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1 Introduction

In this paper, we consider the fluctuation scaling limit of the inverse local times ofjumping‐
in diffusions. For a strong Markov process X on the half line  [0, \infty ), we call it jumping‐in
diffusion process if it is a natunal scale diffusion up to the first hitting time of  0 and,
as soon as  X hits  0,  X jumps into the interior  (0, \infty) and starts afresh. It was shown
by Feller[2] and Itô[4] that such a process can be characterized by the speed measure
 dm which characterizes the diffusion on the interior  (0, \infty) and the jumping‐in measure  j
which characterizes the law of jumps from the boundary  0 to the interior  (0, \infty) . Hence
we denote this process by  X_{m,j}.

Let us consider the inverse local time  \eta_{m,j} at  0 of a jumping‐in diffusion  X_{m,j} . We
propose a condition on  m and  j for the existence of the following fluctuation scaling limit:

  \frac{1}{\gamma^{1/\alpha}K(\gamma)}(\eta_{m,j}(\gamma t)-b\gamma t)
\vec{\gammaarrow\infty}dT(t) in  \mathbb{D} (1.1)
for constants  b\geq 0,  \alpha\in(0,2 ] and a slowly varying function  K(\gamma) at  \infty . Here  T(t)
denotes a  \alpha‐stable process without negative jumps and  \mathbb{D} denotes the space of càdlàg
paths from  [0, \infty ) to  \mathbb{R} equipped with Skorokhod’s  J_{1} ‐topology.

Applying the results above, we show the fluctuation scaling limit of the occupation
time of two‐sided jumping‐in diffusions. Two‐sided jumping‐in diffusions are constructed
by connecting two jumping‐in diffusion processes with respect to  0 . Let  X be such a
process and define  A(t)= \int_{0}^{t}1_{(0,\infty)}(X_{s})ds . We give conditions for the existence of the
limit distribution   \frac{1}{t}A(t) as   tarrow\infty . Moreover, in the case where the limit degenerate, that
is,

  \frac{1}{t}A(t)\vec{tarrow\infty}Pp\in(0,1) (1.2)
holds, we show the scaling limit of the fluctuation around the limit constant, that is, the
following limit:

  \frac{1}{\gamma^{1/\alpha}K(\gamma)}(A(\gamma t)-p\gamma t)
\vec{\gammaarrow\infty}dZ(t) (1.3)
for a process  Z(t) .

Let us explain the difficulty and our methods to overcome it. It was shown by Feller[2]
and Itô[4] that the excursion measure of the process  X_{m,j} is represented as

 n_{m,j}(A)= \int_{0}^{\infty}P_{x}^{m}(A)j(dx) . (1.4)
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Here  P_{x}^{m}(x\in(0, \infty)) is the law of the   \frac{d}{dm}\frac{d^{+}}{dx} ‐diffusion starting from  x and killed at  0 and

  \frac{d^{+}}{dx} denotes the right‐differentiation operator. We denote the law of  X_{m,j} starting from  0

by  P . Then the Laplace exponent  \chi_{m,j} of  \eta_{m,j} satisfies the following:

 \chi_{m,j}(\lambda)=-\log P[e^{-\lambda\eta_{m,j}(1)}] (1.5)

 = \int_{0}^{\infty}(1-e^{-\lambda u})n_{m,j}(T_{0}\in du) (1.6)

 = \int_{0}^{\infty}P_{x}^{m}[1-e^{-\lambda T_{0}}]j(dx) (1.7)

where  T_{0} denotes the first hitting time at  0 . Let the function  u=g_{\lambda}(m;\cdot) is the unique,
non‐negative and non‐increasing solution of the equation   \frac{d}{dm}\frac{d^{+}}{dx}u=\lambda u satisfying the

boundary condition  u(0)=1 and   \lim_{xarrow\infty}\frac{d^{+}}{dx}u(x)=0 . It is well‐known that the following
holds (see e.g.[3]):

 g_{\lambda}(m;x)=P_{x}^{m}[e^{-\lambda T_{0}}] . (1.8)

