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1 Introduction

We consider perturbed graph iterated function systems in which some perturbed func‐

tions converge to constant functions. In our system, the unperturbed system has several

Gibbs measures \mu_{1},  \mu_{2},  \mu_{m} associated with the dimensions of the limit sets while the

perturbed system has a unique Gibbs measure  \mu(\epsilon, \cdot) for each  \epsilon>0 . We also investigate
the case when a limit point of  \mu(\epsilon, \cdot) in the sense of the weak topology has the convex
combination   \sum_{k=1}^{m}p(k)\mu_{k} for some probability vector  (p(k))_{k=1}^{m} . Such a system relates to
a metastable system or a system with holes (e.g. [3, 4]).

Our interests in this situation is how the coefficient  (p(k)) is specified when  \mu(\epsilon, \cdot) con‐
verges to a measure   \mu=\sum_{k=1}^{m}p(k)\mu_{k} weakly. We proved in our previous investigation

[10] that if  m=2 or 3, then the coefficient  (p(k)) is expressible by the limit of a se‐
quence composed of the Peron eigenvalues of the sub Ruelle operators of certain suitable

perturbed potentials (see Theorem 3.3 and Theorem 3.4). However, there is a difficulty
in extending this result to the case  m\geq 4[10] . In our recent result [12] (2017), we give
another characterization of the coefficient  (p(k)) using the notion of extended Ruelle op‐
erators in all cases  m\geq 2 . In this paper, we summarize our previous results and a recent

result concerning perturbed graph IFS with degeneration.

In the next section 2, we give the definition of graph iterated function systems and a

formulation of perturbation of this system. We mention in Section 3 our previous results.

The main theorem is described in Section 4. In the finial section 5, we shall present two

concrete examples.
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2 Graph iterated function systems

2.1 Definition

Let  D\geq 1 be an integer. We consider a set  (G, (J_{v}), (O_{v}), (T_{e})) satisfying the following

conditions (1)‐(4) :

(1)  G=(V, E, i, t) is a finite directed multigraph which consists of a vertices set  V,  a

directed edges set  E and two functions  i,  t :  Earrow V . For each  e\in E,  i(e) is called
the initial vertex of  e and  t(e) called the terminal vertex of  e.

(2) For each  v\in V , a subset  J_{v} of  D‐dimensional Euclidean space  \mathbb{R}^{D} is compact and
connected such that the interior int  J_{v} of  J_{v} is not empty, and int  J_{v'} and int  J_{v} are

disjoint for  v'\neq v.

(3) For each  v\in V,  O_{v} is an open and connected subset of  \mathbb{R}^{D} such that  J_{v}\subset O_{v}.

(4) For each  e\in E , a function  T_{e} from  O_{t(e)} into  O_{\iota(e)} is a conformal  C^{1+\beta} ‐diffeomorphism
with  \beta\in(0 , ı] and satisfies  0<\Vert T_{e}'(x)\Vert<1 for  x\in J_{t(e)} and  T_{e} (int  J_{t(e)} )  \subset

int  J_{i(e)} for  e\in E . Moreover, an open set condition (OSC) is satisfied, namely
 T_{e}intJ_{t(e)}\cap T_{e'} int   J_{t(e')}=\emptyset with  e'\neq e and  i(e')=i(e) . Here  \Vert T_{e}(x)\Vert denotes the

operator norm of  T_{e}'(x) on  \mathbb{R}^{D}.

We caıl such a set  (G, (J_{v}), (O_{v}), (T_{e})) a graph iterated function systems (GIFS for short).
Such a system is studied by many authors [2, 5, 6, 7, 9].

A subgraph  H of  G is said to be strongly connected if for any two vertices vı,  v_{2} of  H

there is a path on  H from  v_{1} to  v_{2} . A subgraph  H=(V_{H}, E_{H}) of  G is called a strongly

connected component of  G if this is strongly connected and for any strongly connected

subgraph  H'=(V_{H'}, E_{H'}) of  G with  E_{H}\subset E_{H'},  H' is equal to  H . Denoted by  SC(G) the

set of all strongly connected components of  G.

