Fluctuation scaling limit of inverse local times of jumping-in diffusions

Kosuke Yamato Kyoto University (joint work with Kouji Yano (Kyoto university))

1 Introduction

In this paper, we consider the fluctuation scaling limit of the inverse local times of jumpingin diffusions. For a strong Markov process X on the half line $[0, \infty)$, we call it jumping-in diffusion process if it is a natural scale diffusion up to the first hitting time of 0 and, as soon as X hits 0, X jumps into the interior $(0, \infty)$ and starts afresh. It was shown by Feller[2] and Itô[4] that such a process can be characterized by the speed measure dm which characterizes the diffusion on the interior $(0, \infty)$ and the jumping-in measure jwhich characterizes the law of jumps from the boundary 0 to the interior $(0, \infty)$. Hence we denote this process by $X_{m,j}$.

Let us consider the inverse local time $\eta_{m,j}$ at 0 of a jumping-in diffusion $X_{m,j}$. We propose a condition on m and j for the existence of the following fluctuation scaling limit:

$$\frac{1}{\gamma^{1/\alpha}K(\gamma)}(\eta_{m,j}(\gamma t) - b\gamma t) \xrightarrow[\gamma \to \infty]{d} T(t) \text{ in } \mathbb{D}$$
(1.1)

for constants $b \geq 0$, $\alpha \in (0, 2]$ and a slowly varying function $K(\gamma)$ at ∞ . Here T(t) denotes a α -stable process without negative jumps and \mathbb{D} denotes the space of càdlàg paths from $[0, \infty)$ to \mathbb{R} equipped with Skorokhod's J_1 -topology.

Applying the results above, we show the fluctuation scaling limit of the occupation time of two-sided jumping-in diffusions. Two-sided jumping-in diffusions are constructed by connecting two jumping-in diffusion processes with respect to 0. Let X be such a process and define $A(t) = \int_0^t 1_{(0,\infty)}(X_s) ds$. We give conditions for the existence of the limit distribution $\frac{1}{t}A(t)$ as $t \to \infty$. Moreover, in the case where the limit degenerate, that is,

$$\frac{1}{t}A(t) \xrightarrow[t \to \infty]{P} p \in (0, 1)$$
(1.2)

holds, we show the scaling limit of the fluctuation around the limit constant, that is, the following limit:

$$\frac{1}{\gamma^{1/\alpha}K(\gamma)}(A(\gamma t) - p\gamma t) \xrightarrow[\gamma \to \infty]{d} Z(t)$$
(1.3)

for a process Z(t).

Let us explain the difficulty and our methods to overcome it. It was shown by Feller[2] and Itô[4] that the excursion measure of the process $X_{m,j}$ is represented as

$$n_{m,j}(A) = \int_0^\infty P_x^m(A) j(dx).$$
 (1.4)

Here P_x^m $(x \in (0, \infty))$ is the law of the $\frac{d}{dm}\frac{d^+}{dx}$ -diffusion starting from x and killed at 0 and $\frac{d^+}{dx}$ denotes the right-differentiation operator. We denote the law of $X_{m,j}$ starting from 0 by P. Then the Laplace exponent $\chi_{m,j}$ of $\eta_{m,j}$ satisfies the following:

$$\chi_{m,j}(\lambda) = -\log P[\mathrm{e}^{-\lambda\eta_{m,j}(1)}] \tag{1.5}$$

$$= \int_{0}^{\infty} (1 - e^{-\lambda u}) n_{m,j}(T_0 \in du)$$
(1.6)

$$= \int_{0}^{\infty} P_{x}^{m} [1 - e^{-\lambda T_{0}}] j(dx)$$
 (1.7)

where T_0 denotes the first hitting time at 0. Let the function $u = g_{\lambda}(m; \cdot)$ is the unique, non-negative and non-increasing solution of the equation $\frac{d}{dm}\frac{d^+}{dx}u = \lambda u$ satisfying the boundary condition u(0) = 1 and $\lim_{x\to\infty} \frac{d^+}{dx}u(x) = 0$. It is well-known that the following holds (see e.g.[3]):

$$g_{\lambda}(m;x) = P_x^m [\mathrm{e}^{-\lambda T_0}]. \tag{1.8}$$

Hence we obtain the following expression:

$$\chi_{m,j}(\lambda) = \int_0^\infty (1 - g_\lambda(m; x)) j(dx) \ (\lambda > 0).$$