Hence we obtain the following expression:

  \chi_{m,j}(\lambda)=\int_{0}^{\infty}(1-g_{\lambda}(m;x))j(dx)(\lambda>0) . (1.9)

When the boundary  0 for  dm is regular, we have a unique solution  u=\varphi_{\lambda} to

  \frac{d}{dm}\frac{d^{+}}{dx}u=\lambda u, u(0)=1 , u^{+}(0)=0 , (1.10)

and a unique solution  u=\psi_{\lambda} to

  \frac{d}{dm}\frac{d^{+}}{dx}u=\lambda u, u(0)=0, u^{+}(0)=1 (1.11)

and we can exploit the two functions  \varphi_{\lambda} and  \psi_{\lambda} to analyze the   \frac{d}{dm}\frac{d^{+}}{dx} diffusion. When
the boundary  0 for  dm is exit, we still have  \psi_{\lambda} but do not  \varphi_{\lambda} . We introduce functions
 \varphi_{\lambda}^{d}(d\in \mathbb{N}) which play the role corresponding to  \varphi_{\lambda} and satisfies the boundary condition
which we call modified Neumann boundary condition. Then for a suitable constant  c_{\lambda}^{d}(m) ,
we obtain the following:

 g_{\lambda}(m;x)=\varphi_{\lambda}^{d}(m;x)-c_{\lambda}^{d}(m)\psi_{\lambda}(m;
x) . (1.12)

Hence for a sequence of speed measures  \{dm_{n}\}_{n} , jumping‐in measures  \{j_{n}\}_{n} and constants
 \{b_{n}\}_{n} , the Laplace exponent  \overline{\chi}_{m_{n},j_{n},b_{n}} of the process  \eta_{m_{n},j_{n}}(t)-b_{n}t is the following:

 \overline{\chi}_{m_{n},j_{n},b_{n}}(\lambda)=\chi_{m_{n},j_{n}}(\lambda)-b_{n}
\lambda (1.13)

 =( \int_{0}^{\infty}(1-\varphi_{\lambda}^{d}(m_{n};x))j_{n}(dx)-b_{n}\lambda)+
c_{\lambda}^{d}(m_{n})\int_{0}^{\infty}\psi_{\lambda}(m_{n};x)_{j_{n}} (  dx ).

(1.14)

Therefore our study is reduced to the proper choice of  \{b_{n}\}_{n} and the analysis of the two
terms in RHS of (1.14).
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2 Notations

Definition 2.1. We say that  m :  (0, \infty)arrow \mathbb{R} is a string when  m is strictly increasing
and right‐continuous and satisfies   \int_{0+}xdm(x)<\infty . We denote the set of all strings as
 \mathcal{M}.

Definition 2.2. For  m\in \mathcal{M} , we define as follows:

 G(m;x)= \int_{0}^{x}m(y)dy(x\geq 0) , (2.1)

 \overline{m}(x)=m(x)-m(1)(x>0) , (2.2)

 G^{1}(m;x)= \int_{0}^{x}\overline{m}(y)dy(x\geq 0) . (2.3)

 G^{k}(m;x)=- \int_{0}^{x}dy\int_{y}^{1}G^{k-1}(m;z)dm(z)(k\geq 2, x\geq 0) . (2.4)

Remark 2.3. For every  k\geq 2 , the function  G^{k}(m;x) is finite for every  x\geq 0.

We introduce a subset of  \mathcal{M} as follows.

Definition 2.4. Define

 \mathcal{M}_{0}=\{m\in \mathcal{M}|_{xarrow+0}1\dot{{\imath}}mm(x)>-\infty\} . (2.5)

We introduce hierarchy in strings.

Definition 2.5. For  m\in \mathcal{M}_{0} , we define  d(m)=0 and for  m\in \mathcal{M}\backslash \mathcal{M}_{0}

 d(m)= \inf\{k\geq 1 \int_{0}^{1}(-1)^{k}G^{k}(m;x)dm(x)<\infty.\} (2.6)

where  inf\emptyset=\infty.

