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Abstract

The sliding block patterns are the random variables that count the number of the appearance

of words in finite samples. In this paper we show a new formula of the distributions of sliding

block patterns for Bernoulli processes with finite alphabet. In particular we show a new inclusion‐

exclusion principle on partially ordered sets with multivariate generating function, and give a simple

formula of the distribution of the sliding block patterns with generating functions. We also show

the formula of higher moments of the sliding block patterns. By comparing the powers of tests, we

show the significant performance of the sliding block patterns tests. We show that the sliding block

patterns tests reject the BSD Library RNG with p‐value almost zero.
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1 Introduction

We study the word counting problem, i.e., the number of appearance of words in finite samples. For

example let us consider the word 01 and the finite sample 10101101. Then the word 01 appears three

times in the sample and there are seven runs in 10101101. Note that the number of appearance of 01

is almost same to twice the number of runs. Statistical tests based on the number of appearance of the

words are considered to be a generalization of the run tests.

Let  X\in A^{n} with finite alphabet  A and  w\in A^{*} . Let  |w| be the length of the word  w . We consider the

following random variable,

 N_{w}  := \sum_{i=1}^{n}I_{X_{i}^{i+|w|-1}=w} if  X_{i}^{i+|w|-1}=w else  0 , (1)
where  I_{X_{\dot{i}}^{i+|w|}}1=w=1 . We also consider the vector of random variables  (N_{w_{{\imath}}}, \ldots, N_{w_{l}}) and call them

sliding block patterns or suffix tree. We call statistical tests based on sliding block patterns sliding

block patterns tests. In this paper we study sliding block patterns tests with non‐overlapping increasing

multiple words (Theorem 1).

The statistics of the sliding block patterns plays important role in information theory, ergodic theory,

and DNA analysis, see [1]. Ergodic theory shows the existence empirical distributions of the sliding block

patterns in the limit with probability one. Data compression scheme LZ 77 is based on the suffix tree.

LZ  7S scheme is based on return time but it is closely related to suffix tree [2]. These data compression

schemes are also applied to nonparametric statistics [3].

In order to carry out statistical tests with sliding block patterns, we need to derive the distributions

of the sliding block patterns with respect to null hypotheses.
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It is well known that Monte Carlo simulation may generate a false distributions. In Section 4 we show

that Monte Carlo simulation with the BSD Library pseudo random number generator random (BSD

RNG) and Mersenne twister pseudo random number generator (MT RNG). We show that BSD RNG

computes a false distribution. The Monte Carlo simulation is itself considered to be a statistical test for

pseudo random numbers. In order to avoid a circular argument, we need to derive the distribution with

mathematically assured manner.

The distributions of sliding block patterns have been shown via generating functions, see [4, 5, 1, 6, 7, 8].

Régnier and Szpankowski [5] derived generating functions of the sliding block patterns in a finite sample.

In Goulden and Jackson [6] and Bassino et al [7], they obtained the distribution of the sliding block

patterns with generating functions and inclusion‐exclusion method. The advantage of the method of

Bassino [7] is that the formula of generating functions are significantly simplified in combination with

inclusion‐exclusion method. The formula of the generating function of the distribution of the sliding

block patterns in [4, 5, 1, 6, 7, 8] are based on the induction of sample size.

In this paper we show the distributions of sliding block patterns for Bernoulli processes with finite

alphabet, which is not based on the induction on sample size. We show a new inclusion‐exclusion

formula in multivariate generating function form on partially ordered sets, and show a simpler expression

of generating functions of the number of pattern occurrences in finite samples.

We say that a word  w is overlapping if there is a word  x with  |x|<2|w| and  w appears in  x at least 2

times, otherwise  w is called non‐overlapping. For example 10 is non‐overlapping and 11 is overlapping,

i.e., 11 appears 2 times in 111. We write  x\sqsubset y if  x is a prefix of  y and  x\neq y.

Theorem 1 Let  P be an  i.i.d . process of fixed sample size  n of finite alphabet. Let  s_{1}\sqsubset s_{2}\sqsubset. . .  \sqsubset s_{l} be

an increasing non‐overlapping words of finite alphabet, i. e.,  s_{i} is a prefix of  s_{j} and  m_{i}<m_{j} , where  m_{i}

is the length of  s_{i} , for all  i<j . Let  P(s_{i}) be the probability of  s_{i} for  i=1 , . . . ,  l . Let

 A(k_{1},  \ldots, k_{l})=(^{n-\sum_{\dot{i}}m_{i}.k_{i}+\sum_{i}k_{i}}k_{1}, ..
,k_{l})\prod_{i=1}^{l}P^{k_{i}}(s_{i}) ,

