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THE HAUSDORFF DIMENSION OF THE REGION OF

MULTIPLICITY ONE OF OVERLAPPING ITERATED FUNCTION
SYSTEMS OF THE INTERVAL

KENGO SHIMOMURA

1. INTRODUCTION

We consider iterated function systems on the unit interval I= [  0 , ı] generated by two
contractive similarity transformations

(1)  f_{0}(x)=ax, f_{1}(x)=ax+(1-a)

with similarity ratio  0<a<1 . If  a is grater than 1/2, the limit set is the interval itself,
and we say such an iterated function system is overlapping. We study the subset  J_{1}(a)
of points of the overlapping limit set which have unique addresses. Fig.1 shows Jı(a) for
values of  a between 1/2 and the golden ratio  g=(\sqrt{5}-1)/2 . Note that  J_{1}(a)= {  0 , ı}
for  a>g.

We explicitly determine the Hausdorff dimension of  J_{1}(a) for values of  a described
below. For  k=1,2 , , let  b_{k} denote the unique value of  1/2<a<1 satisfying

(2)  f_{0}f_{1}^{k}f_{0}(1)=1-a or  a^{k+2}-a^{k+1}+2a-1=0.

Likewise, let  c_{k} denote the unique value of  1/2<a<1 satisfying

(3)  f_{0}f_{1}^{k+1}(0)=1-a or  -a^{k+2}+2a- ı  = 0.
It is easy to check that   \frac{1}{2}<\cdots<b_{2}<c_{2}<b_{1}<c_{1} and that the sequences  \{b_{k}\} and  \{c_{k}\}
converge to 1/2 as  k increases.

Theorem 1.1. For any  a with  b_{k}\leq a\leq c_{k}(k\geq 2) , the Hausdorff dimension of  J_{1}(a) is
given by

  \dim_{H}J_{1}(a)=-\frac{\log\lambda_{k}}{\log a},
where  \lambda_{k} is the largest eigenvalue of the matrix  A_{k} given in section 3.

Table 1 shows the values of  b_{k},  c_{k} and  \lambda_{k} for  k up to 10. To prove the theorem, we define
and apply the theory of graph directed Markov systems. The matrix  A_{k} is its incidence
matrix.

2. PRELIMINARY

2.1. Multiplicity function. Let (X, d) be a compact metric space which is a subset of
 R^{n} and  \Sigma is a finite set. A conformal iterated function system is based on similarity
transformations  \{f_{i} : Xarrow X : i\in\Sigma\} . Each of similarity ratio is smaller than 1. Let
 S=\{f_{i} : Iarrow I : i\in\Sigma\} be a conformal iterated function system of the unit interval.
The code map

 \pi:\Sigma^{\infty}arrow I
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TABLE 1.  b_{k},c_{k} and  \lambda_{k}

FIGURE 1.  J_{1}(a) for  a between 1/2 and the golden ratio  g

is defined by

  \pi(\omega)=\bigcap_{n=0}^{\infty}f_{\omega 0}o\cdots of_{\omega_{n}}(I) , 
(\omega=\omega_{0}\omega_{1} \in\Sigma^{\infty}) .

Its image  J=\pi(\Sigma^{\infty}) is the limit set. When an iterated function system satisfies
  f_{i}(J)\cap f_{j}(J)=\emptyset for any  i,  j with  i\neq j , We say the iterated function system is totally
disconnected. If not, We say the iterated function system is overlapping. If the iterated
function system  S is totally disconnected, the code map  \pi is one‐to‐one and every point
 x\in J has a unique address  \pi^{-1}(x) . But in case of overlapping function system,  \pi is not
one‐to‐one and some limit points  x\in J have more than one address. The multiplicity
function

 m:Iarrow N

is given by

 m(x)=\#\{\omega\in\Sigma^{\infty}|\pi(\omega)=x\} (x\in I) .

For  k=0,1 , , we define  J_{k}(S) by

 J_{k}(S)=\{x\in I|m(x)=k\}.

61



62

Then the limit set decomposes into a disjoint union as

 J=J{\imath} (S)\cup J_{2}(S)\cup \cup J_{\infty}(S) .

For totally disconnected iterated function systems we have  J_{1}(S)=J . Here we are
interested in Jı(S) for overlapping iterated function systems.

Now let us consider iterated function system of the unit interval  I generated by  f_{0}(x)=
ax and  f_{1}(x)=ax+  ( ı  -a) , where  0<a<1 . If  a<1/2 , the system is totally
disconnected. The limit set  J=J_{1}(a) is the Cantor set, and its Hausdorff dimension
is given by the Hutchinson’s theorem ([3]). When  a>1/2 , the Hausdorff dimension of
 J_{1}(a) is generally difficult to determine. But in the cases described in Theorem l.ı we
can determine the Hausdorff dimension.