Assume that  G is strongly connected. There exists a unique family  \{K_{v}\subset J_{v} : v\in V\}
of nonempty compact subsets such that the set equation

 K_{v}= \bigcup_{e\in E:\iota(e)=v}T_{e}(K_{t(e)})
holds for each  v\in V . Put  K(G)= \bigcup_{v\in V}K_{v} . We call this set the limit set of the

GIFS  (G, (J_{v}), (O_{v}), (T_{e})) . Denoted by  E^{\infty}= \{\omega=(\omega_{n})_{n=0}^{\infty}\in\prod_{n=0}^{\infty}E :  t(\omega_{n})=
 i(\omega_{n+1}) for all  n\geq 0} a code space. The shift transformation  \sigma :  E^{\infty}  arrow  E^{\infty} is
given by  (\sigma\omega)_{n}=\omega_{n+1} for any  n\geq 0 and  \omega=(\omega_{n})_{n=0}^{\infty}\in E^{\infty} . Let  \pi :  E^{\infty}arrow \mathbb{R}^{D} be a

coding map for the GIFS  (G, (J_{v}), (O_{v}), (T_{e})) defined by   \{\pi(\omega)\}=\bigcap_{k=0}^{\infty}T_{\omega_{0}}\cdots T_{\omega_{k}}J_{t(
\omega_{k})}

74



75

for  \omega\in E^{\infty} . We put the function

 \varphi(\omega)=\log\Vert T_{\omega}'0(\pi\sigma\omega)\Vert.

A  \sigma‐invariant Borel probability measure  \mu_{G} on  E^{\infty} is said to be a Gibbs measure of the

GIFS  (G, (J_{v}), (O_{v}), (T_{e})) if this is the Gibbs measure of the potential  (\dim_{H}K(G))\varphi (see
[1] for definition).

2.2 Formulation of our perturbed GIFS

Now we formulate our perturbed GIFS. We introduce the following conditions  (G.1) ‐

(G.4):

(G.1) The graph  G=(V, E, i, t) is strongly connected.

(G.2) The set  (G, (J_{v}), (O_{v}), (T_{e}(\epsilon, \cdot))) is a GIFS for all  \epsilon>0.

(G.3) There exists a decomposition  E=E_{0}\cup E_{1} of  E such that

  T_{e}(\epsilon, x)arrow  \{\begin{array}{l}
T_{e}(x) e\in E_{0}
uniformly in x\in J_{t(e)},
a_{e} e\in E{\imath}
\end{array}
  \Vert\frac{\partial}{\partial x}T_{e}(\epsilon, x)\Vertarrow  \{\begin{array}{l}
\Vert T_{e}'(x)\Vert e\in E_{0}
uniformly in x\in J_{t(e)},
0 e\in E_{1}
\end{array}

where  a_{e} is an element in  J_{t(e)} for  e\in E_{1} . Moreover, let  G_{0}=(V_{0}, E_{0}) with  V_{0}=

 i(E_{0})\cup t(E_{0}) . Then the set  (G_{0}, (J_{v})_{v\in V_{0}}, (O_{v})_{v\in V_{0}}, (T_{e})_{e\in E_{0}}) is a GIFS. Moreover,

there exists a strongly connected subgraph  H=(V_{H}, E_{H}) of  G_{0} such that the limit

set of the GIFS  (H, (J_{v})_{v\in V_{H}}, (O_{v})_{v\in V_{H}}, (T_{e})_{e\in E_{H}}) has positive Hausdorff dimension.

(G.4) There exist constants  c_{1}>0 and  \beta\in(0,1 ] such that for any  e\in E,  x,  y\in O_{t(e)} and
  \epsilon>0, |\Vert\frac{\partial}{\partial x}T_{e}(\epsilon, x)\Vert-
\Vert\frac{\partial}{\partial x}T_{e}(\epsilon, y)\Vert|\leq c_{1}
\Vert\frac{\partial}{\partial x}T_{e}(\epsilon, x)\Vert|x-y|^{\beta}.

By virtue of the condition (G.ı), the perturbed GIFS  (G, (J_{v}), (O_{v}), (T_{e}(\epsilon, \cdot))) has a
unique limit set  K_{\epsilon}(G) and a unique Gibbs measure  \mu(\epsilon, \cdot) for each  \epsilon>0 . On other

other hand, the non‐perturbed GIFS  (G_{0}, (J_{v})_{v\in V_{0}}, (O_{v})_{v\in V_{0}}, (T_{e})_{e\in E_{0}}) has several limit
sets  K(H)(H\in SC(G_{0})) and several Gibbs measures  \mu_{H}(H\in SC(G_{0})) .

