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THE HAUSDORFF DIMENSION OF THE REGION OF
MULTIPLICITY ONE OF OVERLAPPING ITERATED FUNCTION
SYSTEMS OF THE INTERVAL

KENGO SHIMOMURA

1. INTRODUCTION

We consider iterated function systems on the unit interval I = [0, 1] generated by two
contractive similarity transformations

(1) fo(z) = ax, filz) =az+ (1 —a)

with similarity ratio 0 < a < 1. If a is grater than 1/2, the limit set is the interval itself,
and we say such an iterated function system is overlapping. We study the subset J;(a)
of points of the overlapping limit set which have unique addresses. Fig.1 shows J;(a) for
values of a between 1/2 and the golden ratio g = (v/5 — 1)/2. Note that J;(a) = {0,1}
fora > g.

We explicitly determine the Hausdorff dimension of J;(a) for values of a described
below. For k =1,2,..., let by denote the unique value of 1/2 < a < 1 satisfying

(2) fofffo(l)=1—a or - +2a-1=0.
Likewise, let ¢, denote the unique value of 1/2 < a < 1 satisfying
3) fofff'0)=1-a or —ad"? 4+ 2a-1=0.

It is easy to check that % <+ < by <y <by <c; and that the sequences {b;} and {cx}
converge to 1/2 as k increases.

Theorem 1.1. For any a with by < a < ¢, (k > 2), the Hausdorff dimension of Jy(a) is
given by
log )‘k
" loga’
where X\, is the largest eigenvalue of the matriz Ay given in section 3.

dimg Ji(a) =

Table 1 shows the values of by, ¢y and A for k£ up to 10. To prove the theorem, we define
and apply the theory of graph directed Markov systems. The matrix Ay is its incidence
matrix.

2. PRELIMINARY

2.1. Multiplicity function. Let (X, d) be a compact metric space which is a subset of
R"™ and X is a finite set. A conformal iterated function system is based on similarity
transformations {f, : X — X : ¢ € £}. Each of similarity ratio is smaller than 1. Let
S={fi:I =1 : ie€ZX} be aconformal iterated function system of the unit interval.
The code map

TX® =1
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FIGURE 1. Ji(a) for a between 1/2 and the golden ratio g

is defined by
(@) = () fun 00 fun (D), (w = wiown -+ € £%).
n=0

Its image J = 7(X*) is the limit set. When an iterated function system satisfies
f(N) N f;(J) = 0 for any 4,5 with i # j, We say the iterated function system is totally
disconnected. If not, We say the iterated function system is overlapping. If the iterated
function system S is totally disconnected, the code map 7 is one-to-one and every point
x € J has a unique address 771(z). But in case of overlapping function system, 7 is not
one-to-one and some limit points z € J have more than one address. The multiplicity
function

m:I =N
is given by
m(z) = H{w € T%° | n(w) =z} (z€l).
., we define Ji(S) by
Jo(S) = {z € I | m(z) = k}.

For k=0,1,..
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Then the limit set decomposes into a disjoint union as
J=J(S)U L(S)U---U Jx(9).

For totally disconnected iterated function systems we have J;(S) = J. Here we are
interested in J;(.S) for overlapping iterated function systems.

Now let us consider iterated function system of the unit interval I generated by fo(z) =
ar and fi(r) = ar + (1 — a), where 0 < a < 1. If a < 1/2, the system is totally
disconnected. The limit set J = Ji(a) is the Cantor set, and its Hausdorff dimension
is given by the Hutchinson’s theorem ([3]). When a > 1/2, the Hausdorff dimension of
Ji(a) is generally difficult to determine. But in the cases described in Theorem 1.1 we
can determine the Hausdorff dimension.

2.2. Graph directed Markov systems. Graph directed Markov systems are based
upon a directed multigraph and an associated incidence matrix, (V, E, A,4,t). The multi-
graph consists of a finite set V' of vertices and a finite set of directed edges E. Also, a
function A : E x E - {0,1} is given, called an incidence matrix. It determines which
edges may follow a given edge. For each edge e, i(e) is the initial vertex of the edge e
and t(e) is the terminal vertex of e. So, the matrix has the property that if A,, = 1, then
t(u) = i(v). We will consider finite and infinite code space with the vertex set consistent
with the incidence matrix. We define the set of infinite code space by

EY ={w€ E®: Ay, =1forali>1}.
By E7 we denote the space of codes of length n > 1,
E;ll = {w S En : A"JZWH—I = 1f01‘all 7 Z 1}

And by E} we denote the space of codes with finite length, E% = J.-, E%. Aisirreducible
if for all a,b € E, there exists w € E% such that awb € E7.