 B(k_{1},  \ldots, k_{l})=P(\sum_{i=1}^{n}I_{X_{\dot{i}}^{i+m_{i}-1}=s_{j}}=
k_{j}, j=1, \ldots, l) , (2)

 F_{A}(z_{1},  \ldots, z_{l})=\sum_{k_{1},\ldots,k_{l}}A(k_{1}, \ldots, k_{l})z^
{k_{1}}\cdots z^{k_{l}} , and

 F_{B}(z_{1},  \ldots, z_{l})=\sum_{k_{1},\ldots,k_{l}}B(k_{1}, \ldots, k_{l})z^
{k_{1}}\cdots z^{k_{l}}.
Then

 F_{A}(z_{1}, z_{2}, \ldots, z_{l})=F_{B}(z_{1}+1, z_{1}+z_{2}+1, \ldots, z_{1}+
\cdots+z_{l}+1) .

Or equivalently,
 F_{A} (y_{1}-1, y_{2}-y_{1}, . . . y_{l}-y_{l-1})=F_{B}(y_{1}, y_{2}, . . . 
y_{l}) ,

where  y_{i}=z_{1}+\cdots+z_{i}+1 for  i=1 , . . . ,  l.

 B(k_{1}, \ldots, k_{l}) is the coefficient of the   \prod_{i=1}^{l}y_{\dot{i}}^{k_{\dot{i}}} in  F_{A}(y_{1}-1, y_{2}-y_{1}, \ldots, y_{l}-y_{l-1}) for all  k_{1} , . . . ,  k_{l}.
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It is known that in the case of one variable [9] or the multi‐variate disjoint events [7, 6, 4], inclusion‐

exclusion formula expressed via generating functions as  F_{A}(z_{1}, \ldots, z_{l})=F_{B}(z_{1}+1, \ldots, z_{l}+1) , where

 F_{A} is a generation function for non‐sieved events and  F_{B} is a generating function for sieved events.

Theorem 1 shows a new inclusion‐exclusion formula for partially ordered sets.

With slight modification of Theorem 1, we can compute the number of the occurrence of the overlapping

increasing words. For example, let us consider increasing self‐overlapping words 11, 111, 1111 and the

number of their occurrences. Let 011, 0111, 01111 then these words are increasing non‐self‐overlapping

words. The number of occurrences 11, 111, 1111 in sample of length  n is equivalent to the number of

occurrences 011, 0111, 01111 in sample of length  n+1 that starts with  0.

In [5], expectation, variance, and CLTs (central limit theorems) for the sliding block pattern are shown.

We show the higher moments for non‐overlapping words.

Theorem 2 Let  w be a non‐overlapping pattern.

  \min\{T,t\}

  \forall tE(N_{w}^{t})= \sum_{s=1} A_{t,s}(\begin{array}{l}
n-s|w|+s
S
\end{array})P^{s}(w) .

 A_{t,s}= \sum_{r}  (\begin{array}{l}
s
r
\end{array})  r^{t}(-1)^{s-r},  T= \max\{t\in \mathbb{N}|n-t|w|\geq 0\}.

In the above theorem,  A_{t,s} is the number of surjective functions from  \{ 1, 2, . . . ,  t\}arrow\{1,2, . . . , s\} for

 t,  s\in \mathbb{N} , see [10].

The preliminary versions of the paper have been presented at [11, 12, 13, 14].

2 Sparse Patterns

In this section, we expand the notion of non‐overlapping patterns to sparse patterns. First we expand

the notion of non‐overlapping. Two words  w_{1} and  w_{2} are called non‐overlapping if there is no word  x

such that  |x|<|w_{1}|+|w_{2}| and  w_{1} and  w_{2} appear in  x . For example, the words 00101 and 00111 are

non‐overlapping. A set  S of words is called non‐overlapping if  w_{1} and  w_{2} are non‐overlapping for all

 w_{1},  w_{2}\in S including the case  w_{1}=w_{2} . We introduce the symbol? to represent arbitrary symbols. Let

 \mathcal{A} be the alphabet. A word consists of extended alphabet  \mathcal{A}\cup\{?\} is called sparse pattern. We say  w' is

a realization of the sparse pattern  w if  w' consists of  \mathcal{A} and coincides with  w except for the symbol?.

A sparse pattern is called non‐overlapping if the set of the realization is non‐overlapping. For example

001?1 is a non‐overlapping sparse pattern and its realizations are 00101 and 00111 with  \mathcal{A}=\{0,1\}.