$$(1.9)$$

When the boundary 0 for dm is regular, we have a unique solution $u = \varphi_{\lambda}$ to

$$\frac{d}{dm}\frac{d^+}{dx}u = \lambda u, \ u(0) = 1, \ u^+(0) = 0,$$
(1.10)

and a unique solution $u = \psi_{\lambda}$ to

$$\frac{d}{dm}\frac{d^+}{dx}u = \lambda u, \ u(0) = 0, \ u^+(0) = 1$$
(1.11)

and we can exploit the two functions φ_{λ} and ψ_{λ} to analyze the $\frac{d}{dm}\frac{d^{+}}{dx}$ -diffusion. When the boundary 0 for dm is exit, we still have ψ_{λ} but do not φ_{λ} . We introduce functions φ_{λ}^{d} ($d \in \mathbb{N}$) which play the role corresponding to φ_{λ} and satisfies the boundary condition which we call modified Neumann boundary condition. Then for a suitable constant $c_{\lambda}^{d}(m)$, we obtain the following:

$$g_{\lambda}(m;x) = \varphi_{\lambda}^{d}(m;x) - c_{\lambda}^{d}(m)\psi_{\lambda}(m;x).$$
(1.12)

Hence for a sequence of speed measures $\{dm_n\}_n$, jumping-in measures $\{j_n\}_n$ and constants $\{b_n\}_n$, the Laplace exponent $\widetilde{\chi}_{m_n,j_n,b_n}$ of the process $\eta_{m_n,j_n}(t) - b_n t$ is the following:

$$\widetilde{\chi}_{m_n, j_n, b_n}(\lambda) = \chi_{m_n, j_n}(\lambda) - b_n \lambda$$

$$= \left(\int_0^\infty (1 - \varphi_\lambda^d(m_n; x)) j_n(dx) - b_n \lambda \right) + c_\lambda^d(m_n) \int_0^\infty \psi_\lambda(m_n; x) j_n(dx).$$
(1.14)

Therefore our study is reduced to the proper choice of $\{b_n\}_n$ and the analysis of the two terms in RHS of (1.14).

2 Notations

Definition 2.1. We say that $m : (0, \infty) \to \mathbb{R}$ is a string when m is strictly increasing and right-continuous and satisfies $\int_{0+} x dm(x) < \infty$. We denote the set of all strings as \mathcal{M} .

Definition 2.2. For $m \in \mathcal{M}$, we define as follows:

$$G(m;x) = \int_0^x m(y) dy \ (x \ge 0),$$
(2.1)

$$\widetilde{m}(x) = m(x) - m(1) \ (x > 0),$$
(2.2)

$$G^{1}(m;x) = \int_{0}^{x} \widetilde{m}(y) dy \ (x \ge 0).$$

$$(2.3)$$

$$G^{k}(m;x) = -\int_{0}^{x} dy \int_{y}^{1} G^{k-1}(m;z) dm(z) \ (k \ge 2, \ x \ge 0).$$
(2.4)

Remark 2.3. For every $k \ge 2$, the function $G^k(m; x)$ is finite for every $x \ge 0$.

We introduce a subset of \mathcal{M} as follows.

Definition 2.4. Define

$$\mathcal{M}_0 = \{ m \in \mathcal{M} \mid \lim_{x \to +0} m(x) > -\infty \}.$$

$$(2.5)$$

We introduce hierarchy in strings.

Definition 2.5. For $m \in \mathcal{M}_0$, we define d(m) = 0 and for $m \in \mathcal{M} \setminus \mathcal{M}_0$

$$d(m) = \inf\left\{k \ge 1 \ \left| \ \int_0^1 (-1)^k G^k(m; x) dm(x) < \infty.\right\}$$
(2.6)

where $\inf \emptyset = \infty$.

Definition 2.6. For $\alpha \in (0,2)$ we define

$$m^{(\alpha)}(x) = \begin{cases} (1-\alpha)^{-1} x^{1/\alpha - 1}, & \text{if } \alpha \in (0,1), \\ \log x, & \text{if } \alpha = 1, \\ -(\alpha - 1)^{-1} x^{1/\alpha - 1}, & \text{if } \alpha \in (1,2). \end{cases}$$
(2.7)

Remark 2.7. The measure $dm^{(\alpha)}$ is the speed measure of the $(2-2\alpha)$ -dimensional Bessel process under the natural scale.

