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1 Introduction

We consider perturbed graph iterated function systems in which some perturbed func-
tions converge to constant functions. In our system, the unperturbed system has several
Gibbs measures pi, ta, . . . , 4m associated with the dimensions of the limit sets while the
perturbed system has a unique Gibbs measure u(e, -) for each € > 0. We also investigate
the case when a limit point of u(e,-) in the sense of the weak topology has the convex
combination Y_;* | p(k)ux for some probability vector (p(k)){,. Such a system relates to
a metastable system or a system with holes (e.g. [3, 4]).

Our interests in this situation is how the coefficient (p(k)) is specified when u(e, -) con-
verges to a measure u = >, p(k)u, weakly. We proved in our previous investigation
[10] that if m = 2 or 3, then the coefficient (p(k)) is expressible by the limit of a se-
quence composed of the Peron eigenvalues of the sub Ruelle operators of certain suitable
perturbed potentials (see Theorem 3.3 and Theorem 3.4). However, there is a difficulty
in extending this result to the case m > 4 [10]. In our recent result [12] (2017), we give
another characterization of the coefficient (p(k)) using the notion of extended Ruelle op-
erators in all cases m > 2. In this paper, we summarize our previous results and a recent
result concerning perturbed graph IFS with degeneration.

In the next section 2, we give the definition of graph iterated function systems and a
formulation of perturbation of this system. We mention in Section 3 our previous results.
The main theorem is described in Section 4. In the finial section 5, we shall present two
concrete examples.
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2 Graph iterated function systems
2.1 Definition

Let D > 1 be an integer. We consider a set (G, (J,), (Oy), (T¢)) satisfying the following
conditions (1)-(4):

(1) G = (V,E,i,t) is a finite directed multigraph which consists of a vertices set V, a
directed edges set E and two functions ¢,¢ : E — V. For each e € E, i(e) is called
the initial vertex of e and ¢(e) called the terminal vertex of e.

(2) For each v € V, a subset J, of D-dimensional Euclidean space R? is compact and
connected such that the interior int J, of J, is not empty, and int J,, and int J, are
disjoint for v' # v.

(3) For each v € V', O, is an open and connected subset of R? such that J, C O,.

(4) Foreach e € E, afunction T, from Oy ) into O is a conformal C'*A_diffeomorphism
with 8 € (0,1] and satisfies 0 < ||Ty(z)|| < 1 for z € Jyey and Te(int Jye)) C
int Jy) for e € E. Moreover, an open set condition (OSC) is satisfied, namely
Teint Jye) N Toint Jyey = @ with €' # e and i(e’) = i(e). Here ||T.(z)|| denotes the
operator norm of T!(z) on RP.

We call such a set (G, (Jy,), (0y), (T¢)) a graph iterated function systems (GIFS for short).
Such a system is studied by many authors [2, 5, 6, 7, 9].

A subgraph H of G is said to be strongly connected if for any two vertices vy, vy of H
there is a path on H from v; to vo. A subgraph H = (Vi, Ey) of G is called a strongly
connected component of G if this is strongly connected and for any strongly connected
subgraph H' = (Vi:, Eg/) of G with Ey C Eg/, H' is equal to H. Denoted by SC(G) the
set of all strongly connected components of G.

Assume that G is strongly connected. There exists a unique family {K, C J, : v € V'}
of nonempty compact subsets such that the set equation

K, = U Te(Kt(e))
c€B (e)=v
holds for each v € V. Put K(G) = U,ey Ko. We call this set the limit set of the
GIFS (G, (), (0y),(T.)). Denoted by E® = {w = (wn)2g € [[hegE : t(wn) =
i(wnt1) for allm > 0} a code space. The shift transformation ¢ : E® — E% is
given by (ow), = wy4 for any n > 0 and w = (w,)2, € E®. Let 7 : E*® — RP be a
coding map for the GIFS (G, (J,), (Oy), (T¢)) defined by {m(w)} = Mieg Tug - Tioy Je(wor)



for w € E*. We put the function
p(w) = log || T, (mow)||.

A o-invariant Borel probability measure pug on E* is said to be a Gibbs measure of the
GIFS (G, (), (Oy), (T¢)) if this is the Gibbs measure of the potential (dimg K(G))y (see
[1] for definition).

2.2 Formulation of our perturbed GIFS

Now we formulate our perturbed GIFS. We introduce the following conditions (G.1)-
(G.4):

(G.1) The graph G = (V, E, i,t) is strongly connected.
(G.2) The set (G, (Jy), (Oy), (Te(e,-))) is a GIFS for all € > 0.

