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Identification of random functions from the SFCs

defined by the Ogawa integral regarding regular CONSs

Kiyoiki Hoshino
Graduate School of Science, Osaka Prefecture University

1. abstract

Let (B_{t})_{t\in[0,1]} be a Brownian motion on a probability space  (\Omega, \mathcal{F}, P) . Our concern is
whether and how a noncausal type stochastic differential  dX_{t}=a(t, \omega)dB_{t}+b(t, \omega)dt is
identified from its stochastic Fourier coefficients (SFCs for short)  (e_{n}, dX)  := \int_{0}^{1}\overline{e_{n}(t)}dX_{t}
with respect to a CONS  (e_{n})_{n\in \mathbb{N}} of  L^{2}([0,1];\mathbb{C}) . This problem has been studied by S. Ogawa
and H.Uemura (Ogawa (2013)[9], (2014)[10]; Ogawa,Uemura (2014)[12], [13], (2015)[14]).
In this note we explain the result we obtained on the problem for the stochastic differentials
by the Ogawa integral for regular CONSs. This note is an announcement of the author’s
full paper on this result.

2. Introduction

Let  (e_{n})_{n\in \mathbb{N}} be a CONS of  L^{2}([0, L];\mathbb{C}),  (B_{t})_{t\in[0,\infty)} a one‐dimensional Brownian motion
on a probability space  (\Omega, \mathcal{F}, P) and  a,  b :  [0, L]\cross\Omegaarrow \mathbb{C} jointly‐measurable functions,
which we call random functions. Here we regard the symbol  [0, L] as the infinite interval
 [0, \infty) when   L=\infty . We consider the SFC (short for stochastic Fourier coefficient)

 (e_{n}, dY) := \int_{0}^{L}\overline{e_{n}(t)}a(t)dB_{t}+\int_{0}^{L}
\overline{e_{n}(t)}b(t)dt
of the stochastic differential  dY_{t}=a(t)dB_{t}+b(t)dt with respect to  (e_{n})_{n\in \mathbb{N}} , which is
originally introduced by S.Ogawa  [6]-[8] . We note that the SFC  (e_{n}, dY) doesn’t make
sense unless the stochastic integral   \int_{0}^{L}dB is specified,  \overline{e_{n}}a is stochastic integrable and  \overline{e_{n}}b

is Lebesgue integrable on  [0, L] . Specifically, the SFC is called of Skorokhod type (SFC‐S) if
the stochastic integral   \int_{0}^{L}dB is the Skorokhod integral ([17]) and of Ogawa type (SFC‐O)
if the stochastic integral   \int_{0}^{L}dB is the Ogawa integral ([5], see also Definition 3.1).

We’d like to answer the following questions:

Question 1: Are random functions  a and  b identified from the sequence of SFCs  ((e_{n}, dY))_{n\in \mathbb{N}}
or a subsequence of it? In other words, letting  N=\mathbb{N} or  N\subset \mathbb{N} , is the map which associates
a pair  (a, b) with  ((e_{n}, dY))_{n\in N} injective?
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If yes,

Question 2: how is the inverse map in Question 1? Specifically, is the inverse map
“ constructive in certain senses”?

Furthermore, we also ask the following question for purely mathematical interest:

Question 3: Are the random functions identified “without using information” of the
underlying Brownian motion  (B_{t})_{t\in[0,\infty)} ?

Question 1 was originally posed by Ogawa [9] after a series of studies  [6]-[8] of a stochas‐
tic integral equation of Fredholm type, for Question 1 is closely connected with the existence
and uniqueness of solutions for stochastic integral equations of Fredholm type ([6]‐[8], [10]).
On the other hand, Question 2 is related to the study of the volatility estimation problem
proposed by P. Malliavin et al. ([3],[4]) and conducted by Ogawa and H.Uemura ([10],
[14], [15], [16]). After the publications of [3],[4], the importance of re‐considering Question
1 from the application viewpoint was recognized between Ogawa and Uemura. More pre‐
cisely, they assumed the situation of estimating values of the diffusion coefficient  a from
SFCs as given data. In this situation, you can’t use values of the underlying Brownian
motion nor any other function properly depending on  \omega\in\Omega to estimate  a . Then, in [1]
the notion of constructiveness in a first‐order language was introduced and Question 2 was
taken up from the purely mathematical viewpoint. Further, from the purely mathematical
interest, in the same article the author also introduced the notion of independent identi‐
fication for Brownian motion, which can be said identification without using information
that the underlying Brownian motion is  (B_{t})_{t\in[0,\infty)} , and took up Question 3. See [1] for
the precise meanings of “ constructive in certain senses” and “without using information”
in the questions.