For each  \epsilon>0,  \pi(\epsilon, \cdot) means the coding map of the GIFS  (G, (J_{v}), (O_{v}), (T_{e}(\epsilon, \cdot))) and

 \varphi(\epsilon, \omega) the function   \log\Vert\frac{\partial}{\partial x}T_{\omega_{0}}(\epsilon, \pi(\epsilon, 
\sigma\omega))\Vert . We put

 SC_{0}= \{H\in SC(G_{0}):\dim_{H}K(H)=\max_{H'\in SC(G)}\dim_{H}K(H^{I})\}.
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For simplicity, we write  SC_{0}=  \{H({\imath}), H(2), H(m)\} . In these cases, we are interested

in convergence of the Hausdorff dimension  \dim_{H}K_{\epsilon}(G) of  K_{\epsilon}(G) , convergence of the

Gibbs measure  \mu(\epsilon, \cdot) of the potential  (\dim_{H}K_{\epsilon}(G))\varphi(\epsilon, \cdot) and convergence of the measure‐

theoretic entropy  h(\mu(\epsilon, \cdot)) of this measure.

3 Previous results

We use the notation defined in Section 2. We begin with the following results.

Theorem 3.1 ([10]) Assume that the conditions  (G.1)-(G.4) are satisfied. Then

(1)  \dim_{H}K_{\epsilon}(G) converges to   \max_{k}\dim_{H}K(H(k)) ;

(2) any limit point of the Gibbs measure  \mu(\epsilon, \cdot) in the sense of weakly topology has the
form   \sum_{k=1}^{m}p(k)\mu_{H(k)} for some probability vector  (p(k))_{k} ;

(3) if  \mu(\epsilon, \cdot) converges to a measure   \sum_{k=1}^{m}p(k)\mu_{H(k)} weakly, then  h(\mu(\epsilon, \cdot)) converges to
  \sum_{k=1}^{m}p(k)h(\mu_{H(k)}) .

Theorem 3.1(2) says that the measure  \mu(\epsilon, \Sigma_{0}) of the set  \Sigma_{0}=\{\omega\in E^{\infty} :  \omega_{0}\in E\backslash 
  \bigcup_{k=1}^{m}E_{H(k)}\} vanishes as  \epsilon  arrow  0 , where  E_{H(k)} denotes the edge set of  H(k) . Note also

that if  \# SC_{0}= ı then  \mu(\epsilon, \cdot) converges weakly. However, in the case when  \# SC_{0}\geq 2,

 \mu(\epsilon, \cdot) may do not converge in general. In the following subsections, we will focus on

convergence of  \mu(\epsilon, \cdot) under the case  \# SC_{0}\geq 2.

3.1 Perturbed piecewise expanding Markov maps with holes

In this section, we consider perturbed piecewise expanding Markov maps with holes

which are treated as a special perturbed GIFS. We will give a sufficient condition for

convergence of the measure  \mu(\epsilon, \cdot) of perturbed GIFS with  D=1.

Assume that the conditions  (G.1)-(G.4) with  D= ı are satisfied. We also consider the

following conditions.

(G.5)   \bigcup_{v\in V}J_{v}=[0,1].

(G.6) For any  v\in V and  \epsilon>0,   \bigcup_{e\in E:}{}_{\iota(e)=v}T_{e}(\epsilon, J_{t(e)})=J_{v}.

(G.7) For any  v\in V , there exists a subgraph  H\in SC_{0} of  G such that   \bigcup_{e\in E_{H}:}{}_{i(e)=v}T_{e}(J_{t(e)})=
 J_{v}.

For  \epsilon\geq 0 , we define a map  f_{\epsilon} :  [0,1]  arrow  [0,1] by  f_{\epsilon}(x)=T_{e}(\epsilon, \cdot)^{-1}(x) , where  e

is decided uniquely if  x \in\bigcup_{e}int(T_{e}(\epsilon, J_{t(e)})) , and otherwise we arbitrary choose  e so
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that  x\in\partial T_{e}(\epsilon, J_{t(e)}) . In this setting, the map  f_{\epsilon} is a topologically transitive piecewise

expanding map with a fixed finite Markov partition for  \epsilon>0 , and the map  f_{0} consists

of a finite many of topologically transitive piecewise expanding maps. The set of critical