A conformal graph directed Markov system (CGDMS) consists of a directed multigraph
and an incidence matrix together with a set of nonempty compact spaces {X, C R%} v,
a number s, 0 < s < 1 and for every e € F, a one-to-one similar transformation f, :
Xiey = Xy with a Lipschitz constant s. Briefly the set

S = {fe : Xi(e) — Xt(e) L ec E}

is called a CGDMS. When V is a singleton, S is nothing but an conformal iterated function
system. For every w € EY, the word consisting of the first n letters of w is denoted by

W = wy -+ w, € 5"
Then we can define the code map of the CGDMS.
Definition 2.1. The code map 7 : EX — U,y Xo s defined by

veV

(@) = () falKigwn) = [) fir 0+ 0 Fur Kiwy)-
n=1 n=1

We define the limit set J of the conformal graph directed Markov system by the image of
the code map.



With respect to the product topology, the code space EY is compact and the code map
7 is continuous. Hence, the limit set J is compact.

2.3. The Hausdorff dimension. We need a couple of conditions when we calculate the
Hausdorff dimension of the limit set. The first is the open set condition.

Definition 2.2. We say that S = {f. : X, — Xie) : e € E} satisfies the open set
condition if there exists a nonempty open set U C |, o\, Xy such that for alle,e' € E (e #
e,
fUN Xz(e)) N fe(UN Xi(el)) =0 and U f(UN Xi(e)) cU.
ecE

The second condition is the bounded distortion property.

Definition 2.3. A CGDMS S = {f. : X,y — Xie)y : e € E} satisfies the bounded
distortion property if there exists K > 1 such that for alln € N, w € E% andz,y € Xo(wln)»

L)l
o S K-

We can obtain the Hausdorff dimension of the limit set if the CGDMS satisfies these

conditions and the incidence matrix is irreducible. The following theorem compiles the
theorems of the Mauldin and Urbanski book [2].

Theorem 2.4 (Mauldin and Urbariski, 2003). Suppose that CGDMS S = {f. : Xite) =
Xie) : e € E} satisfies the open set condition and the bounded distCortion property and
that the incidence matriz A is irreducible. Let P(t) be

1 ot
P(t) r};rgonlogwezEzllwaI :
Then the Hausdorff dimension of the limit set dimpy J is given by
dimgJ = sup{t > 0| P(t) > 0} = inf{t > 0 | P(t) < 0}.
When all the transformations are self-similar, we can also obtain the Hausdorff dimen-

sion by a method similar to the proof of Hutchinson’s theorem ([3]).

3. CANTOR SET

Now we consider the iterated function system S = {fo, fi} defined by (1). Recall
that we define by by (2) and ¢ by (3). Assume that a > 1/2. We denote that F =
foI)N fi(I) = [1 — a,a]. For w = wywy -+~ w, € {0,1}" (n = 1,2,...), we define n + 1
level overlapping area by F, = f,, fu, - fu.(F). Note that every point in F' and its
descendents F,,, has multiplicity 2 or more. If a > g, the interval fi(F) overlaps with
feTY(F) for all i = 0,1,. .., and their union

Ufé(F) = (07 CL]

contains only points of multiplicity 2 or more. Likewise, we have fi(F)N fit}(F) # ¢ for
1=0,1,..., and the union

Us@) =i1-a1)

contains only points of multiplicity 2 or more.
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Proposition 3.1. For any a > by, we have dimg J;(a) = 0.
Corollary 3.2. For any a > by, we have dimy |2, J;(a) = 1.

When a < by, it is generally difficult to determine the Hausdorff dimension of J;(a).
However, we can obtain the Hausdorff dimension when by, < a < ¢,.

Theorem 3.3. Suppose that a satisfies by < a < cy. Then
1+V5
_log >

dimy Ji(a) = Toga

Proof. Note in case when a = by, Fy;; and Figo are just touching with F (See Fig.2).