Up to the present, affirmative answers to these questions are given ([9]‐[16],[2],[1]).
The main result in this study is Theorem 5.1 which gives affirmative answers to the

questions in the case that SFC is of Ogawa type as extensions of the previous results in
[14], [15], [2], [1].

2.1. Summary of previous and main results

We roughly summarize the previous and main results. Each result gives an affirmative
answer to the question for a specific diffusion coefficient  a under certain assumptions on
 (e_{n})_{n\in \mathbb{N}} and  b . In Table 1 (resp. Table 2), these specific diffusion coefficients  a identified
from SFC‐Os in the previous results (resp. the main results) are listed. In each table
we distinguish between the case the inverse map in Question 2 is constructive with the
underlying Brownian motion  B and the case it is constructive without it, in a certain
language.
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Table 1  \langle\langle Previous results: Diffusion coefficients  a identified from SFC‐Os  \rangle\rangle

Table 2 { \langle Main results: Diffusion coefficients  a identified from SFC‐Os }}

Remark 1  L=1 except the results in [1].
Remark 2 (C): There exists a CONS  (\chi_{k})_{k\in \mathbb{N}} of  L^{2}([0,1];\mathbb{C}) which satisfies   \sup_{k\in \mathbb{N},t\in[0,1]}|\chi_{k}(t)|<
 \infty and  (\lambda_{k})_{k\in \mathbb{N}} which satisfies   \forall k\lambda_{k}>0,\sum_{k=1}^{\infty}\lambda_{k}<\infty such that  E( \sum_{k=1}^{\infty}\frac{1}{\lambda_{k}}\{\chi_{k}, Z\rangle_{L^{2}[0,1]}
^{2})  <\infty.

Remark 3  \mathscr{L}_{PC}^{*,e} is defined by using the Ogawa integral at the beginning of Section 5.
Remark 4  A+M+W\in \mathscr{L}_{PC}^{*,e}.
Remark 5 For the other notation and terminology used in the tables, we follow those
introduced in Subsection 3.1.

3. Preliminaries

3.1. Notation and terminology

Let  (B_{t})_{t\in[0,\infty)} be a one‐dimensional Brownian motion on a probability space  (\Omega, \mathcal{F}, P) ,
 \lambda the Lebesgue measure on  \mathbb{R} and  L a constant which satisfies   0<L\leq\infty . If   L=\infty

we regard the symbol  [0, L] as the infinite interval  [0, \infty ).  \mathcal{L}([0, L]) denotes the a‐field
of Lebesgue measurable sets on  [0, L] . We say  f :  [0, L]\cross\Omegaarrow \mathbb{C} is a random function
(or measurable stochastic process) on  [0, L] if  f is  \mathcal{L}([0, L])\otimes \mathcal{F}‐measurable and we say
a sequence  (X_{t})_{t\in[0,L]} is  a (weak) stochastic process on  [0, L] if  X_{t} is a  \mathbb{C}‐valued random
variable for each  t\in[0, L] . Note that a random function  f(t) and a stochastic process  X_{t} are
noncausal, namely, not necessarily adapted to some filtration for  (B_{t})_{t\in[0,L]} , for that matter,
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not necessarily  \mathcal{F}^{B} ‐measurable for  t\in[0, L] , where  \mathcal{F}^{B} is the a‐field generated by  (B_{t})_{t\in[0,L]}.
 \{f,  g\rangle=\{f, g\}_{L^{2}([0,L],\mathbb{C})} means the inner product of  f,  g\in L^{2}([0, L];\mathbb{C}) defined by   \int_{0}^{L}\overline{f}gd\lambda,
where  \overline{f} represents the complex conjugate of  f . By  \mathcal{L}_{i}^{r,2} we denote the Sobolev space with
respect to the  H‐derivative  D in  L^{2}((\Omega, \mathcal{F}^{B}, P);L^{2}([0, L]^{i};\mathbb{C})) with differentiability index
 r for each  i\in\{0\}\cup \mathbb{N}.  T_{K}f denotes the Hilbert‐Schmidt integral transform by the kernel

 K\in L^{2}([0, L]^{2};\mathbb{C}) of  f\in \mathcal{L}_{1}^{1,2} defined by  T_{K}f(t)= \int_{0}^{L}K(t, s)f(s)ds . The symbol   \int_{0}^{L}\delta B
and   \int_{0}^{L}dB denote the Skorokhod integral and the Itô integral, respectively. For  z\in \mathbb{C},
 z^{(1)} and  z^{(2)} mean  {\rm Re} z and  {\rm Im} z , respectively, and sgn  z means 1 if   0\leq\arg z<\pi and  -1

otherwise, where  \arg 0  :=0 . Let  \mathbb{N}_{0}=\{0\}\cup \mathbb{N} and  \mathbb{K} be  \mathbb{R} or  \mathbb{C} . In this note, by a CONS
we mean an ordered CONS.