3 The Krein-Kotani correspondence

For strings m with $d(m) \leq 1$, we can apply the Krein-Kotani correspondence established in Kotani[7]. It is an extension of the Krein correspondence which has been used in the studies of one-dimensional diffusions (see e.g. Kotani and Watanabe [8] or Kasahara [5]). We briefly summarize the Krein-Kotani correspondence.

If a function $w: \mathbb{R} \to [0, \infty]$ is right-continuous, non-decreasing and satisfies

$$\int_{-\infty}^{a} x^2 dw(x) < \infty \tag{3.1}$$

for some $a \in \mathbb{R}$, we call it Kotani's string. For a Kotani's string w and $\lambda > 0$, we consider the solution $u = f_{\lambda}$ to the following ODE:

$$\frac{d}{dw}\frac{d^{+}}{dx}u = \lambda u, \ u(-\infty) = 1, \ u^{+}(-\infty) = 0 \ (x < \ell).$$
(3.2)

Here $\ell = \inf\{x \in \mathbb{R} \mid w(x) = \infty\}$. Then define

$$h(w;\lambda) = a + \int_{-\infty}^{a} \left(\frac{1}{f_{\lambda}(x)^{2}} - 1\right) dx + \int_{a}^{\ell} \frac{dx}{f_{\lambda}(x)^{2}} \ (\lambda > 0).$$
(3.3)

for some $a \in \mathbb{R}$. Note that the value $h(w; \lambda)$ is finite for every $\lambda > 0$ and the function $h(w; \cdot)$ does not depend on the choice of a. Since $h(w; \cdot)$ is the Herglotz function, for a constant $\alpha \in \mathbb{R}$ and a Radon measure σ on $[0, \infty)$ such that $\int_0^\infty \frac{\sigma(d\xi)}{\xi^2+1} < \infty$, we have the following expression:

$$h(w;\lambda) = \alpha + \int_{0-}^{\infty} \left(\frac{1}{\xi+\lambda} - \frac{\xi}{\xi^2+1}\right) \sigma(d\xi).$$
(3.4)

We note that the measure σ in RHS of (3.4) is the spectral measure of the differential operator $-\frac{d}{dw}\frac{d^+}{dx}$. Hence we call $h(w; \cdot)$ the spectrally characteristic function of w. Let \mathcal{H} be the set of functions which are expressed in the form of RHS of (3.4) for a constant $\alpha \in \mathbb{R}$ and a Radon measure σ on $[0, \infty)$ such that $\int_0^\infty \frac{\sigma(d\xi)}{\xi^2+1} < \infty$. It was proved in [7] that the map { Kotani's string } $\ni w \mapsto h(w; \cdot) \in \mathcal{H}$ is bijective. We call this correspondence the Krein-Kotani correspondence. The following theorem shown in Kasahara and Watanabe [6] which asserts a kind of continuity of the Krein-Kotani correspondence is important.

Theorem 3.1. (Kasahara and Watanabe [6, Theorem 2.9]) Let $m_n, m \in \mathcal{M}$ with $d(m_n), d(m) \leq 1$ and $\sigma \geq 0$. Assume the following holds:

- (i) $\lim_{n\to\infty} m_n(x) = m(x)$ for every continuity point x of m,
- (ii) $\lim_{x\to+0} \limsup_{n\to\infty} \left| \int_0^x m_n(y)^2 dy \sigma^2 \right| = 0.$

Then we have

$$\lim_{n \to \infty} h_n(m_n^*; \lambda) = h(m^*; \lambda) - \sigma^2 \lambda \text{ for every } \lambda > 0.$$
(3.5)

Kotani's strings and our strings are related as follows:

Proposition 3.2. For $m \in \mathcal{M}$, we define its dual string

$$m^*(x) = \inf\{y > 0 \mid m(y) > x\} \ (x \in \mathbb{R}).$$
(3.6)

Then the following holds:

$$d(m) \le 1 \Rightarrow m^* \text{ is a Kotani's string.}$$

$$(3.7)$$

Remark 3.3. The set of strings which are dual strings of $m \in \mathcal{M}$ with $d(m) \leq 1$ is that of Kotani's strings which are continuous.

Proposition 3.4. (Kotani [7, Section 4]) For $m \in \mathcal{M}$ with $d(m) \leq 1$, the function $\lambda h(m^*; \lambda)$ is the Laplace exponent of a Lévy process without Gaussian part and negative jumps.

