.5 we are able

to verify that

  \mathscr{T}\subset\bigcap_{\alpha<\alpha_{-}}\mathscr{C}^{\alpha}
(\overline{\mathbb{R}}) .

Moreover, since each level set  \mathscr{F}(\alpha) , for  \alpha\in[\alpha_{-}, \alpha_{+}] is non‐empty, it folıows from Proposition
2.7 that

  \mathscr{T}\cap\bigcap_{\alpha>\alpha_{-}}\mathscr{C}^{\alpha}
(\overline{\mathbb{R}})=\{0\}.
Regarding the non‐differentiability of functions in  \mathscr{T} , it follows from Proposition 2.7 again, that

each  C\in \mathscr{T}\backslash \{0\} is not differentiability at any point of   \pi(\bigcup_{\alpha<1}\mathscr{F}(\alpha)) . Then we can utilize the

well‐known fact that  \dim_{H}(\mathscr{F}(\alpha))>0 for every  \alpha\in(\alpha_{-}, \alpha_{+}) .
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3. EXCEPTIONAL POINTS

We provide an example which shows that the inequality in Proposition 2.7 may be strict for sys‐

tems satisfying the open set condition.

Example 3.1. Let  f_{1}(x)=2x , and  f_{2}(x)=2x-1 and suppose that  p{\imath}>p_{2} . Let  T=T_{p_{0}} denote

the probability of tending to infinity. Note that  T_{p} is Lebesgue’s singular function. We have

  \alpha_{-}=\frac{\log(l/p_{1})}{\log 2}=\frac{\psi(\overline{1})}
{\varphi(\overline{1})} , and   \alpha_{+}=\frac{\log(l/p_{2})}{\log 2}=\frac{\psi(\overline{2})}
{\varphi(\overline{2})}.
There exists a sequence  (n_{i})_{i\in \mathbb{N}} tending to infinity such that, for  \omega  :=(12^{n_{1}}12^{n_{2}}12^{n_{3}}\ldots) and  x=

 \pi(\omega) we have

Höl(T,  x)  = \frac{\log(l/p_{1})}{\log 2}<\frac{\log(l/p_{2})}{\log 2}=\lim_{narrow\infty}
\frac{S_{n}\psi(\omega)}{S_{n}\varphi(\omega)}.

Proof. For  k\in \mathbb{N} let
 \omega^{(k)} :=12^{n_{1}}12^{n_{2}}12^{n_{3}}\ldots 12^{n_{k}}.

Define  y_{k} as the right boundary point of  \pi([\omega^{(k-{\imath})}21^{n_{k}}]) , that is

 y_{k}:=\pi(\omega^{(k-1)}21^{n_{k}}\overline{2}) .

Let

 r_{k}:=2 . diam  ( \pi[12^{n_{1}}12^{n_{2}}12^{n_{3}}\ldots 12^{n_{k}}])=
2\cdot\exp(S_{|12^{n_{1}}12^{n_{2}}12^{n_{3}}\ldots 12^{n_{k}}|}\varphi(\omega))
=2:(\frac{1}{2})^{\Sigma_{J^{=1}}^{k}(n_{k}+1)}
We have  y_{k}\in B(x, r_{k}) because the cyıinders  \pi[\omega^{(k-1)}12^{n_{k}}] and  \pi[\omega^{(k-1)}21^{n_{k}}] touch, and we have

 x\in\pi[\omega^{(k-1)}{\imath} 2^{n_{k}}] and  y_{k}\in[\omega^{(k-1)}21^{n_{k}}] . Therefore, we have

  \log\sup_{ky\in B(x,r)}|T(x)-T(y)|\geq\log|T(x)-T(y_{k})
|\geq\log\mu[\omega^{(k-1)}21^{n_{k}}]
 =s_{|\omega^{(k-1)}21^{n_{k}}|^{\psi(\omega)=S}|\omega^{(k-1)}|^{\psi(\omega)+
\log p_{1}+n_{k}\log p_{1}}}.

We thus obtain

  \frac{\log\sup_{y\in B(x,r_{k})}|T(x)-T(y)|}{\log r_{k}}\leq\frac{\log|T(x)-
T(y_{k})|}{\log r_{k}}\leq\frac{\log\mu[\omega^{(k-1)}21^{n}k]}{\log r_{k}}.
We have

  \frac{\log\mu[\omega^{(k-1)}21^{n_{k}}]}{\log r_{k}}=\frac{s_{|\omega^{(k-1)}
|^{\psi(\omega)+\log p_{1}.+n_{k}{\imath} ogp_{2}}}}{\log 2+s_{|12^{n_{1}}
12^{l1}2l2^{\prime 1}3..12^{n_{k}}|\varphi(\omega)}}=
\frac{s_{|\omega|^{\psi(\omega)+\log p_{1}+n_{k}\log p_{2}}}(k-1)}
{s_{||^{\varphi(\omega)+\log 2+(n_{k}+1)\log(1/2)}}\omega(k-1)}
Let  \varepsilon>0 . By choosing  n_{k} much ıarger than  |\omega^{(k-1)}| , we may assume that,

  \frac{s_{|\omega^{(k-1)}|^{\psi(\omega)+\log p_{1}+n_{k}\log p_{1}}}}
{s_{||^{\varphi(\omega)+\log 2+(n_{k}+1)\log(1/2)}}\omega(k-1)}\leq\frac{\log p_
{1}}{\log({\imath}/2)}+\varepsilon=\frac{\log(1/p_{1})}{\log(2)}+\varepsilon.
We have thus shown that

  \lim_{rarrow}\inf_{0}\frac{\log\sup_{y\in B(x,r)}|T(x)-T(y)|}{\log r}\leq\lim_
{karrow}\inf_{\infty}\frac{\log\sup_{y\in B(x,r_{k})}|T(x)-T(y)|}{\log r_{k}}
\leq\frac{\log(1/p_{1})}{{\imath} og(2)}+\varepsilon.
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The claim follows because

Höl(T,  x)  = \lim_{rarrow}\inf_{0}\frac{\log\sup_{y\in B(x,r)}|T(x)-T(y)|}{\log r}.
 \square 
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