2.2. Graph directed Markov systems. Graph directed Markov systems are based
upon a directed multigraph and an associated incidence matrix,  (V, E, A, i, t) . The multi‐
graph consists of a finite set  V of vertices and a finite set of directed edges  E . Also,  a

function  A :  E\cross Earrow\{0,1\} is given, called an incidence matrix. It determines which
edges may follow a given edge. For each edge  e,  i(e) is the initial vertex of the edge  e

and  t(e) is the terminal vertex of  e . So, the matrix has the property that if  A_{uv}=1 , then
 t(u)=i(v) . We will consider finite and infinite code space with the vertex set consistent
with the incidence matrix. We define the set of infinite code space by

 E_{A}^{\infty}=\{\omega\in E^{\infty} :  A_{\omega_{\iota}\omega_{z+1}}=1 for all  i\geq 1\}.

By  E_{A}^{n} we denote the space of codes of length  n\geq 1,

 E_{A}^{n}=\{\omega\in E^{n} :  A_{\omega_{\iota}\omega_{i+1}}=1 for all  i\geq 1\}.

And by  E_{A}^{*} we denote the space of codes with finite length,  E_{A}^{*}= \bigcup_{n=1}^{\infty}E_{A}^{n}.  A is irreducible
if for all  a,  b\in E , there exists  \omega\in E_{A}^{*} such that  a\omega b\in E_{A}^{*}.

A conformal graph directed Markov system (CGDMS) consists of a directed multigraph
and an incidence matrix together with a set of nonempty compact spaces  \{X_{v}\subset R^{d}\}_{v\in V},
a number  s,  0<s<1 and for every  e\in E , a one‐to‐one similar transformation  f_{e} :
 X_{i(e)}arrow X_{t(e)} with a Lipschitz constant  s . Briefly the set

 S=\{f_{e}:X_{i(e)}arrow X_{t(e)}:e\in E\}
is called a CGDMS. When  V is a singleton,  S is nothing but an conformal iterated function
system. For every  \omega\in E_{A}^{\infty} , the word consisting of the first  n letters of  \omega is denoted by

 \omega|_{n}=w_{1}\cdots w_{n}\in\Sigma^{n}.

Then we can define the code map of the CGDMS.

Definition 2.1. The code map  \pi :  E_{A}^{\infty} arrow\bigcup_{v\in V}X_{v} is defined by

  \pi(\omega)=\bigcap_{n=1}^{\infty}f_{\omega|_{n}}(X_{\iota(\omega_{n})})=
\bigcap_{n=1}^{\infty}f_{\omega_{1}}o . . .  of_{\omega_{n}}(X_{i(\omega_{n})}) .

We define the limit set  J of the conformal graph directed Markov system by the image of
the code map.

 J= \bigcup_{\omega\in E_{A}^{\infty}}\pi(\omega)
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With respect to the product topology, the code space  E_{A}^{\infty} is compact and the code map
 \pi is continuous. Hence, the limit set  J is compact.

2.3. The Hausdorff dimension. We need a couple of conditions when we calculate the
Hausdorff dimension of the limit set. The first is the open set condition.

Definition 2.2. We say that  S=\{f_{e} : X_{\iota(e)}arrow X_{t(e)} : e\in E\} satisfies the open set
condition if there exists a nonempty open set  U \subset\bigcup_{v\in V}X_{v} such that for all  e,   e'\in E(e\neq
 e') ,

  f_{e}(U\cap X_{\iota(e)})\cap f_{e'}(U\cap X_{i(e')})=\emptyset and   \bigcup_{e\in E}f_{e}(U\cap X_{i(e)})\subset U.
The second condition is the bounded distortion property.

Definition 2.3. A CGDMS  S=\{f_{e} : X_{l(e)}arrow X_{t(e)} : e\in E\} satisfies the bounded
distortion property if there exists  K\geq 1 such that for all  n\in N,  \omega\in E_{A}^{n} and  x,  y\in X_{i(\omega|_{n})},
  \frac{|f_{\omega}'(x)|}{|f_{\omega}'(y)|}\leq K.
We can obtain the Hausdorff dimension of the limit set if the CGDMS satisfies these

conditions and the incidence matrix is irreducible. The following theorem compiles the
theorems of the Mauldin and Urbański book [2].

Theorem 2.4 (Mauldin and Urbański, 2003). Suppose that CGDMS  S=\{f_{e} :   X_{i(e)}arrow
 X_{t(e)} :  e\in E\} satisfies the open set condition and the bounded distCortion property and
that the incidence matrix  A is irreducible. Let  P(t) be

 P(t)= \lim_{narrow\infty}\frac{1}{n}\log\sum_{\omega\in E_{A}^{n}}||f_{\omega}
'||^{t}
Then the Hausdorff dimension of the limit set  \dim_{H}JiS given by

  \dim_{H}J=\sup\{t>0|P(t)>0\}=\inf\{t>0|P(t)<0\}.
When all the transformations are self‐similar, we can also obtain the Hausdorff dimen‐

sion by a method similar to the proof of Hutchinson’s theorem ([3]).