We denote the Lévy process whose Laplace exponent is $\lambda h(m^*; \lambda)$ as T(m; t).

4 Representation of $c_{\lambda}^{1}(m)$

By the help of the Krein-Kotani correspondence and its continuity, we obtain the following explicit representation of $c_{\lambda}^{1}(m)$. This is an extension of a well-known result in the case the boundary 0 is regular.

Theorem 4.1. Let $m \in \mathcal{M}$ with $d(m) \leq 1$ and $\lambda > 0$. It holds that

$$c_{\lambda}^{1}(m) = \lambda h(m^{*}; \lambda) - \lambda m(1).$$
(4.1)

5 Convergence of $c_{\lambda}^{d}(m_{n})$

For strings m with $d(m) \geq 2$, we no longer expect the explicit representation of $c_{\lambda}^{d}(m)$. However, when a sequence of strings $\{m_n\}_n$ degenerates in a good manner, we can show the degenerate of the sequence $\{c_{\lambda}^{d}(m_n)\}_n$.

Definition 5.1. For $m_n \in \mathcal{M}$, we denote $m_n \xrightarrow{G} 0$ when the following hold:

- (i) $\lim_{n\to\infty} m_n(x) = 0$ for every x > 0,
- (ii) $\lim_{n\to\infty} \int_0^1 y dm_n(y) = 0$,
- (iii) $\lim_{n\to\infty} \int_0^1 G^d(m_n; x) dm_n(x) = 0$ for some integer $d \ge 1$.

Theorem 5.2. Let $m_n \in \mathcal{M}$. Suppose $m_n \xrightarrow{G} 0$. Then there exists an integer $N \ge 0$ and for every $d \ge N$, the following holds:

$$\lim_{n \to \infty} c_{\lambda}^d(m_n) = 0. \tag{5.1}$$

6 Scaling limit of inverse local times

By using the results in Section 4, 5, we can obtain the desired results on fluctuation scaling limits of inverse local times.

Theorem 6.1 $(\alpha \in (1,2))$. Let $m \in \mathcal{M}$ with $d(m) \leq 1$, j be a Radon measure on $(0,\infty)$ and K be a slowly varying function at ∞ . Suppose the following hold:

- (i) $X_{m,j}$ exists,
- (ii) $m(x) \sim -(\alpha 1)^{-1} x^{1/\alpha 1} K(x) \ (x \to \infty)$ for a constant $\alpha \in (1, 2)$,
- (iii) $\int_0^\infty x j(dx) < \infty$.

Then if we take $b = -\int_0^\infty G(m; x) j(dx)$, we have

$$\frac{1}{\gamma^{1/\alpha}K(\gamma)}(\eta_{m,j}(\gamma t) - b\gamma t) \xrightarrow[\gamma \to \infty]{d} T(m^{(\alpha)}; \kappa t) \text{ on } \mathbb{D}.$$
(6.1)

Here $\kappa = \int_0^\infty x j(dx).$

Theorem 6.2 $(\alpha = 1)$. Let $m \in \mathcal{M}$ with $d(m) \leq 1$, j be a Radon measure on $(0, \infty)$ and K be a slowly varying function at ∞ such that K and 1/K are locally bounded on $[0, \infty)$. Suppose the following conditions hold:

- (i) $X_{m,j}$ exists,
- (ii) $\lim_{\gamma \to \infty} \frac{m(\gamma x) m(\gamma)}{K(\gamma)} = \log x$ for every x > 0.,
- (iii) $j(x,\infty) \leq Cx^{-1-\delta}$ for constants C > 0 and $\delta \in (0,1)$ and every $x \geq 1$.