points of  f_{\epsilon} is written by  C_{\epsilon}= \bigcup_{e\in E}\partial T_{e}(\epsilon, J_{t(e)}) . It is known that the sets   \bigcup_{n=0}^{\infty}f_{\epsilon}^{-n}C_{\epsilon}
and   \pi(\epsilon, \cdot)^{-1}(\bigcup_{n=0}^{\infty}f_{\epsilon}^{-n}C_{\epsilon}) are at most countable sets. Then the absolutely continuous

invariant probability measure (ACIM) of  f_{\epsilon} coincides with the measure  \mu(\epsilon, \cdot)0\pi(\epsilon, \cdot)^{-1}
In these setting, the volumes of the “holes”  T_{e}(\epsilon, J_{t(e)}),  e\in E_{1} , vanishes as  \epsilonarrow 0.

We also introduce the following conditions for holes:

(G.8) For any  e\in E_{1} , there exists a  C^{1} map  T_{e,1} on  J_{t(e)} such that  \Vert T_{e}'(\epsilon, \cdot)\Vert=\epsilon\Vert T_{e,1}'\Vert+o(\epsilon)
in  C(J_{t(e)}, \mathbb{R}) .

(G.9) Let  Q_{0}= (  Q_{0} (kk’)) be a matrix indexed by  \{ 1, 2,  m\}^{2} with

 Q_{0} (kk’)  =\{\begin{array}{l}
1, if T_{e,1}'\not\equiv 0 for some e\in E_{1} with i(e)\in V_{H(k)}, t(e)\in V_
{H(k')}
0, otherwise
\end{array}
Then  Q_{0} is non‐zero and irreducible.

Theorem 3.2 ([10]) Assume that the conditions  (G.1)-(G.9) are satisfied and  \# SC_{0}\geq 2

Then the Gibbs measure  \mu(\epsilon, \cdot) converges to the measure   \sum_{k=1}^{m}p(k)\mu_{H(k)} and the vector

 p=(p(k)) is characterized as the invariant measure of the continuous time Markov chain

generated by an infinitesimal generator  Q , i.e.  pQ=0 . In particular,  QiS calculated by

the convergence speed of the holes.

Note that (G.8) and (G.9) are conditions which contribute to convergence of  \mu(\epsilon, \cdot) . There.
fore if these conditions are not satisfy, then there is an example so that  \mu(\epsilon, \cdot) does not

converge. As related results, there is a study of convergence of ACIMs of perturbed

piecewise expanding maps with holes [3, 4].

3.2 In the case  \# SC_{0}=2 or 3

As main results in [10], we gave a general convergence of  \mu(\epsilon, \cdot) in the case when  \# SC_{0}=
 2 or 3. For details, let  C(E^{\infty}) be the set of all complex‐valued continuous functions on
 E^{\infty} . We put

 E(k)=E_{H(k)} \cup(E\backslash \bigcup_{H\in SC_{0}}E_{H}) ,

 \eta_{\epsilon}(k)=\exp(P((\dim_{H}K_{\epsilon}(G))\varphi(\epsilon, \cdot)|_{E
(k)^{\infty}})) for  k=1,2,

 p_{\epsilon}^{2}(k)= \frac{{\imath}-\eta_{\epsilon}(k')}{1-\eta_{\epsilon}(1)+1
-\eta_{\epsilon}(2)} for  \{k, k'\}=\{1,2\},
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where  P(\varphi) denotes the topological pressure of a potential  \varphi (see [1] for definition). Note
that the number  \eta_{\epsilon}(k) coincides with the Perron eigenvalue of the sub Ruelle operator

 \mathcal{L}_{\epsilon,E(k)} acting on  C(E^{\infty}) which is defined by

 \mathcal{L}_{\epsilon,E(k)}f(\tau)=\{\begin{array}{ll}
\sum_{e\in E(k):t(e)=i(\tau_{0})}\exp((\dim_{H}K_{\epsilon}(G))\varphi(\epsilon,
e\cdot\tau))f(e\cdot\tau) ,   \tau_{0}\in E(k)
0,   \tau_{0}\not\in E(k)
\end{array}
for  f\in C(E^{\infty}) and  \tau\in E^{\infty} . This operator satisfies Ruelle‐Perron‐Frobenius type Theo‐

rem [8]. Remark also that  \eta_{\epsilon}(k) is less than 1 from  E(k) and  E_{H(k')}(k'\neq k) are disjoint
and  G is strongly connected. We first have the following in the case  \# SC_{0}\geq 2.