3.2. Ogawa integrals

We give the definition of the Ogawa integral.

Definition 3.1 (Ogawa integral)
Let  f(t)\in L^{0}(\Omega;L^{2} ([0, L] ; \mathbb{C})) and  T\in \mathcal{L}([0, L]) .

(  \varphi‐integrability)
Let  (\varphi_{m})_{m\in \mathbb{N}} be a CONS of  L^{2}([0, L];\mathbb{C}) . We say  f is integrable with respect to  \varphi or
 \varphi‐integrable on  T if

  \sum_{m=1}^{\infty}\langle\varphi_{m}, f1_{T}\rangle\int_{0}^{L}\varphi_{m}dB (1)

converges in probability. In this case, (1) is called the Ogawa integral of  f with respect to
 \varphi or  \varphi‐integral of  f on  T and denoted by   \int_{T}fd_{\varphi}B.
(  C‐integrability)
Let  C be a non‐empty set of CONSs of  L^{2}([0, L];\mathbb{C}) . We say  f is integrable for  C or C‐
integrable on  T if  f is integrable with respect to any  \varphi\in C on  T and the Ogawa integral
  \int_{T}fd_{\varphi}B is independent of the particular choice of  \varphi\in C . In this case,   \int_{T}fd_{\varphi}B is called
the Ogawa integral of  f for  C or  C‐integral of  f on  T and denoted by   \int_{T}fd_{C}B . In par‐

ticular, when  C is  C(\mathbb{K})  := {  \psi|\psi is a CONS of  L^{2}([0, L];\mathbb{K}) } (resp.  \mathcal{R}  :=\{\psi\in C(\mathbb{R})|
  \sup_{M\in N}|\sum_{=1}^{M}\psi_{m}\int_{0}\psi_{m}d\lambda|_{L^{2}[0,L]}
<\infty\}) , we say  f is universally integrable or  u‐integrable for

 L^{2}([0, L];\mathbb{K}) (resp. Ogawa integrable for regular CONSs of  L^{2}[0,  L] ), and   \int_{T}fd_{C}B is called
the universal Ogawa integral or  u‐integral for  L^{2}([0, L];\mathbb{K}) (resp. the Ogawa integral for
regular CONSs of  L^{2}[0, L] ) and denoted by   \int_{T}fd_{u}B (resp.   \int_{T}fd_{*}B ).

3.3. Cross and quadratic variations of random functions

We describe the concept of cross and quadratic variations of random functions, which
have been introduced in Chapters 8 and 9 in [11], respectively.
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Given  -\infty<a\leq b<\infty , put  \Pi[a, b]=  \sqcup\{(t_{0}, t_{1}, \ldots, t_{n})\in[a, b]^{1+n}|a=t_{0}<t_{1}<
 n\in \mathbb{N}_{0}

 <t_{n}=b\} and  l :  \Pi[a, b]arrow \mathbb{N}_{0} such that  l(\triangle)=n , for  \triangle=(t_{0}, t_{1}, \ldots, t_{n})\in\Pi[a, b] . The
function  |\cdot| :  \Pi[a, b]arrow[0, b-a] such that  | A|=\max_{1\leq\dot{J}\leq l(\triangle)}(t_{j}-t_{j-1}) , for  \triangle=(t_{0}, t_{1}, \ldots , t_{n})\in
 \Pi[a, b] is called the mesh on  \Pi[a, b] . Let  f be a map from  \Pi[a, b] to a metric space  (X, d) .
We mean by   \lim_{|\triangle|arrow 0}f(\triangle)=x the assertion that a limit in  X of  f(\triangle) is  x\in X with respect

to  |\triangle| at  0 , namely, the assertion

 \forall\epsilon>0\exists\delta>0\forall\triangle\in\Pi[a, b] 
(|\triangle|<\deltaarrow d (f(\triangle), x) <\epsilon) .

