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A formulation of quasi-regular non-local Dirichlet forms
on Féchet spaces with application to a stochastic
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1 Introduction

We consider a space S that is a real Banach space [P, 1 < p < oo with suitable weights. Let p
be a Borel probability measure on .S. On the real L?(S; i) space, for each 0 < o < 1, we give
an explicit formulation of a-stable type (cf., e.g., section 5 of [Fukushima,Uemura 2012] for
corresponding formula on L*(R?), d < oo) non-local strictly quasi-regular (cf. section 1V-3
of [M,R 92]) Dirichlet forms (o), P(E))) (with a domain D(&(,))), and show the existence
of S-valued Hunt processes properly associated to (£, D(E())). These general theorems
are applied to a stochastic quantization of (a-stable type) Euclidean @3 field on R3.

The objective of the present paper is to announce the above developments that are part
of general (e.g. for 0 < a < 2) and detailed results given in [A,Kagawa,Yahagi,Y 2018] (cf.
also [A,Y 2018]), where the state spaces S are assumed to be either the above 7, 1 < p < oo,
spaces or the direct product RY (with R and resp. N the spaces of real numbers and resp.
natural numbers), both understood as Fréchet spaces, and for each 0 < o < 2, an explicit
formulation of a-stable type non-local quasi-regular (cf. section IV-3 of [M,R 92]) Dirichlet
forms is considered.

2 Markovian symmetric forms individually adapted to
each measure space

The state space S, on which we define the Markovian symmetric forms, is a weighted [P space,

denoted by lé}ﬁl)’ such that, for some p € [1,00) and a weight (53;);eny with 8; > 0,7 € N,

— 1
S =1 = {x=(z1,22,...) eR" : HXH”&;Z») =( E Bilzs|P)r < oo} (2.1)
i=1
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We denote by B(S) the Borel o-field of S. Suppose that we are given a Borel probability
measure p on (S, B(5)). For each i € N, let oyc be the sub o-field of B(S) that is generated
by the Borel sets

B:{XES ’x]‘IEBl,...IanBn}, e #1, ByeB', k=1,...,n, n€N, (2.2)

where B' denotes the Borel o-field of R!, i.e., o is the smallest o-field that includes every B
given by (2.2). Namely, o;c is the sub o-field of B(S) generated by the variables x \ w;, i.e.,
all variables except for the i-th variable x;. For each i € N, let u(- | 0;) be the conditional
probability, a one-dimensional probability distribution-valued o;c measurable function, (u-
every where defined) that is characterized by (cf. (2.4) of [A,R91])

p({x -z € AYNB) = /BH(A | o) p(dx), VA€ B, VB € oy (2.3)
Define
250 = {7 [ 5 R mewswabte and |71 = ( [ 1700P0ax)" <o (24)
and
FC = the y equivalence class of { f )an €N, f € CX(R" - R)} C L(S;p),  (2.5)

where Cj°(R™ — R) denotes the space of real valued infinitely differentiable functions on R™
with compact supports.

On L*(S; u), for any 0 < o < 1 (for the case of general 0 < o < 2, ¢f. [A,Kagawa, Yahagi, Y
2018]), we are going to define the Markovian symmetric forms £, called individually adapted
Markovian symmetric forms of index o relative to the measure p. They have a natural anal-
ogy of the one for a-stable type (non local Dirichlet forms on RY, d < co (cf. Remark 1 given
below and (5.3), (1.4) of [Fukushima,Uemura 2012]), and can be seen as non local analogy
of local classical Dirichlet forms on infinite dimensional topological vector spaces (cf. [A,R
89, 90, 91]). The latter are defined by making use of directional derivatives. The definition
of our forms is as follows: Firstly, for each 0 < o < 1 and ¢ € N, and for the variables
v,y € RN x = (zy,..., 21,7, Tit1,...) € S and x\z; = (21,...,Ti 1, Tit1,...), We
consider the bilinear expression

(I)oz(u7v; Yi, yvi7x \ IZ)
1

lyi — yilo+!