Then if we take $b_{\gamma} = -\int_0^{\infty} (G(m; x) - m(\gamma)x) j(dx)$, we have

$$\frac{1}{\gamma K(\gamma)} (\eta_{m,j}(\gamma t) - b_{\gamma} \gamma t) \xrightarrow[\gamma \to \infty]{d} T(m^{(1)}; \kappa t) \text{ on } \mathbb{D}.$$
(6.2)

Here $\kappa = \int_0^\infty x j(dx).$

Theorem 6.3 $(\alpha = 2)$. Let $m \in \mathcal{M}$ with $d(m) \leq 1$ and j be a Radon measure on $(0, \infty)$. Suppose the following hold:

- (i) $X_{m,j}$ exists,
- (ii) The function $K(\gamma) = \int_0^{\gamma} m(y)^2 dy$ varies slowly at ∞ ,
- (iii) $-\int_0^\infty j(dx)\int_0^x dy \int_0^y G(m;z)dm(z) < \infty$,
- (iv) $\int_{1}^{\infty} |G(m;x)| j(dx) < \infty.$

Then if we take $b = -\int_0^\infty G(m; x) j(dx)$, we have

$$\frac{1}{\sqrt{\gamma K(\gamma)}} (\eta_{m,j}(\gamma t) + b\gamma t) \xrightarrow{d} B(2\kappa t) \text{ on } \mathbb{D}.$$
(6.3)

Here

$$\kappa = \int_0^\infty \left(x + \frac{1}{K(\infty)} \int_0^x dy \int_0^y G(m; z) dm(z) \right) j(dx).$$
(6.4)

Theorem 6.4 $(\alpha > 2)$. Let $m \in \mathcal{M}$ with $d(m) < \infty$ and let j be a Radon measure on $(0, \infty)$. Suppose the following hold:

- (i) $X_{m,j}$ exists,
- (ii) $-m(x) \leq C_1 x^{1/\alpha 1}$ holds for constants $C_1 > 0$ and $\alpha > 2$ and every $x \geq 1$,

$$(iii) - \int_0^\infty j(dx) \int_0^x dy \int_y^\infty G(m; z) dm(z) < \infty$$

(iv) $j(x, \infty) \leq C_2 x^{-\beta}$ for constants $C_2 > 0$ and $\beta > 2/\alpha$ and every $x \geq 1$.

Then for every $t \ge 0$ it holds that

$$\frac{1}{\sqrt{\gamma}} \left(\eta_{m,j}(\gamma t) + \gamma t \int_0^\infty G(m; y) j(dy) \right) \xrightarrow{d} B(2\kappa t) \ (\gamma \to \infty).$$
(6.5)

Here B is the standard Brownian motion and $\kappa = -\int_0^\infty j(dx) \int_0^x dy \int_y^\infty G(m;z) dm(z).$

7 Limit theorems for the occupation time of two-sided jumpingin diffusions

In this section, we treat two-sided jumping-in diffusions i.e. Markov processes on \mathbb{R} which behave like $X_{m+,j+}$ while X is positive and like $-X_{m_-,j-}$ while X is negative for two jumping-in diffusions $X_{m+,j+}$ and $X_{m_-,j-}$ and, as soon as the process hit the origin they jump into $\mathbb{R} \setminus \{0\}$ according to jumping-in measure $j_+(dx) + j_-(-dx)$. We denote the process $X_{m_+,j_+;m_-j_-}$. For the precise definition, we need the excursion theory and omit here.

Define $A(t) = \int_0^t \mathbb{1}_{(0,\infty)}(X_{m_+,j_+;m_-,j_-}(s))ds$ for $t \ge 0$. We consider the fluctuation scaling limit of A(t).

Theorem 7.1. Assume the following hold:

- (i) $m_{\pm}(x) \sim -c_{\pm}(\alpha-1)^{-1}x^{1/\alpha-1}K(x)(x \to \infty)$ for constants $\alpha \in (1,2), c_{\pm} \geq 0$ and a slowly varying function K at ∞ , respectively,
- (ii) $\kappa_{\pm} := \int_0^\infty x j(dx) < \infty.$

Then we have

$$f(\gamma)(A(\gamma t) - p\gamma t) \xrightarrow[\gamma \to \infty]{f.d.} (1 - p)c_{+}T(m^{(\alpha)}; \kappa_{+}t) - pc_{-}\widetilde{T}(m^{(\alpha)}; \kappa_{-}t)$$
(7.1)

Here

$$a_{\pm} = -\int_{0}^{\infty} G(m_{\pm}; x) j_{\pm}(dx), \qquad (7.2)$$

$$p = \frac{a_+}{a_+ + a_-},\tag{7.3}$$

$$f(\gamma) = \frac{1}{\gamma^{1/\alpha} K(\gamma)} (a_+ + a_-)^{1/\alpha}, \tag{7.4}$$

 $\widetilde{T}(m^{(\alpha)};t) \stackrel{d}{=} T(m^{(\alpha)};t) \text{ and } T(m^{(\alpha)};t) \text{ and } \widetilde{T}(m^{(\alpha)};t) \text{ are independent.}$

The similar results hold for $\alpha = 1, 2$ and $\alpha > 2$ in some sense by slight modifications of the assumptions, but we omit here.