We can find many non‐overlapping sparse patterns. For example, each sparse pattern  0^{m+1}(1?^{m})^{n}1
is non‐overlapping for all  n,  m . Here  w^{m} is the  m times concatenation of the word  w . For example,

 0^{3}(1?^{2})^{2}1=0001??1??1.
The probability of sparse pattern  w is defined by

 P(w)=w' \sum_{rea{\imath} ization} of  wP(w') .
We write  w_{1}\sqsubset w_{2} for two sparse patterns if  w_{1} is a prefix of  w_{2} with the alphabet  \mathcal{A}\cup\{?\} . Theorem 1

holds for sparse words.
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Corollary 1 Theorem 1 holds for non‐overlapping increasing  \mathcal{S}parse patterns.

The advantage of the sparse patterns is that we can construct large size sparse patterns that have large

probabilities, which is useful in statistical tests of pseudo random numbers in a large sample size.

3 Experiments on power function of sliding block patterns tests

In [5], it is shown that central limit theorem holds for sliding block patterns,

 P( \frac{N_{w}-E(N_{w})}{\sqrt{V_{w}}}<x)arrow\frac{1}{\sqrt{2\pi}}\int_{-
\infty}^{x}e^{-\frac{{\imath}}{2}x^{2}}dx,
where  w is non‐overlapping pattern,

 E(N_{w})=(n-|w|+1)P(w) and

 V(N_{w})=E(N_{w})+(n-2|w|+2)(n-2|w|+1)P^{2}(w)-E^{2}(N_{w}) . (3)

Let

 N_{w}':= \sum_{i=1}^{\lfloor n/|w|\rfloor}I_{x_{\dot{i}*|w|}^{(\dot{x}+1)*|w|-
1}=w}.
 N_{w}' obeys binomial law if the process is i.i.  d . We call  N_{w}'block-wi_{\mathcal{S}}e sampling.

As an application of CLT approximation, we compare power functions of sliding block sampling  N_{w}

and block‐wise sampling  N_{w}'.

We consider the following test for sliding block patterns: We write  E_{\theta}=E(N_{w}) and  V_{\theta}=V(N_{w}) if

  P(w)=\theta . Null hypothesis:  P(w)=\theta^{*} vs alternative hypothesis  P(w)<\theta^{*} Reject null hypothesis

if and only if  N_{w}<E_{\theta^{*}}-5\sqrt{V_{\theta^{*}}} . The likelihood of the critical region is called power function, i.e.,

 Pow(\theta)  :=P_{\theta}(N_{w}<E_{\theta^{*}}-5\sqrt{V_{\theta^{*}}}) for  \theta\leq\theta^{*}

We construct a test for block‐wise sampling: Null hypothesis:  P(w)=\theta^{*} vs alternative hypothesis

 P(w)<\theta^{*} Reject null hypothesis if and only if  N_{w}'<E_{\theta^{*}}'-5\sqrt{V_{\theta^{*}}'} , where   E_{\theta}'=\lfloor n/|w|\rfloor\theta and

 V_{\theta}'=\lfloor n/|w|\rfloor\theta(1-\theta) .

The following table shows powers of sliding block patterns tests and block wise sampling at  \theta=

 0.2,0.18,0.16 under the condition that alphabet size is 2 (binary data),  \theta^{*}=0.25,  |w|=2 , and  n=500.

 \theta 0.  2 0.  18 0.16

Power of Sliding block 0.316007 0.860057 0.995681

Power of Block wise 0.000295 0.002939 0.021481

Figure 1 shows the graph of power functions for sliding block patterns test and block‐wise sampling.
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Figurel Comparison of power functions: sliding block test (black line) vs block‐wise test (red
line).  P(w)<0.25 vs  P(w)=0.25 (null hypothesis).  |w|=2,  n=500.

4 Experiments on statistical tests for pseudo random numbers

In [15], a battery of statistical tests for pseudo random number generators are proposed, and chi‐

square test is recommended to test the pseudo random numbers with sliding block patterns  N_{w} and

non‐overlapping word  w . Expectation and variance of  N_{w} are given in (3).

In this section, we apply Theorem 1 and Kolmogorov Smirnov test to pseudo random number gen‐

erators. Fix sample size  n=1600 in (1) and null hypothesis  P be fair coin flipping. We compute the

following three distributions for  w=10 and 11110 in Figure 2.

1. true distributions of  N_{w},

2. binomial distributions

 (\begin{array}{l}
n
k
\end{array})  p^{k}(1-p)^{n-k},  p=2^{-|w|},  k=1 , . . . ,  n , and

3. empirical distributions of   \sum_{i=1}^{n}I_{X_{i}^{i+|w|-1}=w} generated by Monte Carlo method with BSD RNG ran‐

dom, 200000 times iteration of random sampling.