X{’U(.’L'l, e ,.%'i,17yi,$i+1, .. ) — ’U(.’L’l, N ,xi,hy;,xiﬂ, e )}, (26)

!
X {u(l’h s T, Y Tigy ) — W Tty Yy T - )}

and set
5((2)(u7 v) = / { / Lyirany () P, v; s, 0, x \ @) p(dy; | 03c) }/L(dx), (2.7)
s VR
Eo(u,v) = ZE(@)(u,v). (2.8)

1€N



where Ijy denotes the indicator function. For y; # y;, (2.6) is well defined for any real valued
B(S)-measurable functions u and v. For the Lipschiz continuous functions a € C§°(R" —
R) € FC{° resp. v € CP(R™ — R) € FC§°, n,m € N which are representations of
u € FC° resp. v € FC§°, n,m €N, (2.7) and (2.8) are well defined (the right hand side
of (2.8) has only a finite number of sums). In Theorem 1 given below we see that (2.7) and
(2.8) are well defined for FC§°, the space of p-equivalent class.

Remark 1~ We can also derive the following equivalent expressions for 5(ia) (u,v).

E(i))(u, )

(a

/ / {/ Liyitasy Pa(u, v5 i, 4, %\ 7) /L(dyz' | Uic) }M(dmi ’ O'ic) p(dx)
sJr L JRr
= /S{/R Tty @alu, 0395, 47, % \ @) p(dy; |0ic)u(dy§\oic)}u(dx) (2.9)

where p(d(x \ x;)) is the marginal probability distribution of the variable x \ x;, i.e., for any
A € 0, /u(d(x\xz)) :/IR(azi)IA(x\xi)u(dx). The third and fourth formulas give
A s

more symmetric definitions for S(((i))(uw) with respect to the variables y; and x; (analogous
to (1.2.1) of [Fukushima 80]). These will be used in section 4

The following is the main theorem on the closability part of this paper.

Theorem 1 The symmetric non-local forms €y, 0 < a < 1 given by (2.8) are

i) well-defined on FCG°;

i)  Markovian;

iti)  closable in L*(S; ).

For each 0 < o < 1, the closed extension of £ is denoted by (£a), D(E(a))) with the domain
D(&wy), which is a non-local Dirichlet form on L*(S; ).

Moreover it holds that 1 € D(Ey).

3 Proof of Theorem 1.

Suppose that 0 < a <1
For the statement i), we have to show that
i-1)  for any real valued B(S)-measurable function u on S, such that u = 0, p — a.e., it
holds that &£ (u, u) = 0 (cf. (3.8) given below), and
i-2)  for any u,v € FC°, there corresponds only one value £ (u,v) € R,
For the statement ii), we have to show that (cf. [Fukushima 80]) for any ¢ > 0 there exists a
real function p.(t), —oo < t < 0o, such that ¢ (t) = ¢, vVt € [0,1], —e < @ (t) < 1+¢, Vt €
(—00,00), and 0 < @ (¥') — @ (t) <t —t for t < t', such that for any u € FC§ it holds that
©c(u) € FCG° and

Etw (), 9u(w) < Eqoy (). (3.)
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For the statement iii), we have to show the following: For a sequence {u, }nen, u, € FC°,
n e N, if

Tim g 22540 = 0, (3.2)
and
lm  Eay(Un — U, Un — Up) = 0, (3.3)
n,m—+00
then
lim £y (un, un) = 0. (3.4)
n—oo

i-1) can be seen as follows:
For each i € N and any real valued B(.S)-measurable function w, note that for each € > 0,