Theorem 3.3 ([10]) Assume the conditions  (G.1)-(G.4) are satisfied and  SC_{0} consists
of two elements  \{H(1), H(2)\} . Then  p_{\epsilon}^{2}(k) converges to a number  p(k) for all  k=1,2 if

and only if  \mu(\epsilon, \cdot) converges to the measure  p(1)\mu_{H(1)}+p(2)\mu_{H(2)} weakly.

Next we consider the case  \# SC_{0}=3 . We let

 E(k, k')=E_{H(k)} \cup E_{H(k')}\cup(E\backslash \bigcup_{H\in SC_{0}}E_{H}) ,

 \eta_{\epsilon}(k, k')=\exp(P((\dim_{H}K_{\epsilon}(G))\varphi(\epsilon, \cdot)
|_{E(k,k')^{\infty}})) for  k,  k' with  k\neq k'

and define

 q_{\epsilon}^{3}(k)=(1-\eta_{\epsilon}(k', k"))(1+\eta_{\epsilon}(k', k")-\eta_
{\epsilon}(k')-\eta_{\epsilon}(k")) and

 p_{\epsilon}^{3}(k)=q_{\epsilon}^{3}(k)/ \sum_{l=1}^{3}q_{\epsilon}^{3}(l) for  k

with  \{k, k', k"\}= {ı, 2, 3}. Note that  \eta_{\epsilon}(k, k') becomes the Perron eigenvalue of the
operator  \mathcal{L}_{\epsilon,E(k,k')} . We next obtain the following assertion.

Theorem 3.4 ([10]) Assume the conditions (G.ı)‐(G.4) are satisfied and  SC_{0} consists
of three elements  \{H({\imath}), H(2), H(3)\} . Then  p_{\epsilon}^{3}(k) converges to a number  p(k) for all

 k=1,2,3 if and only if  \mu(\epsilon, \cdot) converges to a measure  p(1)\mu_{H(1)}+p(2)\mu_{H(2)}+p(3)\mu_{H(3)}
weakly.
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3.3 In the case  \# SC_{0}\geq 4

It is a natural question whether similar arguments are satisfied for the case  \# SC_{0}\geq 4.

There is a following conjecture for  \# SC_{0}=4 . For  k,  k',  k" mutually disjoint, we put

 E(k, k', k")=E_{H(k)} \cup E_{H(k')}\cup E_{H(k")}\cup(E\backslash 
\bigcup_{H\in SC_{0}}E_{H})
 \eta_{\epsilon}(k, k', k")=\exp(P((\dim_{H}K_{\epsilon}(G))\varphi(\epsilon, 
\cdot)|_{E(k,k',k")})) .

Set

 q_{\epsilon}^{4}(k)=(1-\eta_{\epsilon} (k', k", k"'))((1-\eta_{\epsilon}(k", 
k"'))(1-\eta_{\epsilon}(k")+\eta_{\epsilon}(k", k"')-\eta_{\epsilon}(k"'))
 +(\eta_{\epsilon}(k', k", k"')-\eta_{\epsilon}(k', k"'))(1-\eta_{\epsilon}(k"')
)+(1-\eta_{\epsilon}(k', k"'))(\eta_{\epsilon}(k', k"')-\eta_{\epsilon}(k'))

 +(\eta_{\epsilon}(k', k", k"')-\eta_{\epsilon}(k', k"))(\eta_{\epsilon}(k', k",
k"')-\eta_{\epsilon}(k')+\eta_{\epsilon}(k', k")-\eta_{\epsilon}(k")))
for  \{k, k', k", k"'\}=\{1,2 , 3, 4  \} , and  p_{\epsilon}^{4}(k)=q_{\epsilon}^{4}(k)/ \sum_{l=1}^{4}q_{\epsilon}^{4}(l) .

Conjecture 3.5 ([10]) Assume the conditions  (G.1)-(G.4) and  \# SC_{0}=4 . Then  \mu(\epsilon, \cdot)
converges to   \sum_{k=1}^{4}p(k)\mu_{H(k)} weakly if and only if  p_{\epsilon}^{4}(k) converges to a number  p(k) for
all  k=1,2,3,4.

There is also such a similar conjecture for the case  \# SC_{0}\geq 5.