Definition 2.6. For  \alpha\in(0,2) we define

 m^{(\alpha)}(x)=\{\begin{array}{ll}
(1-\alpha)^{-1}x^{1/\alpha-1},   if \alpha\in(0,1) ,
\log x,   if \alpha=1,
-(\alpha-1)^{-1}x^{1/\alpha-1},   if \alpha\in(1,2) .
\end{array} (2.7)

Remark 2.7. The measure  dm^{(\alpha)} is the speed measure of the  (2-2\alpha) ‐dimensional Bessel
process under the natural scale.

3 The Krein‐Kotani correspondence

For strings  m with  d(m)\leq 1 , we can apply the Krein‐Kotani correspondence established
in Kotani[7]. It is an extension of the Krein correspondence which has been used in the
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studies of one‐dimensional diffusions(see e.g. Kotani and Watanabe[8] or Kasahara[5]).
We briefly summarize the Krein‐Kotani correspondence.

If a function  w :  \mathbb{R}arrow[0, \infty] is right‐continuous, non‐decreasing and satisfies

  \int_{-\infty}^{a}x^{2}dw(x)<\infty (3.1)

for some  a\in \mathbb{R} , we call it Kotani’s string. For a Kotani’s string  w and  \lambda>0 , we consider
the solution  u=f_{\lambda} to the following ODE:

  \frac{d}{dw}\frac{d^{+}}{dx}u=\lambda u, u(-\infty)=1 , u^{+}(-\infty)=
0(x<\ell) . (3.2)

Here   \ell=\inf\{x\in \mathbb{R}|w(x)=\infty\} . Then define

 h(w; \lambda)=a+\int_{-\infty}^{a}(\frac{1}{f_{\lambda}(x)^{2}}-1)dx+\int_{a}^{
\ell}\frac{dx}{f_{\lambda}(x)^{2}}(\lambda>0) . (3.3)

for some  a\in \mathbb{R} . Note that the value  h(w;\lambda) is finite for every  \lambda>0 and the function
 h(w;\cdot) does not depend on the choice of  a . Since  h(w;\cdot) is the Herglotz function, for a

constant  \alpha\in \mathbb{R} and a Radon measure  \sigma on  [0, \infty ) such that   \int_{0}^{\infty}\frac{\sigma(d\xi)}{\xi^{2}+1}<\infty , we have the
following expression:

 h(w; \lambda)=\alpha+\int_{0-}^{\infty}(\frac{1}{\xi+\lambda}-\frac{\xi}
{\xi^{2}+1})\sigma(d\xi) . (3.4)

We note that the measure  \sigma in RHS of (3.4) is the spectral measure of the differential
operator −   \frac{d}{dw}\frac{d^{+}}{dx} . Hence we call  h(w;\cdot) the spectrally characteristic function of  w . Let  \mathcal{H}

be the set of functions which are expressed in the form of RHS of (3.4) for a constant  \alpha\in \mathbb{R}

and a Radon measure  \sigma on  [0, \infty ) such that   \int_{0}^{\infty}\frac{\sigma(d\xi)}{\xi^{2}+1}<\infty . It was proved in [7] that the
map {Kotani’s string}  \ni w\mapsto h(w;\cdot)\in \mathcal{H} is bijective. We call this correspondence the
Krein‐Kotani correspondence. The following theorem shown in Kasahara and Watanabe
[6] which asserts a kind of continuity of the Krein‐Kotani correspondence is important.

Theorem 3.1. (Kasahara and Watanabe [6, Theorem 2.9])
Let  m_{n},  m\in \mathcal{M} with  d(m_{n}),  d(m)\leq 1 and  \sigma\geq 0 . Assume the following holds:

(i)   \lim_{narrow\infty}m_{n}(x)=m(x) for every continuity point  x of  m,

(ii)   \lim_{xarrow+0}\lim\sup_{narrow\infty}|\int_{0}^{x}m_{n}(y)^{2}dy-\sigma^{2}|=
0.