3. CANTOR SET

Now we consider the iterated function system  S=\{f_{0}, f_{1}\} defined by (ı). Recall
that we define  b_{k} by (2) and  c_{k} by (3). Assume that  a>1/2 . We denote that  F=

 f_{0}(I)\cap f_{1}(I)=[1-a, a] . For  \omega=\omega_{1}\omega_{2}\cdots\omega_{n}\in\{0,1\}^{n}(n=1,2, \ldots) , we define  n+ ı
level overlapping area by  F_{\omega}=f_{\omega_{1}}f_{\omega_{2}}\cdots f_{\omega_{n}}(F) . Note that every point in  F and its
descendents  F_{\omega} , has multiplicity 2 or more. If  a>g , the interval  f_{0}^{i}(F) overlaps with
 f_{0}^{i+1}(F) for all  i=0 , ı, . . . , and their union

  \bigcup_{l=0}^{\infty}f_{0}^{i}(F)=(0, a]
contains only points of multiplicity 2 or more. Likewise, we have   f_{1}^{l}(F)\cap f_{1}^{i+1}(F)\neq\phi for
 i=0,1 , . . . , and the union

  \bigcup_{i=0}^{\infty}f_{1}^{l} (F)  = [ı—a, 1  )

contains only points of multiplicity 2 or more.
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Proposition 3.1. For any a  \geq bı, we have  \dim_{H}J_{1}(a)=0.

Corollary 3.2. For any  a\geq b_{1} , we have   \dim_{H}\bigcup_{l=2}^{\infty}J_{i}(a)=1.

When  a<b_{1} , it is generally difficult to determine the Hausdorff dimension of  J_{1}(a) .
However, we can obtain the Hausdorff dimension when  b_{2}\leq a\leq c_{2}.

Theorem 3.3. Suppose that  a satisfies  b_{2}\leq a\leq c_{2} . Then

  \dim_{H}J_{1}(a)=-\frac{\log\frac{1+\sqrt{5}}{2}}{\log a}.
Proof. Note in case when  a=b_{2},  F_{011} and  F_{100} are just touching with  F (See Fig.2).

0.0 1.  0

 F

 rightarrow^{\underline{}}
 F_{0}^{\backslash } \Gamma_{1}

 -\neg - --

I  \blacksquare  1 — I  \blacksquare I

 R_{00}AI I  F_{00{\imath}}^{\backslash }\star I\blacksquare  A\Gamma_{010}I I
 R_{1{\imath}}E_{00}\star

I  \prime F_{101}^{\backslash }]^{\neg}\blacksquare  F_{{\imath} 10}^{\backslash }AI I  \Gamma_{111}\star 1

FIGURE 2.  F_{\omega} in case of  a=b_{2}

Let us consider the union of all the overlapping areas for  n\leq 2,

 U= \bigcup_{|\omega|\leq 2}F_{\omega}.
The complement of the interior of  U is a disjoint union of closed intervals. Name them
 X_{0},  X_{1} , . . . from left to right. We now define a multigraph  (V_{2}, E_{2}, A_{2}, i, t) by

 V_{2}=\{0,1,2,3,4,5,6,7\}

 E_{2}=\{(0,0), (1,0), (2,1), (3,1), (4,2), (5,2), (6,3), ({\imath}, 4), (2,5), 
(3,5), (4,6), (5,6), (6,7), (7,7)\}
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 A_{2}=[00000000000011 00000000000011 000000000000{\imath} 1 00000000000001 
00000000000001 00000000000011 00000000000011 00000000000011 000000000000{\imath}
1 00000000000001 00000000000001 00000000000011 00000000000011 00000000000011]
We can define a CGDMS from this multigraph naturally. The CGDMS satisfies the open
set condition. It also satisfies the bounded distortion property since the contractivity of
all the maps is equal to  a . The limit set of the CGDMS  (V_{2}, E_{2}, A_{2}, i, t) is Jı  (a) . Although
the incidence matrix  A_{2} is not irreducible, we can modify the CGDMS slightly and apply
Theorem 2.4. We define the modified multigraph by

 V_{2}'= {ı, 2, 3, 4, 5, 6}

 E_{2}'= \{(2, {\imath}), (3,1) , (4,2), (5,2), (6,3), (1,4), (2,5), (3,5), (4,
6), (5,6)\}

 A_{2}'=(0000000011 000000000{\imath} 0000000001 000000001{\imath} 
00000000{\imath} 1 00000000{\imath} 1 00000000{\imath} 1 0000000001 0000000001 
000000001{\imath}]
Let us denote the limit set of this modified CGDMS by Jí(a). We have  \dim_{H}J_{1}(a)\geq

 \dim_{H} Jí  (a) . It is easy to check that  A_{2}' is irreducible and we can apply Theorem 2.4. The
Hausdorff dimension of the limit set  J_{1}(a) is the zero point of the topological pressure
function

 P(t)= \lim_{narrow\infty}\frac{1}{n}\log\sum_{\omega\in E_{A}^{n}}||f_{\omega}
'||^{t}
 = \lim_{narrow\infty}\frac{1}{n}\log\# E_{A}^{n}+t\log a.