(G.3) There exists a decomposition E = EyU E; of E such that

T.(x) ec€ E
T.(e,z) — () 0 uniformly in x € Jy),
Qe e€F
T!(x e € E
|2 T.(e,z)|| — Il ° uniformly in z € Jye),
0 e€ E,

where a. is an element in Jy) for e € E;. Moreover, let Go = (Vp, Eo) with Vp =
i(Ep) U t(Ep). Then the set (Go, (Jo)vevis (Ov)vevy, (Te)ecr,) is a GIFS. Moreover,
there exists a strongly connected subgraph H = (Vi, Ex) of Gy such that the limit
set of the GIFS (H, (Jy)vevy, (Ov)vevy, (Te)ecky ) has positive Hausdorff dimension.

(G.4) There exist constants c; > 0 and § € (0, 1] such that for any e € E, z,y € Oy and
e>0, [|ZT(e, 2)| = | ZT(e, )l < all ETe(e, 2)lle -yl

By virtue of the condition (G.1), the perturbed GIFS (G, (J,),(Oy), (Te(e,-))) has a
unique limit set K.(G) and a unique Gibbs measure u(e,-) for each € > 0. On other
other hand, the non-perturbed GIFS (G, (Jy)vevi, (Ov)veve, (Te)ecr,) has several limit
sets K(H) (H € SC(Gy)) and several Gibbs measures py (H € SC(Gy)).

For each € > 0, m(e, -) means the coding map of the GIFS (G, (J,), (Oy), (Te(e,-))) and
¢(€,w) the function log || 2T, (e, (€, ow))||. We put

SCo={H € SC(Gy) : dimyg K(H) = H/rensacgic)dimH K(H"}.
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For simplicity, we write SCo = {H(1), H(2),..., H(m)}. In these cases, we are interested
in convergence of the Hausdorfl dimension dimy K.(G) of K.(G), convergence of the
Gibbs measure p(e, -) of the potential (dimy K(G))p(e, -) and convergence of the measure-
theoretic entropy h(u(e, -)) of this measure.

3 Previous results

We use the notation defined in Section 2. We begin with the following results.
Theorem 3.1 ([10]) Assume that the conditions (G.1)-(G.4) are satisfied. Then
(1) dimg K.(G) converges to maxy dimy K(H(k));

(2) any limit point of the Gibbs measure u(e,-) in the sense of weakly topology has the
form 370" p(k) ek for some probability vector (p(k))k;

(3) if u(e,-) converges to a measure Y, p(k)prk weakly, then h(u(e,-)) converges to
2k p(R)h (k).

Theorem 3.1(2) says that the measure u(e,3o) of the set 3g = {w € E® : wy € E '\
Uie: Erky} vanishes as € — 0, where Ep ) denotes the edge set of H(k). Note also
that if §SCo = 1 then u(e,-) converges weakly. However, in the case when $5C, > 2,
u(e, ) may do not converge in general. In the following subsections, we will focus on
convergence of u(e, -) under the case §S5Cy > 2.

3.1 Perturbed piecewise expanding Markov maps with holes

In this section, we consider perturbed piecewise expanding Markov maps with holes
which are treated as a special perturbed GIFS. We will give a sufficient condition for
convergence of the measure u(e, -) of perturbed GIFS with D = 1.

Assume that the conditions (G.1)-(G.4) with D = 1 are satisfied. We also consider the
following conditions.

(G.5) Upey o = 1[0,1].
(G.6) For any v € V and € > 0, U.ep.y(e)=0 Le(€, Jie)) = Jo-

(G.7) For any v € V, there exists a subgraph H € SC of G such that U,cp,, .i(e)= T;(Jt(e)) =
Jy.

For € > 0, we define a map f. : [0,1] — [0,1] by fc(z) = Te(e,-)"*(z), where e
is decided uniquely if z € |, int(7Z¢(e, Jye))), and otherwise we arbitrary choose e so



that x € 0T¢(¢, Jy)). In this setting, the map f is a topologically transitive piecewise
expanding map with a fixed finite Markov partition for € > 0, and the map fy consists
of a finite many of topologically transitive piecewise expanding maps. The set of critical
points of f. is written by Ce = U, p 0Te(€, Ji))- It is known that the sets |, o f7"C.
and (e, )7 (oo, f-™C,) are at most countable sets. Then the absolutely continuous
invariant probability measure (ACIM) of f. coincides with the measure p(e, ) o (e, -) =L
In these setting, the volumes of the “holes” T¢(e, Jyc)), € € E1, vanishes as e — 0.
We also introduce the following conditions for holes:

(G.8) For any e € Ey, there exists a C' map T.; on Jy() such that || T;(e, -)|| = €||T} , ||+ o(e)
in C(Jt(e),R).

(G.9) Let Qo = (Qo(kk’)) be a matrix indexed by {1,2,...,m}* with

, 1, if T/, # 0 for some e € E; with i(e) € Vi), t(e) € Vaw)
Qo(kk') =

0, otherwise
Then Qg is non-zero and irreducible.