Then we have

  \lim_{narrow\infty}h_{n}(m_{n}^{*};\lambda)=h(m^{*};\lambda)-\sigma^{2}\lambda for every  \lambda>0 . (3.5)

Kotani’s strings and our strings are related as follows:
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Proposition 3.2. For  m\in \mathcal{M} , we define its dual string

 m^{*}(x)= \inf\{y>0|m(y)>x\}(x\in \mathbb{R}) . (3.6)

Then the following holds:

 d(m)\leq 1\Rightarrow m^{*} is a Kotani’s string. (3.7)

Remark 3.3. The set of strings which are dual strings of  m\in \mathcal{M} with  d(m)\leq 1 is that
of Kotani’s strings which are continuous.

Proposition 3.4. (Kotani [7, Section 4]) For  m\in \mathcal{M} with  d(m)\leq 1 , the function
 \lambda h(m^{*};\lambda) is the Laplace exponent of a Lévy process without Gaussian part and negative
jumps.

We denote the Lévy process whose Laplace exponent is  \lambda h(m^{*};\lambda) as  T(m;t) .

4 Representation of  c_{\lambda}^{1}(m)

By the help of the Krein‐Kotani correspondence and its continuity, we obtain the following
explicit representation of  c_{\lambda}^{1}(m) . This is an extension of a well‐known result in the case
the boundary  0 is regular.

Theorem 4.1. Let  m\in \mathcal{M} with  d(m)\leq 1 and  \lambda>0 . It holds that

 c_{\lambda}^{1}(m)=\lambda h(m^{*};\lambda)-\lambda m(1) . (4.1)

5 Convergence of  c_{\lambda}^{d}(m_{n})

For strings  m with  d(m)\geq 2 , we no longer expect the explicit representation of  c_{\lambda}^{d}(m) .
However, when a sequence of strings  \{m_{n}\}_{n} degenerates in a good manner, we can show
the degenerate of the sequence  \{c_{\lambda}^{d}(m_{n})\}_{n}.

Definition 5.1. For  m_{n}\in \mathcal{M} , we denote  m_{n}arrow 0G when the following hold:

(i)   \lim_{narrow\infty}m_{n}(x)=0 for every  x>0,

(ii)   \lim_{narrow\infty}\int_{0}^{1}ydm_{n}(y)=0,

(iii)   \lim_{narrow\infty}\int_{0}^{1}G^{d}(m_{n};x)dm_{n}(x)=0 for some integer  d\geq 1.

Theorem 5.2. Let  m_{n}\in \mathcal{M} . Suppose  m_{n}arrow 0G . Then there exists an integer  N\geq 0 and
for every  d\geq N , the following holds:

 narrow\infty 1\dot{{\imath}}mc_{\lambda}^{d}(m_{n})=0 . (5.1)
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6 Scaling limit of inverse local times

By using the results in Section 4, 5, we can obtain the desired results on fluctuation
scaling limits of inverse local times.

Theorem 6.1  (\alpha\in(1,2)) . Let  m\in \mathcal{M} with  d(m)\leq 1,  j be a Radon measure on  (0, \infty)
and  K be a slowly varying function at  \infty . Suppose the following hold:

(i)  X_{m,j} exists,

 (li)m(x)\sim-(\alpha-1)^{-1}x^{1/\alpha-1}K(x)(xarrow\infty) for a constant  \alpha\in(1,2) ,

(iii)   \int_{0}^{\infty} xj  (dx)<\infty.

Then if we take  b=- \int_{0}^{\infty}G(m;x)j(dx) , we have

  \frac{1}{\gamma^{1/\alpha}K(\gamma)}(\eta_{m,j}(\gamma t)-b\gamma t)
\vec{\gammaarrow\infty}dT(m^{(\alpha)};\kappa t)  on  \mathbb{D} . (6.1)

Here   \kappa=\int_{0}^{\infty} xj(dx).