I Fi
P —
Xo E-(:o X X2 R X Xs Bo X5 Xs Fu X7
Fooo Foor Fowo B Koo Fioi Fio Fiu
o o - - ~ - - -

FIGURE 2. F,, in case of a = by

Let us consider the union of all the overlapping areas for n < 2,

v=J F..

fwl<2

The complement of the interior of U is a disjoint union of closed intervals. Name them
Xo, X1,... from left to right. We now define a multigraph (Va, Es, A, 4,t) by

Vs ={0,1,2,3,4,5,6,7}

E; = {(0,0),(1,0),(2,1),(3,1),(4,2),(5,2),(6,3),(1,4),(2,5), (3,5), (4,6), (5,6), (6,7), (7,7)}
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We can define a CGDMS from this multigraph naturally. The CGDMS satisfies the open
set condition. It also satisfies the bounded distortion property since the contractivity of
all the maps is equal to a. The limit set of the CGDMS (V5, E», As,1,t) is Ji(a). Although
the incidence matrix A, is not irreducible, we can modify the CGDMS slightly and apply
Theorem 2.4. We define the modified multigraph by

V; ={1,2,3,4,5,6}

000O0OO0OT1IQO0O0OTO0OO
000O0OO0OT1O0OO0OGOOO
1000001000
1000001O0O00O
A — 01 0000O01O00O
2710010000010
000100O0O0OO0OTO0T1
0001000O0O0T1
000O0O1O0O0OO0OTOOO
000O0OT1O0O0OO0OGO0O

Let us denote the limit set of this modified CGDMS by J;(a). We have dimg J;(a) >
dimpg Ji(a). It is easy to check that Aj is irreducible and we can apply Theorem 2.4. The
Hausdorff dimension of the limit set J;(a) is the zero point of the topological pressure
function

1 ,
P(t) = lim ~log } _ |I£.I
w€eE"

1
= lim —logfE7} + tloga.
n

n—0o0

It is well-known that the first term equals log A where X is the largest eigenvalue of A). So
the maximum eigenvalue of A} is equal to the largest eigenvalue of Ay; and is (1+1/5)/2.
Since we can evaluate an upper bound by using maximum eigenvalue, The following is
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hold:

dimH J{(a) < dlmH Jl(a) S —% = dlmH J{(a)

4. PROOF OF THEOREM 1.1

We can generalize Theorem 3.3 and prove Theorem 1.1. First we define a multigraph
(Va, En, Ap,i,t) by
V,={0,...,2""" -1}
En = {(i,60(1)) | 0 < €27 = 2} U{(5, (1)) | 1 < < 2" — 1},
The map ¢; : {0,...,2""' — 1} — {0,...,2"" — 1} is defined by

wli) = |3

. i n
¢1(l) = {‘aJ +2 ,
where | %] is the maximum integer not greater than i/2. In terms of the binary notation
1= wy- - wiwo(2) (w; € {0,1}), the map ¢ (resp. ¢1) shifts the digits to the right and
append O (resp. 1) to the left:

Go(wWnwn—1 ... w1we(2)) = Owpwn_1 - .. w1(2)

1 (wnwn—1 ... w1we(2)) = lwpwp—1 ... w1(2)
The incidence matrix A, : E, X E, — {0,1} is defined as follows.

An((3, 0x(2)), (4, #1(4))) = { (1) Efflgngis{a))

The limit set of this CGDMS is Ji(a). The CGDMS satisfies the open set condition
if we consider the open set and all the function is either f, or fi, it also satisfies the
bounded distortion property, but the incidence matrix A, is not irreducible. We modify
the CGDMS by removing the vertices 0 and 2"! — 1, and restricting the incidence matrix
to the edges not involving the vertices 0,2"*! — 1. The limit set Jj(a) of the modified
CGDMS has the same Hausdorff dimension as J;(a) since largest eigenvalue of the mod-
ified incidence matrix A, is the same as that of A,. We know that from the proof of the
theorem 3.3. To see that the modified incidence matrix A/, is irreducible, we show for
p,q € V \ {0,2" — 1} there exists a path from p to ¢ within V' \ {0,2"*! — 1}. Denote
p and ¢ in binary notations as

P=Pn- - P1po(2),
q=an " 019(2).
Let [ be the largest integer such that
@ =q-1="=G = Pn = Pn-1= """ = Pn—i-
Then we have ¢, --- ¢, (p) = g and for all k € {I+1,...,n}, we have ¢, --- @, (p) €
V' \ {0,2"*! — 1}. This shows that A}, is irreducible, and we can apply Theorem 2.4

and compute the Hausdorff dimension of the CGDMS in the same way as in the proof of
Theorem 3.3.
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