Theorem 3.2 ([10]) Assume that the conditions (G.1)-(G.9) are satisfied and 45Cy > 2
Then the Gibbs measure u(e,-) converges to the measure Y ;" | p(k)puwx) and the vector
p = (p(k)) is characterized as the invariant measure of the continuous time Markov chain
generated by an infinitesimal generator Q, i.e. pQ = 0. In particular; Q s calculated by
the convergence speed of the holes.

Note that (G.8) and (G.9) are conditions which contribute to convergence of u(e, -). There
fore if these conditions are not satisfy, then there is an example so that u(e,-) does not
converge. As related results, there is a study of convergence of ACIMs of perturbed
piecewise expanding maps with holes [3, 4].

3.2 In the case §5Cy =2 or 3

As main results in [10], we gave a general convergence of u(e, -) in the case when §SCo =
2 or 3. For details, let C(E®) be the set of all complex-valued continuous functions on
E*®. We put °

E(k) ZEH(k) U (E\ U EH> )

HeSCo
ne(k) = exp(P((dimg K.(G))p(e, sgere)) for k= 1,2,
k) = "F) gk ey = (12,

T1- ne(1) + 1 —ne(2)
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where P(y) denotes the topological pressure of a potential ¢ (see [1] for definition). Note
that the number 7.(k) coincides with the Perron eigenvalue of the sub Ruelle operator
Le gk acting on C(E*) which is defined by

Z exp((dimg K.(G))p(e,e - 7)) f(e-7), 70 € E(K)
;CE’E(k)f(T) = e€E(k) :t(e)=i(m0)

0, To ¢ E(k‘)

for f € C(E®) and 7 € E*. This operator satisfies Ruelle-Perron-Frobenius type Theo-
rem [8]. Remark also that ne(k) is less than 1 from E(k) and Egy (k' # k) are disjoint
and G is strongly connected. We first have the following in the case §SCy > 2.

Theorem 3.3 ([10]) Assume the conditions (G.1)-(G.4) are satisfied and SCqy consists
of two elements {H (1), H(2)}. Then p?(k) converges to a number p(k) for all k = 1,2 if
and only if p(e,-) converges to the measure p(1)pug (1) + p(2)pr(2) weakly.

Next we consider the case §5Cy = 3. We let

E(k, k') = Engry U Eggo U (E\ U EH> :
HeSCy

ne(k, k") = exp(P((dimpy Kc(G))p(€, )| pgi)=)) for k, k" with k # k'

and define
g2 (k) = (1 = ne(K', k") (1 + ne(K', k") = ne(K") — ne(k")) and

3
pi(k) = g2(k)/ Y _ (1) fork
1=1
with {k,k',k"} = {1,2,3}. Note that n(k,k’) becomes the Perron eigenvalue of the
operator L¢ g ). We next obtain the following assertion.

Theorem 3.4 ([10]) Assume the conditions (G.1)-(G.4) are satisfied and SCy consists
of three elements {H(1), H(2),H(3)}. Then p3(k) converges to a number p(k) for all
k= 1,2,3 if and only if u(e,-) converges to a measure p(1)up ) + p(2)pa(e) + P(3)1H(3)
weakly.



3.3 1In the case #SCy >4

It is a natural question whether similar arguments are satisfied for the case §5Co > 4.
There is a following conjecture for $5Co = 4. For k, k', k" mutually disjoint, we put

E(k,k', k") = Egg) U Eagy U Eggey U <E\ U EH)

HeSCo
ne(k, k', k") = exp(P((dimy K(G))e(€; ) Bk k))-
Set
at(k) =(1 = ne(k K7 K ) (1= me (K" K0 (1= (k") + me(K”, k") = ne(k"))
+ (e (K, K" E™) = ne(K', k™)) (1 = ne(k™)) + (1 = ne(K', &) (ne(K', k") = ne(K'))
+ (me(K', K", K") = ne(K', &) (ne (K, K", K™) — ne(k') + ne(K', k") — ne(k")))
for {k,k',k",k"'} = {1,2,3,4}, and p!(k) = ¢/ (k)/ Zi_, ¢2(1)-
Conjecture 3.5 ([10]) Assume the conditions (G.1)-(G.4) and $5Co = 4. Then u(e,-)
converges to S p_, p(k) ) weakly if and only if p2(k) converges to a number p(k) for
allk=1,2,3,4.

There is also such a similar conjecture for the case §SCo > 5.

4 Main result

In Theorem 3.3 and Theorem 3.4, we gave a necessary and sufficient condition for
convergence of u(e, -) composed of Perron eigenvalues of sub Ruelle operators in the case
when 4SCy = 2,3. However, it is difficult to prove similar assertion when §5C, > 4 (see
[10]).