4 Main result

In Theorem 3.3 and Theorem 3.4, we gave a necessary and sufficient condition for

convergence of  \mu(\epsilon, \cdot) composed of Perron eigenvalues of sub Ruelle operators in the case

when  \# SC_{0}=2,3 . However, it is difficult to prove similar assertion when  \# SC_{0}\geq 4 (see
[10]).

In this section, we will give an another approach by using the notion of extended Ruelle

operators in all cases including  \# SC_{0}\geq 4.

For details, we introduce some notation below. Let  M(E^{\infty}) be the set of, all Borel

complex measure on  E^{\infty} . For  0<\theta<1 , denoted by  d_{\theta} the metric on  E^{\infty} with  d_{\theta}(\omega, v)=
 \theta^{\min\{n\geq 0:\omega_{n}\neq v_{n}\}} , and by  F_{\theta}(E^{\infty}) the set of all Lipschitz continuous functions belonging in

 C(E^{\infty}) . For  k,  k' mutually disjoint and  \epsilon>0 , we define an operator  \mathcal{L}_{\epsilon}(k, k') acting on

 C(E^{\infty}) which is given by  \mathcal{L}_{\epsilon}(k, k')f(\tau)=

 \{\begin{array}{ll}
\sum_{n=0}^{\infty}\sum_{w\in E_{H(k)}\cross F(k,k)^{n}:},\exp(\sum_{l=0}^{n}
(\dim_{H}K_{\epsilon}(G))\varphi(\epsilon, \sigma^{l}(w\cdot\tau)))f(w\cdot\tau)
,   \tau_{0}\in E_{H(k)}
w\tau path on G   
0,   \tau_{0}\not\in E_{H(k)}
\end{array}
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for  f\in C(E^{\infty}) and  \tau\in E^{\infty} , where  F(k, k')=E\backslash (E_{H(k)}\cup E_{H(k')}) . Note that this

operator is a positive bounded linear operator acting on  C(E^{\infty}) . This has similar prop‐

erties of Ruelle operators as follows. These exists a unique triplet  (\lambda_{\epsilon}^{k,k^{l}}, h_{\epsilon}^{k,k'}, \nu_{\epsilon}^{k,k'})\in
 \mathbb{R}\cross C(E^{\infty})\cross M(E^{\infty}) such that  \lambda_{\epsilon}^{k,k'} is a simple maximal eigenvalue of  \mathcal{L}_{\epsilon}(k, k'),  h_{\epsilon}^{k,k'}
is the corresponding nonnegative eigenfunction, and  \nu_{\epsilon}^{k,k^{j}} is the corresponding positive

eigenvector of the dual  \mathcal{L}_{\epsilon}(k, k')^{*} with  \nu_{\epsilon}^{k,k'}(h_{\epsilon}^{k,k'})=\nu_{\epsilon}^{k,k'}(E^{\infty})=1 . Note also that

 \mathcal{L}_{\epsilon}(k, k') is well‐defined as a bounded linear operator acting on  F_{\theta}(E^{\infty}) and this oper‐

ator is quasi‐compact. These assertions are proved by using standard thermodynamic

formahsm techniques ([11]). For  k=1,2,  m , we put

 p_{\epsilon}(k)=(1+ \sum_{k^{i}:k'\neq k}\frac{{\imath}-\lambda_{\epsilon}^{k,
k'}}{1-\lambda_{\epsilon}^{k',k}})^{-1}
Now we are in a position to state our main result.

Theorem 4.1 ([12]) Assume that the conditions (G.ı)‐(G.4) are  sat\iota sfied and  \# SC_{0}\geq 2.

Then the Gibbs measure  \mu(\epsilon, \cdot) converges to a measure  \mu weakly if and only if  p_{\epsilon}(k)
converges to a number  p(k) for all  k=1,2 , ,  m . In these cases,  \mu has the form

  \mu=\sum_{k={\imath}}^{m}p(k)\mu_{H(k)}.