Theorem 6.2  (\alpha=1) . Let  m\in \mathcal{M} with  d(m)\leq 1,  j be a Radon measure on  (0, \infty) and

 K be a slowly varying function at  \infty such that  K and  1/K are locally bounded on  [0, \infty ).
Suppose the following conditions hold:

(i)  X_{m,j} exists,

(ii)   \lim_{\gammaarrow\infty}\frac{m(\gamma x)-m(\gamma)}{K(\gamma)}=\log x for every  x>0.,

 (ii\dot{i})j(x, \infty)\leq Cx^{-1-\delta} for constants  C>0 and  \delta\in(0,1) and every  x\geq 1.

Then if we take  b_{\gamma}=- \int_{0}^{\infty}(G(m;x)-m(\gamma)x)j(dx) , we have

  \frac{1}{\gamma K(\gamma)}(\eta_{m,j}(\gamma t)-b_{\gamma}\gamma t)
\vec{\gammaarrow\infty}dT(m^{(1)};\kappa t)  on  \mathbb{D} . (6.2)

Here   \kappa=\int_{0}^{\infty} xj(dx).

Theorem 6.3  (\alpha=2) . Let  m\in \mathcal{M} with  d(m)\leq 1 and  j be a Radon measure on  (0, \infty) .

Suppose the following hold:

(i)  X_{m,j} exists,

(ii) The function  K( \gamma)=\int_{0}^{\gamma}m(y)^{2}dy varies slowly at  \infty,

(iii)  - \int_{0}^{\infty}j(dx)\int_{0}^{x}dy\int_{0}^{y}G(m;z)dm(z)<\infty,

 (lv) \int_{1}^{\infty}|G(m;x)|j(dx)<\infty.
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Then if we take  b=- \int_{0}^{\infty}G(m;x)j(dx) , we have

  \frac{1}{\sqrt{\gamma K(\gamma)}}(\eta_{m,j}(\gamma t)+b\gamma t)
\vec{\gammaarrow\infty}dB(2\kappa t)  on  \mathbb{D} . (6.3)

Here

  \kappa=\int_{0}^{\infty}(x+\frac{1}{K(\infty)}\int_{0}^{x}dy\int_{0}^{y}G(m;z)
dm(z))j (  dx ). (6.4)

Theorem 6.4  (\alpha>2) . Let  m\in \mathcal{M} with   d(m)<\infty and let  j be a Radon measure on

 (0, \infty) . Suppose the following hold:

(i)  X_{m,j} exists,

 (i\dot{i})-m(x)\leq C_{1}x^{1/\alpha-1} holds for constants  C_{1}>0 and  \alpha>2 and every  x\geq 1,

(iii)  - \int_{0}^{\infty}j(dx)\int_{0}^{x}dy\int_{y}^{\infty}G(m;z)dm(z)<\infty,

(iv)  j(x, \infty)\leq C_{2}x^{-\beta} for constants  C_{2}>0 and  \beta>2/\alpha and every  x\geq 1.

Then for every  t\geq 0 it holds that

  \frac{1}{\sqrt{\gamma}} (\eta_{m,j}(\gamma t)+\gamma t\int_{0}^{\infty}G(m;y)j
(dy)) arrow dB(2\kappa t)(\gammaarrow\infty) . (6.5)

Here  B is the standard Brownian motion and   \kappa=-\int_{0}^{\infty}j(dx)\int_{0}^{x}dy\int_{y}^{\infty}G(m;z)dm(z) .

7 Limit theorems for the occupation time of two‐sided jumping‐
in diffusions

In this section, we treat two‐sided jumping‐in diffusions i.e. Markov processes on  \mathbb{R} which
behave like  X_{m+,j+} while  X is positive and like  -X_{m_{-},j-} while  X is negative for two
jumping‐in diffusions  X_{m_{+},j+} and  X_{m_{-},j-} and, as soon as the process hit the origin they
jump into  \mathbb{R}\backslash \{0\} according to jumping‐in measure  j_{+}(dx)+j_{-}(-dx) . We denote the
process  X_{m_{+},j+,m-j-} . For the precise definition, we need the excursion theory and omit
here.