Due to the linearity of the expectation, the expectation of binomial distribution is pn, which is almost

same to the expectation of  N_{w} . However the random variables of sliding block patterns have strong

correlations even if the process is i.i.  d . For example, if a non‐overlapping pattern has occurred at some

position, then the same non‐overlapping pattern do not occur in the next position.

From the graphs of distributions, we see that binomial distributions has large variance compared to the

true distributions. This is because, in the binomial model, the correlations of patterns are not considered.

We see that the binomial model approximations of the distributions of the sliding block patterns are not

appropriate.

Figure 2 shows that the empirical distributions (Monte Carlo method) is different from the true dis‐
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tribution. We see that BSD RNG random cannot simulate the sliding block patterns correctly.

 \iota^{\frac{o}{L}}D\dot{\overline{s}}_{1\prime}-\vee-1>
’

 \iota^{\frac{o}{L}}D\dot{s}_{\varpi^{1}'}\equiv\vee>

 300 350 400 450 500 0 20 40 60 80 100

Number of pattem occurences Number of pattem occurences

Figure2 Comparison of distributions: the left graph shows the distributions for  w=10 and
 n=1600 and the right graph shows the distributions for  w=11110 and  n=1600 in (1). Black,
red, and blue lines show true distribution, binomial, and Monte Carlo simulation, respectively.

From the experiment for  w=11110 we have obtained

  \sup |F_{t}(x)-F(x)|=0.302073,
  0\leq x<\infty

where  F_{t}(x) is the empirical cumulative distribution generated by Monte Carlo method with BSD RNG

random with  t=200000 times random sampling.  F(x) is the cumulative distributions of (2). From

Kolmogorov‐Smirnov theorem we have the  p‐value

 P ( \sup |F_{t}(x)-F(x)|\geq 0.302513)\approx 0,
  0\leq x<\infty

where  P is the fair coin flipping (null hypothesis). The sliding block patterns tests reject BSD RNG

random. The  p‐values of the Kolmogorov‐Smirnov test for BSD RNG with  w=10,  w=11110,  t=

200000 and  n=1600 are summarized in the following table.

BSD RNG  w=10  w=11110

  \sup_{0\leq x<\infty}|F_{t}(x)-F(x)| 0.012216 0.302073

 p‐value  0  0

The sliding block patterns tests do not reject MT RNG [16] under the same condition above. The p‐

values of the Kolmogorov‐Smirnov test for MT RNG with  w=10,  w=11110,  t=200000 and  n=1600

are summarized in the following table.

MT RNG  w=10  w=11110

  \sup_{0\leq x<\infty}|F_{t}(x)-F(x)| 0.001376 0.001409

 p‐value 0.843306 0.822066
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5 Proofs

Proof of Theorem 1) For simplicity we give a proof for the case of two non‐overlapping words  w_{1}\sqsubset w_{2}

in Theorem 1. The proof of the general case is similar. Let  m_{1}=|w_{1}| and  m_{2}=|w_{2}| . Since  w_{1} and

 w_{2} are non‐overlapping, the number of possible allocations such that  k_{1} times appearance of  w_{1} and  k_{2}

times appearance of  w_{2} in the string of length  n is

 (\begin{array}{l}
n-m_{1}k_{1}-m_{2}k_{2}+k_{1}+k_{2}
k_{1)}k_{2}
\end{array}) .

This is because if we replace each  w_{1} and  w_{2} with additional two extra symbols  \alpha,  \beta in the string of length

 n then the problem reduces to choosing   k_{1}\alpha ’s and   k_{2}\beta ’s among string of length  n-m_{1}k_{1}-m_{2}k_{2}+k_{1}+k_{2}.

In the above equation, we do not count the appearance of  w_{1} in  w_{2} . Let

 A(k_{1}, k_{2})=(\begin{array}{l}
n-m_{1}k_{1}-m_{2}k_{2}+k_{1}+k_{2}
k_{1},k_{2}
\end{array}) P^{k_{{\imath}}}(w_{1})P^{k_{2}}(w_{2}) .