[{E<‘wz*yw‘}(yl) ]K(yt)q)fl(u U3 Yiy Tjy X \ xl)

defines a B(S x R)-measurable function. Here we use an extension of the function

D, (u, u; y;, i, x \ 2;), for v =u, x = x;, defined by (2.6) to a general B(S)-measurable func-

tion u (instead of a function in FC§°). B(SxR) is the Borel o-field of SxR. x = (z;,i € N) €

S and y; € R. Then, for any compact subset K of R, 0 < Tgecio,—yt () Tre (1) P (w, w5 vi, T4, X\
x;) converges monotonically to Iy, 2,3 (1) P, w; Y, 25, x\ 2;) as K 1 R and € | 0, for every

yi € R, x € 5, and by the Fatou’s Lemma, we have

/ {/ Tyitay (U) o (u, w595, 3, %\ ) o dlys | aic)}u(dx) (3.5)
s LR
= /lim inf lim inf {/ Ttecioiut W) Tre (yi) Po(w, w; viy i, %\ ;) /L(dyi | Uq‘,c) } p(dx)
s KIR 0 -
< lim inf lim iIlf/ {/ Liectoi—yey ) Tic (i) Po(u, w; v, i, x \ @) p(dy; ‘ Uz'c)} p(dx),
KR do Jo LJr

Ik denotes the indicator function of K. Through the definition of the conditional probability
distributions and conditional expectations, we see that, for any ¢ > 0,

1 2
/ {/ Tiectai—yy (W) I (i) T iar (w(zr, .. i, Y igs ) p(dy; ’ Tic) } p(dx)
s UR |yz 371|
1 2
= catl A{AI{L<zzyil}(yi) T (y:) (U(l’h e Tie 1y Yis Tig 1y - - )) ,u(dyi ’ Uic)} w(dx)

1
< ea“/{/ (U($1,~-~7$ih%@iﬂw--))zﬂ(d%‘Uz‘c)}ﬂ(dx)
s UJR
1
:Gaﬁ/ (U(Il,...,$i717I17I1+1,...))2M(dx), (36)
s

and

/S (u(xh o ))2 {/R Loy (i) Ixc (9i) m u(dyi ‘ O'Z'c) } p(dx)
< 60,1+1 /S (u(zy, ... ))Z;L(dx). (3.7)




From (3.6), by making use of the Cauchy Schwaz’s inequality we have

1
‘/ﬂ Ty Tn /I{e<|zi—yi\}(yi)IK(yi)W

U(Il,.v s Li— l7y27x7,+17"')/‘t(dyi‘Jic)}ﬂ(dx)

1
6a+1

< (u(xlw“7:L'i717xi7:[i+1:'-'7:En))2u(dx)‘

T~

By this and (3.6), (3.7), from (3.5) we have proven i-1):

£ (u,u) =0, Vi€N, Eo(u,u) =0,
for any real valued B(S)-measurable function w such that u =0, p-a.e.. (3.8)

In order to show i-2), for 0 < a < 1, take any representation & € C3°(R") of u € FCF°,
n € N. Using 0 < aw+ 1 < 2, it is easy to sce from the definition (2.6) that there exists an
M < oo depending on @ such that

0<®,(a, @y, 9, x\ ;) <M, VYxeS, and Vy;, y; € R. (3.9)

Since, u = @+ 0 for some real valued B(S)-measurable function 0 such that 0 = 0, g-a.e., by
(3.9) together with i-1) (cf. (3.8)) and the the Cauchy Schwarz’s inequality, for u € FCg°,
Ew(u,u) € R, 0 < o < 1, is identical with (@, @) and well-defined (in fact, for only a
finite number of ¢ € N. we have 5;2) (u,u) # 0, cf. also (2.8)). Then by the Cauchy Schwarz’s
inequality i-2) follows.