Definition 3.2 (cross and quadratic variations)

Let  X,  Y :  [0,1]arrow L^{0}(\Omega;\mathbb{C}),  t\in[0,1] and set  S_{\triangle}(X, Y)= \sum_{j=1}^{l(\triangle)}\overline{(X_{t_{j}}-X_{t_{j}-1})
}(Y_{t_{j}}-Y_{t_{j}-1})
for  \triangle=(t_{0}, \ldots, t_{n})\in\Pi[0, t] . If

  \lim_{|\triangle|arrow 0}S_{\triangle}(X, Y) (2)

converges in probability, i.e. in  L^{0}(\Omega) , we call (2) the cross variation at  t of  X and  Y and
denote it by  \langleX,  Y\rangle_{t} . Moreover, if {X,  X\rangle_{t} exists, it is called the quadratic variation at  t

of  X and denoted by  [X]_{t}.

4. Definition of SFC‐O

From now to the end of this note, let  (e_{n})_{n\in \mathbb{N}} be a CONS of  L^{2}([0, L];\mathbb{C}),   a\in L^{0}([0, L]\cross
 \Omega;\mathbb{C}) and  b\in L^{0}(\Omega;L^{2}([0, L];\mathbb{C})) . We state the definition of SFC‐O of a stochastic

differential with respect to  (e_{n})_{n\in \mathbb{N}} . Let  C be a non‐empty set of CONSs of  L^{2}([0, L];\mathbb{C}) .

Definition 4.1 (SFC‐OC of stochastic differential)

Suppose  \overline{e_{n}}a is integrable for  C for every  n\in \mathbb{N} . We define the n‐th SFC‐OC  (e_{n}, d_{C}Y) of
the stochastic differential  d_{C}Y_{t}=a(t)d_{C}B_{t}+b(t)dt ,  t\in[0, L] with respect to  (e_{n})_{n\in \mathbb{N}} by

 (e_{n}, d_{C}Y) := \int_{0}^{L}\overline{e_{n}(t)}d_{C}Y_{t}=\int_{0}^{L}
\overline{e_{n}(t)}a(t)d_{C}B_{t}+\int_{0}^{L}\overline{e_{n}(t)}b(t)dt
In particular, in the case of  b=0,  (e_{n}, d_{C}Y)=(e_{n}, a d_{C}B) is also called the SFC‐OC of
 a . Besides, when  C=\{\varphi\},  \mathcal{R} or  C(\mathbb{K}) , SFC‐OC is called  SFC-O_{\varphi} ,  SFC-O_{*} or  SFC-O_{u},
respectively.

5. Identification of random functions from  SFC-O_{*}s

In this section, we explain the main result about identification of random functions
from  SFC-O_{*}' s . Hereafter, we assume  L=1 , real and imaginary parts of each  e_{n} are of

99



100

bounded variation. Let  (\mathcal{F}_{t})_{t\in[0,1]} be a filtration for  (B_{t})_{t\in[0,1]} and put  L_{ad}^{0}(\Omega;L^{2}[0,1])=
{  f\in L^{0}(\Omega;L^{2}([0,1];\mathbb{C}))|f is  (\mathcal{F}_{t})_{t\in[0,1]} ‐progressively measurable}. As subsets of the
linear space  L^{0}([0,1]\cross\Omega)=L^{0}([0, L]\cross\Omega;\mathbb{C}) , we set

 \mathscr{L}P
 *

če  = \{a\in L^{0}([0,1]\cross\Omega)|(\int_{0}^{t}ad_{*}B=\sum_{n=1}^{\infty}\int_
{0}^{t}e_{n}d\lambda (  e_{n} , ad.B) in prob.

  \int_{0}^{t}|a|^{2}d\lambda=[\int_{0}. a d_{*}B]_{t},
  \int_{0}^{t\wedge s}ad\lambda=\langle\int_{0} ad.B,  B_{\wedge s}\rangle_{t})\forall s,  t\in[0,1]\}

and  \mathscr{L}=\mathcal{A}+\mathcal{M}+\mathcal{W} , where

 \mathcal{A}= {  a\in L^{0}([0,1]\cross\Omega)|{\rm Re} a,  {\rm Im}  a are of bounded variation a.s. },

  \mathcal{M}=\{\int_{0}fdB|f\in L_{ad}^{0}(\Omega;L^{2}[0,1])\},
  \mathcal{W}=\{\int_{0}f\delta B|f\in \mathcal{L}_{1}^{2,2}\}+ span   \{T_{K}f|f\in \mathcal{L}_{1}^{1,2},\sup_{t\in[0,1]}|K(t, \cdot)|_{L^{2}[0,1]}
<\infty\}.

First, we present a necessary and sufficient condition for a random function in  \mathscr{L} to be
identified from SFC‐Os.