It is well‐known that the first term equals  \log\lambda where  \lambda is the largest eigenvalue of  A_{2}' . So
the maximum eigenvalue of  A_{2}' is equal to the largest eigenvalue of  A_{2} , and is  (1+\sqrt{5})/2.
Since we can evaluate an upper bound by using maximum eigenvalue, The following is

65



66

hold:

 \dim_{H}  Jı’  (a) \leq\dim_{H}J_{1}(a)\leq-\frac{\log\lambda}{\log a}=\dim_{H}J_{1}'(a)
 \square 

4. PROOF OF THEOREM 1.1

We can generalize Theorem 3.3 and prove Theorem 1.1. First we define a multigraph
 (V_{n}, E_{n}, A_{n}, i, t) by

 V_{n}=\{0, 2^{n+1}-1\}
 E_{n}=\{(i, \phi_{0}(i))|0\leq i\leq 2^{n+{\imath}}-2\}\cup\{(i, \phi_{1}(i))|1
\leq i\leq 2^{n+1}-1\}.

The map  \phi_{j} :  \{0, . . . , 2^{n+1}-1\}arrow\{0, , 2^{n+1}-1\} is defined by

  \phi_{0}(i)=\lfloor\frac{i}{2}\rfloor,
  \phi_{1}(i)=\lfloor\frac{i}{2}\rfloor+2^{n},

where   \lfloor\frac{l}{2}\rfloor is the maximum integer not greater than  i/2 . In terms of the binary notation
 i=\omega_{n}\cdots\omega_{1}\omega_{0}(2)(\omega_{i}\in\{0,1\}) , the map  \phi_{0} (resp.  \phi_{1} ) shifts the digits to the right and
append  0 (resp. ı) to the left:

 \phi_{0}(\omega_{n}\omega_{n-1}\ldots\omega_{1}\omega_{0}(2))=0\omega_{n}
\omega_{n-1}\ldots\omega_{1}(2)

 \phi_{1}  (\omega_{n}\omega_{n-1} . . . \omega_{1}\omega_{0}(2))=1\omega_{n}\omega_{n-1} . . .  \omega_{1}(2)
The incidence matrix  A_{n} :  E_{n}\cross E_{n}arrow\{0,1\} is defined as follows.

 A_{n}((i, \phi_{k}(i)), (j, \phi_{l}(j)))=\{\begin{array}{l}
1 (\phi_{k}(i)=j)
0 (otherwise)
\end{array}
The limit set of this CGDMS is  J_{1}(a) . The CGDMS satisfies the open set condition

if we consider the open set and all the function is either  f_{0} or fı, it also satisfies the
bounded distortion property, but the incidence matrix  A_{n} is not irreducible. We modify
the CGDMS by removing the vertices  0 and  2^{n+1}-1 , and restricting the incidence matrix
to the edges not involving the vertices  0,2^{n+1}-1 , The ıimit set Jí(a) of the modified
CGDMS has the same Hausdorff dimension as  J_{1}(a) since largest eigenvalue of the mod‐
ified incidence matrix  A_{r\iota}' is the same as that of  A_{n} . We know that from the proof of the
theorem 3.3. To see that the modified incidence matrix  A_{n}' is irreducible, we show for
 p,  q\in V\backslash \{0,2^{n+1}-1\} there exists a path from  p to  q within  V\backslash \{0,2^{n+1}-1\} . Denote
 p and  q in binary notations as

 p=p_{n}\cdots p_{1}p_{0}(2) ,

 q=q_{n}\cdots q_{1}q_{0}(2) .

Let  l be the largest integer such that

 q_{l}=q_{l-1}=.
. .

 =q_{0}=p_{n}=p_{n-1}=.
. .

 =p_{n-l}.

Then we have  \phi_{q_{n}}\cdots\phi_{q_{i+1}}(p)=q and for all   k\in {l  + ı, .  n}, we have  \phi_{q_{n}}\cdots\phi_{q_{k}}(p)\in
 V\backslash \{0,2^{n+1}- {\imath}\} . This shows that  A_{n}' is irreducible, and we can apply Theorem 2.4
and compute the Hausdorff dimension of the CGDMS in the same way as in the proof of
Theorem 3.3.
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