The proof of ii) is very similar to the one given in section 1 of [Fukushima 80], and it is
omitted.

iii) can be proved as follows (cf. section 1 of [Fukushima 80]): Suppose that a sequence
{ty }nen satisfies (3.2) and (3.3). Then, by (3.2) there exists a measurable set ' € B(S) and
a sub sequence {u,,} of {u,} such that p(N) =10, lim,, oty (x) =0, Vx € S\N.
Define

Upy (X) = U, (x) for x € S\ N, and Up, (x) =0 for x € N.
Then,
Uy (X) = Uy, (X), 11— a.e., lim 4, (x)=0, VxeS. (3.10)

nj—00

By the fact i-1), precisely by (3.8), shown above and (3.10), for each 4, we see that
/s { /Rf{yz;ézz}(yi) D (U, Uy Uiy Tiy X\ ) M(dyi ‘ Uz'c) }N(dx)
- / { / I{y,;ﬁm}(yz) hm @ (un - ’&/nk: Up — ank; Yi, Tiy X \ xt (d% ’ UL°)} dX)

< lgcnjgof/ { / I{yﬁﬁr,} (I) anm Up — ank; Yi, i, X \ xz) /“(dyl ! Uic) }/l(dX)
= lim inf/ { / Liyitait Pa(tn — Upy s Up — Upy s Ui T, X\ 5) ,u(dyi | Oic) }u(dx)
ng—oo fgo R

= lim inf 5(% (U, — Uy, Uy, — Uny,)- (3.11)
NnE—00
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Now, by using the assumption (3.3) on the right hand side of (3.11), we get

lim &) (up,u,) =0, VieN. (3.12)

n—oo

(3.12) together with i) show that for each ¢ € N, 5(@) with the domain FC§° is closable in
L2(S; ). Since, ) = Y e S(@), by using Fatou’s Lemma, from (3.12) and the assumption
(3.3) we see that

E oy (U, un) = Z"{IE;O 5((2) (U = Uy, Uy — ) < T nf Ey (U — Uy, Uy — ) — DS N —> 00.
ieN

m—r0o0

This proves (3.4) (cf. Proposition I-3.7 of [M,R 92] for a general argument of this type).
This completes the proof of iii). Thus, by the closed extension the non-local Dirichlet form
(£0), D(Ewy)) is defined.

In order to see that 1 € D(&(y)), we take n € Cg°(R — R) such that n(z) > 0, |Ln(z)| < 1
for z € R, and n(z) = 1 for |z| < 1; n(z) = 0 for |z| > 3, and define up/ (1, 29,...) =
n(wy - M) [Tise Ir(x;) € FC5° C D(E(y) for each M € N. Then it is possible to show that
(cf. (2.6) and (2.7)) supyren E)(Unr, uar) < oo. Since, limps oo upr(x) = 1 = [[,o; Ie(z:)
point wise, and hence p — a.e., from Lemma 1-2.12 of [M,R 92] we have 1 € D(&(,)). This
complete the proof of Theorem 1. ]

4 Quasi-regularity

For each i € N, we denote by X, the random variable (i.e., measurable function) on
(S,B(S), 1) , that represents the coordinate x; of x = (x1, 9, ... ), precisely,

X, :S3xr—x; €R (4.1)

By making use of the random variable X;, we have the following probabilistic expression:
/ 1p(x;) p(dx) = u(X; € B), for B e B(S). (4.2)
s

Theorem 2 Let 0<a <1, andlet (£, D(Ew))) be the closed Markovian symmetric

form defined through Theorem 1 on the state space S. For S = lfﬂ,!_), 1 < p < oo, if there
1

exists a positive [P sequence {fy;;}ieN, and an 0 < M < oo such that
P, 2 2 1 1
Zﬂip%‘p '/‘(ﬁip|Xz" > M-y p) < 00, (4.3)
i=1

holds, then (£a), D(E(w))) is a (strictly) quasi-regular Dirichlet form.