Define  A(t)= \int_{0}^{t}1_{(0,\infty)}(X_{m_{+},jm_{-},j-}+)(s) )  ds for  t\geq 0 . We consider the fluctuation
scaling limit of  A(t) .

Theorem 7.1. Assume the following hold:

(i)  m_{\pm}(x)\sim-c_{\pm}(\alpha-1)^{-1}x^{1/\alpha-1}K(x)(xarrow\infty) for constants  \alpha\in(1,2),  c\pm\geq 0 and a
slowly varying function  K at  \infty , respectively,

(ii)  \kappa\pm  := \int_{0}^{\infty} xj(dx)  <\infty.
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Then we have

 f(\gamma)(A(\gamma t)-p\gamma t)\vec{\gammaarrow\infty}fd(1-p)c_{+}
T(m^{(\alpha)};\kappa_{+}t)-pc_{-}\overline{T}(m^{(\alpha)};\kappa_{-}t) (7.1)

Here

 a_{\pm}=- \int_{0}^{\infty}G(m_{\pm};x)j_{\pm}(dx) , (7.2)

 a_{+}

 p=_{\overline{a_{+}+a_{-}}}, (7.3)

 f( \gamma)=\frac{1}{\gamma^{1/\alpha}K(\gamma)}(a_{+}+a_{-})^{1/\alpha} , (7.4)

 \overline{T}(m^{(\alpha)};t)=dT(m^{(\alpha)};t) and  T(m^{(\alpha)};t) and  \overline{T}(m^{(\alpha)};t) are independent.

The similar results hold for  \alpha=1,2 and  \alpha>2 in some sense by slight modifications
of the assumptions, but we omit here.

8 Related studies

8.1 On one‐dimensional diffusions(without jumping‐in)

Kasahara and Watanabe[6] constructed via stochastic integral the process  T(m;t) for
speed measures  dm with   \int_{0+}m(x)^{2}dx<\infty , which can be regarded as an (renormalized)
inverse local time at  0 of diffusions on  (0, \infty) . More precisely, the process  T(m;t) can be
represented as follows (See [6, Corollary2.6]):

 T(m;t)= \lim_{\epsilonarrow+0}\int_{\epsilon}^{\infty}\ell(\ell^{-1}(t, 0), x)
dm(x)+m(\epsilon)t(t\geq 0) . (8.1)

Here  \ell denotes the local time of a standard Brownian motion. We note that when  0

is a regular boundary, the process   \int_{0}^{\infty}\ell(\ell^{-1}(t, 0), x)dm(x) is the inverse local time at
 0 of the diffusion with the speed measure  dm . When   m(0+)=-\infty , it holds that

  \int_{0}^{\infty}\ell(\ell^{-1}(t, 0), x)dm(x)=\infty for every  t>0 . This is the reason we call  T(m;t) a renor‐
malized inverse local time at  0 . Under assumptions on the tail behavior of  m , they showed
the scaling limit of the process  T(m;t) exists. They applied these results to the studies
of the occupation times of one‐dimensional diffusions.

Kotani[7] has revealed that the class of Lévy processes without negative jumps  T(m;t)
have a one‐to‐one correspondence to a class of functions which we call spectrally char‐
acteristic functions and also showed that the convergence of strings in a certain sense is
equivalent to the pointwise convergence of their spectrally characteristic functions.

8.2 On jumping‐in diffusions

Feller[2] and Itô[4] have shown that jumping‐in diffusions are characterized by the speed
measures and the jumping‐in measures and gave an explicit representations of their ex‐
cursion measures.
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Yano[10] has studied the scaling limit of jumping‐in diffusions. He showed that the
scaling limit of ajumping‐in diffusion  X_{m,j} exists under assumptions on the tail behavior
of  m and  j . We note that our results do not overlap with Yano[10] since we mainly treat
the case when the scaling limit of  X_{m,j} does not exist.
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