In this section, we will give an another approach by using the notion of extended Ruelle
operators in all cases including §5Cy > 4.

For details, we introduce some notation below. Let M(E*) be the set of. all Borel
complex measure on E*°. For 0 < § < 1, denoted by dp the metric on E*® with dg(w,v) =
gmin{n20:wn#un} and by Fy(E>) the set of all Lipschitz continuous functions belonging in
C(E*). For k, k' mutually disjoint and € > 0, we define an operator L(k, k') acting on
C(E®) which is given by L(k, k") f(T) =

> X e (Z(dimHKxG))w(e,a‘(w-T») fw-7), 7€ Engy

n=0 weEy )X F(kK)™: 1=0
w-r+ path on G

0, 70 ¢ Enr)
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for f € C(E*®) and 7 € E*, where F(k,k') = E \ (Egx) U Egg)). Note that this
operator is a positive bounded linear operator acting on C(E*). This has similar prop-
erties of Ruelle operators as follows. These exists a unique triplet (Af’k',hf’k',yf’k’) €
R x C(E*®) x M(E®) such that A** is a simple maximal eigenvalue of L.(k,k'), hF*
is the corresponding nonnegative eigenfunction, and uf*" is the corresponding positive
eigenvector of the dual L.(k,k')* with v** (hFF) = yF¥(E*) = 1. Note also that
Lc(k, k") is well-defined as a bounded linear operator acting on Fy(E*) and this oper-
ator is quasi-compact. These assertions are proved by using standard thermodynamic
formalism techniques ([11]). For k =1,2,...,m, we put

1— ABF\
pe(k) =1+ Y TFF
K k'#Ek T €
Now we are in a position to state our main result.

Theorem 4.1 ([12]) Assume that the conditions (G.1)-(G.4) are satisfied and §SCo > 2.
Then the Gibbs measure u(e,-) converges to a measure p weakly if and only if p.(k)
converges to a mnumber p(k) for all k = 1,2,...,m. In these cases, u has the form
=y P(k) e ry-

5 Concrete examples
5.1 A convergent case
Assume the following conditions (i)-(iii):

(i) Foreach k = 1,2,...,m, agraph H(k) = ({vl,v}}, {e}, €2, e, et} 4, t) satisfies i(ep) =
tler) = vk, i) = vk, t(eR) = v, i(e}) = vg, t(e}) = vy, and i(e}) = #(e) = v§.

(ii) The graph G = (V, E,i,t) has the vertex set V = |, Vi) and the edge set E =
EO U E1 with Eo = U;nzl EH(k) and E1 = {612, €23, ... ,€m_1m,€m1} with i(ekk:) = ’U,%
and t(egw) = v} (see the following figure).

H1) HE) H(m)
() () )
o (CYCY — /)
O O O)
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(iif) GIFSs (G, (Jy), (0y), (Te(e,-))) satisty the two conditions (G.3) and (G.4), namely,
I3z Te(e, )l = supgey,, I3z Te(e, )]l — Oase — 0 for any e € Ey. Moreover,
T.(€,) = T, and || ZT.(¢, )| = 1/10 for any e € Eq.

In these cases, we notice SC(G) = SCo = {H(1),H(2),...,H(m)}. We also obtain that
e.Eyq for each k, k' with k # k'.
Note that this operator does not depend on k’. We see that the Perron eigenvalue )\f’kl of
this operator is equal to 2(1/10)%™# K(<) for any k # k’. Therefore p.(k) = 1/m for any
k. By virtue of Theorem 4.1, the Gibbs measure p(e,-) of (dimg K (G))p(e, -) converges
to D op, MH(k)/™ weakly.

the operator L(k, k') becomes the sub Ruelle operator £

5.2 A non convergent case
Assume the following (i),(ii),(iii)":
(i) The same condition as (i) in Section 5.1.
(if) The same condition as (ii) in Section 5.1.
(ili)" GIFSs (G, (Jy), (Oy), (Te(e, -))) satisfies the conditions (G.3), (G.4) and
€, ec€ E;
& Te(e, )l =  1/10, e € Eo \ Enq
1/10 + @61/ ¢ € By,
where s(0) = dimy K(H(1)) = log2/log 10.
In these cases, (1 — A\1*)/(1 — A\¥1) has the form

1— Ag’k 1— 2(65(0) exp(sin(1/e)) + 1/10)dimH K(G)
1A 1 — 2(1/10)0mx K@) =i a(e)

for all £k = 2,3,...,m, and this number a(e) does not converge as ¢ — 0. Therefore so
is for p(1) =1/(1+ (m —1)a(€)). From Theorem 4.1, the Gibbs measure p(e, -) does not

converge.
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