Proof of Theorem 2. It is possible to verify that the Dirichlet forms (Eq), D(E)))
satisfy the definition of the quasi-regularlity given by Definition 3.1 in section IV-3 of [M,R
92]. Namely, by using the same notions adopted in [M,R 92], we have to certify that the
following i), ii) and iii) are satisfied by (£, P(Ew))):



i)  There exists an Eu)-nest (Dar)men consisting of compact sets.

ii)  There exists a subset of D(E(y)), that is dense with respect to the norm || - || z2(s) + /Eo)-
And the elements of this subset have &£)-quasi continuous versions.

ili)  There exists u,, € D(En)), n € N, having £y-quasi continuous p-versions i, n € N,
and an &y)-exceptional set A" C S such that {a, : n € N} separates the points of S\ V.
The fact that the quasi-regular Dirichlet form (€., D(Ew))) is looked upon a strictly quasi-
regular Dirichlet form can be guaranteed by showing (cf. Proposition V-2.15 of [M,R 92])

iv) 1€ D({w)

In fact, by Theorem 1 in section 2, the above ii) and iii) hold for (£, P(E@))):  since
FCg C C(S = R), and D(Ey)) is the closure of FCG° by Theorem 1, we can take FCG® as
the subset of D(&,)) mentioned in the above ii). Moreover, since FCg® separates the points
S, we see that the above iii) holds. Also, iv) is the last statement of Theorem 1.

Hence, we have only to show that the above i) holds for (£, D(£a))). Equivalently (cf.
Definition 2.1. in section ITI-2 of [M,R 92]), we have to show that there exists an increasing
sequence (Dy)pen of compact subsets of S such that Up,>1D(Ew))p,, is dense in D(Ex))
(with respect to the norm || - || z2(s,0) + /&), Where D(E))p,, is the subspace of D(Ey))
the elements of which are functions with supports belonging to Dj;. For this, by Theorem
1, since D(Eq)) is the closure of FC°, it suffices to show the following:  there exists a
sequence of compact sets

DycS, MeN (44)

and a subset D(Er)) C L*(S;p) that satisfies

D(€w) € | P(Ew)us (4.5)

M>1
for any u € FCg° there exists a sequence {u, }nen, U, € ﬁ(c‘:(a)), n € N, such that

lim u, =u, inD(Eq) with respect to the norm |- ||z2(s,0) + /Ew)- (4.6)

n—oo

5 Associated Markov processes and a standard proce-
dure of application of stochastic quantizations on &’

Let (), P(Ew)): 0 < a < 1, be the family of strictly quasi-regular Dirichlet forms on
L2(S; 1) with a state space S defined by Theorems 2. By Theorem IV-3.5 and Proposition
V-2.15 of [M,R 92] we conclude that to (£, D(E))), there exists a properly associated
S-valued Hunt process

M = (Q F (X))o, (PX)XGSA). (5.1)

A is a point adjoined to S as an isolated point of Sx = S U {A}. Let (T3)i>0 be the
strongly continuous contraction semigroup associated with (€, P(Ew))), and (p,)i=o be the
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corresponding transition semigroup of kernels of the Hunt process (X;);>o. Then for any
u € FC§° C D(E(y) the following holds:

d d
% o (ptu) (X) [J,(dX) = %(T}’U,, 1)L2(5;u) = S(Oz)(Ttua 1) = 0. (52)

By this, we see that

/ (peu) (x) p(dx) = / w(x) p(dx), Vt>0, Yue FC, (5.3)
s s
and hence,

/Px(Xt € B) u(dx) = n(B), VB e B(S). (5.4)

Thus, we have proven the following Theorem 3.

Theorem 3 Let0 < o < 1, and let Eny, D(Ewy)) be a strictly quasi-regular Dirichlet form on
L*(S; ) that is defined through Theorem 2. Then for (), D(Ew))), there exists a properly
associated S-valued Hunt process (cf. Definitions IV-1.5, 1.8 and 1.13 of [M,R 92] for its
precise definition) M defined by (5.1), the invariant measure of which is v (cf. (5.4)).