 A is not the probability that  k_{1}w_{1} ’s and  k_{2}w_{2} ’s occurrence in the string, since we allow any words in

the remaining place of the string except for the appearance of  w_{1} and  w_{2} . For example  A may count

the event that  w_{1} and  w_{2} appear more than  k_{1} and  k_{2} times. Let  B(t_{1}, t_{2}) be the probability that

non‐overlapping words  w_{1} and  w_{2} appear  k_{1} and  k_{2} times respectively. We have the following identity,

 A(k_{1}, k_{2})=k_{2} \leq t_{2},\sum_{k_{1}+k_{2}\leq t_{1}+t_{2}}B(t_{1}, 
t_{2})  (\begin{array}{l}
t_{2}
k_{2}
\end{array})   \sum_{0\leq s\leq t_{2}-k_{2}}  (\begin{array}{l}
t_{2}-k_{2}
s
\end{array})(\begin{array}{l}
t_{1}
k_{1}-s
\end{array}) . (4)

Let  F_{A}(z_{1}, z_{2})  := \sum_{k_{{\imath}},k_{2}}A(k_{1}, k_{2})z^{k_{1}}z^{k_{2}} and  F_{B}(z_{1}, z_{2})  := \sum_{k_{{\imath}},k_{2}}B(k_{1}, k_{2})z^{k_{1}}z^{k_{2}} be generating func‐

tions for  A and  B respectively. From (4), we have

 F_{A}(z_{1}, z_{2})= \sum_{k_{1},k_{2}}z_{1}^{k_{1}}z_{2_{k_{2}\leq t_{2}}}^{k_
{2}},\sum_{k_{1}+k_{2}\leq t_{1}+t_{2}}B(t_{1}, t_{2})  (\begin{array}{l}
t_{2}
k_{2}
\end{array})   \sum_{0\leq,\leq t_{2}-k_{2}}  (\begin{array}{l}
t_{2}-k_{2}
s
\end{array})(\begin{array}{l}
t_{l}
k_{1}-s
\end{array})

 = \sum_{t_{{\imath}},t_{2}}B(t_{1}, t_{2})\sum_{k_{2}\leq t_{2}}  (\begin{array}{l}
t_{2}
k_{2}
\end{array})  z_{2}^{k_{2}} \sum_{0\leq s\leq t_{2}-k_{2},0\leq k_{1}-s\leq t_{1}}  (\begin{array}{l}
t_{2}-k_{2}
s
\end{array})(\begin{array}{l}
t_{1}
k_{1}-s
\end{array})  z_{1}^{k_{1}}

 = \sum_{t_{{\imath}},t_{2}}B(t_{1}, t_{2})\sum_{k_{2}\leq t_{2}}  (\begin{array}{l}
t_{2}
k_{2}
\end{array})  z_{2}^{k_{2}}(z_{1}+1)^{t_{1}+t_{2}-k_{2}}

 = \sum_{t_{{\imath}},t_{2}}B(t_{1}, t_{2})(z_{1}+1)^{t_{1}+t_{2}}(\frac{z_{2}}
{z_{1}+1}+1)^{t_{2}}
 =F_{B}(z_{1}+1, z_{1}+z_{2}+1) .

In the above second equality, we changed the order of summation of variables. The latter part of the

theorem is obvious.  \blacksquare

Proof of Theorem 2) For simplicity ıet  Y_{\dot{i}}=I_{X_{i}^{i+|w-1}}.=w . Since  w is non‐overlapping,  Y_{\dot{i}}Y_{j}=Y_{\dot{i}} if

 i=j.  Y_{\dot{i}}Y_{j}=0 if  \{i, i+1, . . . , i+|w|-1\}\cap\{j, j+1, . . . , j+|w|-1\}\neq\emptyset . We say that  \{i, i+1, . . . , i+|w|-1\}
is the coordinate of  Y_{i} . We say that a subset of  \{Y_{i}\}_{1\leq i\leq n-|w|+1} is disjoint if their coordinate are disjoint.
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Let Yí, j=Y_{i} for all  1\leq j\leq t . Then  ( \sum_{i}Y_{i})^{t}=\prod_{\dot{j}=1}^{t}\sum_{i}Y_{i,j}=\sum_{i}\prod_{j=1}
^{t}Y_{\dot{i}j} . Note that

 E( \prod_{\dot{j}=1}^{t}Y_{i,j})=P^{S}(w) if and only if there is a disjoint set  Y_{n(j)},  1\leq j\leq s such that   \prod_{j=1}^{t}Y_{\dot{i}j}=
  \prod_{\dot{J}^{=1}}^{s}Y_{n(j)}.

Observe that the number of possible combination of disjoint sets of  Y_{n(j)},  1\leq j\leq s such that

  \prod_{j=1}^{t}Y_{\dot{i}j}=\prod_{j=1}^{s}Y_{n(j)} is  A_{t,s}(^{n-s|_{S}w|}+s) . Note that there is no disjoint sets of  Y_{n(j)},  1\leq j\leq s if

 s> \max\{t\in \mathbb{N}|n-t|w|\geq 0\} . From the linearity of the expectation, we have the theorem.

 \blacksquare
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