5 Concrete examples

5.1 A convergent case

Assume the following conditions  (i)-(iii) :

(i) For each  k=1,2 , . . . ,  m , a graph  H(k)=(\{v_{k}^{{\imath}}, v_{k}^{2}\}, \{e_{k}^{1}, e_{k}^{2}, e_{k}^{3}, e_{k}
^{4}\}, i, t) satisfies  i(e_{k}^{1})=
 t(e_{k}^{1})=v_{k}^{1} ,  i(e_{k}^{2})=v_{k}^{1} ,  t(e_{k}^{2})=v_{k}^{2} ,  i(e_{k}^{3})=v_{k}^{2} ,  t(e_{k}^{2})=v_{k}^{{\imath}} , and  i(e_{k}^{4})=t(e_{k}^{4})=v_{k}^{2}.

(ii) The graph  G=(V, E, i, t) has the vertex set  V= \bigcup_{k=1}^{m}V_{H(k)} and the edge set  E=

 E_{0}\cup E{\imath} with  E_{0}= \bigcup_{k=1}^{m}E_{H(k)} and  E_{1}=\{e_{12}, e_{23}, e_{m-1m}, e_{m1}\} with  i(e_{kk'})=v_{k}^{2}
and  t(e_{kk'})=v_{k}^{1} , (see the following figure).

 H(1) H(2) H(m)

 G :
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(iii) GIFSs  (G, (J_{v}), (O_{v}), (T_{e}(\epsilon, \cdot))) satisfy the two conditions (G.3) and (G.4), namely,

  \Vert\frac{\partial}{\partial x}T_{e}(\epsilon, \cdot)\Vert  := \sup_{x\in J_{t(e)}}\Vert\frac{\partial}{\partial x}T_{e}(\epsilon, x)\Vert  arrow  0 as  \epsilon  arrow  0 for any  e\in E_{1} . Moreover,

 T_{e}(\epsilon, \cdot)\equiv T_{e} and   \Vert\frac{\partial}{\partial x}T_{e}(\epsilon, \cdot)\Vert  \equiv ı/ı0for any  e\in E_{0}.

In these cases, we notice  SC(G)=SC_{0}=\{H(1), H(2), . H(m)\} . We also obtain that

the operator  \mathcal{L}_{\epsilon}(k, k') becomes the sub Ruelle operator  \mathcal{L}_{\epsilon,E} for each  k,  k' with  k\neq k'. H(k)

Note that this operator does not depend on  k' . We see that the Perron eigenvalue  \lambda_{\epsilon}^{k,k'} of

this operator is equal to  2(1/10)^{\dim_{H}K(\epsilon)} for any  k\neq k' . Therefore  p_{\epsilon}(k)=1/m for any
 k . By virtue of Theorem 4.1, the Gibbs measure  \mu(\epsilon, \cdot) of  (\dim_{H}K_{\epsilon}(G))\varphi(\epsilon, \cdot) converges

to   \sum_{k=1}^{m}\mu_{H(k)}/m weakly.

5.2 A non convergent case

Assume the following (i),(ii),(iii)’:

(i) The same condition as (i) in Section 5.1.

(ii) The same condition as (ii) in Section 5.1.

(iii)’ GIFSs  (G, (J_{v}), (O_{v}), (T_{e}(\epsilon, \cdot))) satisfies the conditions (G.3), (G.4) and

  \Vert\frac{\partial}{\partial x}T_{e}(\epsilon, \cdot)\Vert=\{\begin{array}
{ll}
\epsilon,   e\in E_{1}
{\imath}/{\imath} 0,   e\in E_{0}\backslash E_{H(1)}
{\imath}/10+\epsilon^{s(0)\exp(\sin(1/\epsilon))},   e\in E_{H(1)},
\end{array}
where  s(0)=\dim_{H}K(H(1))=\log 2/\log 10.

In these cases,  (1-\lambda_{\epsilon}^{1,k})/({\imath}-\lambda_{\epsilon}^{k,1}) has the form

  \frac{1-\lambda_{\epsilon}^{1,k}}{{\imath}-\lambda_{\epsilon}^{k,1}}=\frac{1-2
(\epsilon^{s(0)\exp(\sin(1/\epsilon))}+1/10)^{d\dot{{\imath}}m_{H}K_{\epsilon}
(G)}}{1-2(l/10)^{\dim_{H}K_{\epsilon}(G)}}=:a(\epsilon)
for all  k=2,3,  m , and this number  a(\epsilon) does not converge as  \epsilonarrow 0 . Therefore so

is for  p_{\epsilon}({\imath})  = ı/(ı  + (m—l)a(  \epsilon )). From Theorem 4.1, the Gibbs measure  \mu(\epsilon, \cdot) does not
converge.
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