]

We shall now present some examples.
Consider . . s
B = (o + 1) (<A 1)~ (o 1) (55)
as a pseudo differential operators on &'(R? — R) = S'(R%), where A is the d-dimensional
Laplace operator A. Let

H_,be the completion of &'(R?) with respect to the norm | f||_,, f€ S'(RY), (5.6)
Where ||f||27n - (fa f)*” Wlth
(f.9-n = (H ) (H ) Dwer  f, g€ SR (5.7)

Now, the restriction of H~! to Borel functions in Hy = L*(R? — R) is a strictly posi-
tive self-adjoint operator in L?(R? — R), which is a Hilbert-Schmidt operator and thus a
compact operator. By Hilbert-Schmidt theorem (cf., e.g., Theorem VI 16, Theorem VI 22
of [Reed,Simon 80]) we have an orthonormal base (O.N.B.) of Hy. The spectrum of H~!
consists of eigenvalues 1 > Ay > Ay > -+ > 0, and we have

Y (NP <o, de, {Ahien €l (5.8)
ieN

Let {¢; }ien be the system of normalized eigen functions corresponding to the eigenvalues \;,
i € N (adequately indexed corresponding to the finite multiplicity of each \;), which forms
an O.N.B. of H,.

By the definition (5.6) and (5.7), for each n € NU {0}, we have that

{(\)"pitien isan ON.B. of H_, (5.9)



Thus, by denoting Z the set of integers, by the Fourier series expansion of functions in H,,,,
m € Z (cf. (5.6), (5.7)), such that for f € H,,,

[= Zai()‘;n@i)? with a; = (f7 ()\T%'))m =N"(f, i)z, 1 €N, (5.10)

i€N

we have an isometric isomorphism 7, from H,, to l(QAv_m) defined by, for each m € Z

Tm @ Hm D [ — (\'ag, \'ag,...) € 1(2/\7%)7 (5.11)

where l(z/\v_zm) is the weighted 2 space defined by (2.1) with p = 2, and 3; = \; ™.

By making use of the results given by [Brydges,Fohlich,Sokal 83] and applying the
Bochner-Minlos’s Theorem the @3 Euclidean field measure can be realized as a Borel prob-
ability measure discussed in [Brydges,Fohlich,Sokal 83] v on H_3. We can then define a
probability measure p on l?/\a) such that

w(B)=vor3(B) for Be B(l(QA?)). (5.12)

We set S = Z(Q)\@) in Theorems 1, 2 and 3, with the weight 8; = A\l. We can take 7,2 = A2

in Theorem 2 with p = 2, then, from (5.9) we have

Zﬁz‘%‘ : /«L(@?‘Xi‘ > M- ’Y;i) < Zﬁz‘%‘ = Z(/\i)Q <o (5.13)
i=1 i=1 i=1
(5.15) shows that the condition (4.3) holds.
Thus, by Theorem 2 and Theorem 4, for each 0 < o < 1, there exists an Z?Aa)-valued
Hunt process
M= (Q, .7:, (Xt)tz(h (PX)XESA)7 (514)

associated to the non-local Dirichlet form (£, D(E))). We can then define an H_z-valued
process (V;)i=o such that (Y)iz0 = (775(X4)) -

Equivalently, by (5.13) for X; = (X1(t), Xa(t),...) € Z?A?), Py — a.e., by setting A;(t) such
that A;(t) = A2X;(¢) (cf. (5.11) and (5.12)), then Y; is given by

V=Y AN e) =Y Xit)pi € Hog,  VE=0, Po—ae. (5.15)

€N €N

By (5.4) and (5.13), it is an H_gz-valued Hunt process that can be looked upon a stochastic
quantization with respect to the non-local Dirichlet form (€a), D(Ea))) on L*(H_s,v), that
is defined through (€, D(E))), by making use of 7_3. See [A Kagawa,Yahagi,Y 2018] for
more details.
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