8 Related studies

8.1 On one-dimensional diffusions(without jumping-in)

Kasahara and Watanabe[6] constructed via stochastic integral the process T(m;t) for speed measures dm with $\int_{0+} m(x)^2 dx < \infty$, which can be regarded as an (renormalized) inverse local time at 0 of diffusions on $(0, \infty)$. More precisely, the process T(m;t) can be represented as follows (See [6, Corollary2.6]):

$$T(m;t) = \lim_{\epsilon \to +0} \int_{\epsilon}^{\infty} \ell(\ell^{-1}(t,0), x) dm(x) + m(\epsilon)t \ (t \ge 0).$$
(8.1)

Here ℓ denotes the local time of a standard Brownian motion. We note that when 0 is a regular boundary, the process $\int_0^\infty \ell(\ell^{-1}(t,0),x)dm(x)$ is the inverse local time at 0 of the diffusion with the speed measure dm. When $m(0+) = -\infty$, it holds that $\int_0^\infty \ell(\ell^{-1}(t,0),x)dm(x) = \infty$ for every t > 0. This is the reason we call T(m;t) a renormalized inverse local time at 0. Under assumptions on the tail behavior of m, they showed the scaling limit of the process T(m;t) exists. They applied these results to the studies of the occupation times of one-dimensional diffusions.

Kotani[7] has revealed that the class of Lévy processes without negative jumps T(m; t) have a one-to-one correspondence to a class of functions which we call spectrally characteristic functions and also showed that the convergence of strings in a certain sense is equivalent to the pointwise convergence of their spectrally characteristic functions.

8.2 On jumping-in diffusions

Feller[2] and Itô[4] have shown that jumping-in diffusions are characterized by the speed measures and the jumping-in measures and gave an explicit representations of their excursion measures.

Yano[10] has studied the scaling limit of jumping-in diffusions. He showed that the scaling limit of a jumping-in diffusion $X_{m,j}$ exists under assumptions on the tail behavior of m and j. We note that our results do not overlap with Yano[10] since we mainly treat the case when the scaling limit of $X_{m,j}$ does not exist.

References

- N. H. Bingham, C. M. Goldie, and J. L. Teugels. *Regular variation*, volume 27 of *Encyclopedia of Mathematics and its Applications*. Cambridge University Press, Cambridge, 1987.
- [2] W. Feller. The parabolic differential equations and the associated semi-groups of transformations. Ann. of Math. (2), 55:468–519, 1952.
- [3] K. Itô. Essentials of stochastic processes, volume 231 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 2006. Translated from the 1957 Japanese original by Yuji Ito.
- [4] K. Itô. Poisson point processes and their application to Markov processes. Springer-Briefs in Probability and Mathematical Statistics. Springer, Singapore, 2015. With a foreword by Shinzo Watanabe and Ichiro Shigekawa.
- [5] Y. Kasahara. Spectral theory of generalized second order differential operators and its applications to Markov processes. Japan. J. Math. (N.S.), 1(1):67–84, 1975/76.
- [6] Y. Kasahara and S. Watanabe. Brownian representation of a class of Lévy processes and its application to occupation times of diffusion processes. *Illinois J. Math.*, 50(1-4):515–539, 2006.
- [7] S. Kotani. Krein's strings with singular left boundary. Rep. Math. Phys., 59(3):305– 316, 2007.
- [8] S. Kotani and S. Watanabe. Krein's spectral theory of strings and generalized diffusion processes. In *Functional analysis in Markov processes (Katata/Kyoto, 1981)*, volume 923 of *Lecture Notes in Math.*, pages 235–259. Springer, Berlin-New York, 1982.
- [9] S. Watanabe. Generalized arc-sine laws for one-dimensional diffusion processes and random walks. In *Stochastic analysis (Ithaca, NY, 1993)*, volume 57 of *Proc. Sympos. Pure Math.*, pages 157–172. Amer. Math. Soc., Providence, RI, 1995.
- [10] K. Yano. Convergence of excursion point processes and its applications to functional limit theorems of Markov processes on a half-line. *Bernoulli*, 14(4):963–987, 2008.