Proposition 5.1

For any  a\in \mathscr{L} we have

(a) nl arrowım  \infty\int0l  v_{n}ad_{*}B=0 in probability for any sequence  (v_{n})_{n\in \mathbb{N}} of functions on  [0,1] of
bounded variation which converges to  0 in  L^{2}([0,1];\mathbb{R}) .

In particular, we have

(b)  \mathcal{P}((e_{n}, d_{*}Y))_{n\in \mathbb{N}}(t)  :=N arrow\infty 1.\dot{{\imath}}.p.\sum_{n=1}^{N}\int_{0}^{t}e_{n}
d\lambda(e_{n}, d_{*}Y)=Y_{t},  \forall t\in[0,1],

where  d_{*}Y denotes the stochastic differential  d_{*}Y_{t}=a(t)d_{*}B_{t}+b(t)dt.

Corollary 5.1

For  \mathscr{S}\subset \mathscr{L} and a dense subset  S of  [0,1] and a map  h over  \mathscr{S} , the following are equivalent:

(i)  h(a) is identified for  a\in \mathscr{S} from  ((e_{n}, d_{*}Y))_{n\in \mathbb{N}}.

(ii)  h(a) is identified for  a\in \mathscr{S} from  (Y_{t})_{t\in S}.

Here  d_{*}Y denotes the stochastic differential  d_{*}Y_{t}=a(t)d_{*}B_{t}+b(t)dt.
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Remark Refer to [1] for the precise meanings of the statements (i) and (ii).

Next, we introduce the space  Q_{c} of weak stochastic processes with continuous cross
variation processes, defined by

 Q_{c}=\{X:[0,1]arrow L^{0}(\Omega;\mathbb{K})|\exists\hat{X}\in L^{0}(\Omega;L^
{2}([0,1];\mathbb{K}))\forall s,  t\in[0,1]

 [X]_{t}= \int_{0}^{t}|\hat{X}|^{2}d\lambda and  \langle B.\wedge s,   X \rangle_{t}=\int_{0}^{t\wedge s}\hat{X}d\lambda }.
Proposition 5.2

 Q_{c} is a subspace of the vector space of  \mathbb{K}‐valued weak stochastic processes  X :  [0,1]arrow
 L^{0}(\Omega;\mathbb{K}) .

Corollary 5.2

 \mathscr{L}_{PC}^{*,e} is a linear space.

Proposition 5.3

The following hold for  f,  g\in \mathscr{L} :

  \int_{0}^{t}gd\lambda=\langle B, \int_{0}.gd_{*}B\rangle_{t} , (3)

and

  \int_{0}^{t}\overline{f}gd\lambda=\langle\int_{0}. fd_{*}B, \int_{0}. gd_{*}
B\rangle_{t} , (4)

more generally.

Corollary 5.3

 \mathscr{L}\subset \mathscr{L}_{PC}^{*,e}.

Now, we describe the main theorem.

Theorem 5.1

Assume real and imaginary parts of each  e_{n} are of bounded variation. Let  \mathscr{L}_{PC}^{*,e} and  \mathscr{L}

be the linear spaces defined at the beginning of this section and justified in Corollary 5.2.
Let  \mathcal{P} be the map defined in Proposition 5.1 and  \mathcal{L}_{0} the first‐order language defined in [1].
Given  a\in L^{0}([0,1]\cross\Omega;\mathbb{C}) and  b\in L^{0}(\Omega;L^{2} ([0,1] ; \mathbb{C})) , the following two assertions hold:

(Assertion 1)

Suppose the following conditions 1 and 2 on  a :

1.  a^{(1)}={\rm Re} a\in \mathscr{L}_{PC}^{*,e}.

2.  a^{(2)}={\rm Im} a\in \mathscr{L}_{PC}^{*,e}.
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Then, letting  d_{*}Y  :=a(t)d_{*}B+b(t)dt , the following hold:

(A)  a is identified constructively in  \mathcal{L}_{0} and  B from  ((e_{n}, d_{*}Y))_{n\in \mathbb{N}} by

 a(t)= \frac{d}{dt}\langle B, \mathcal{P}((e_{n}, d_{*}Y))_{n\in \mathbb{N}}
\rangle_{t}.
(B)  |a^{(j)}|,  j\in\{1,2\},  a^{(1)}a^{(2)} and (sgn  a )  a are identified constructively in  \mathcal{L}_{0} and inde‐

pendently for Brownian motion from  ((e_{n}, d_{*}Y))_{n\in \mathbb{N}} by

 |a^{(j)}|(t)=( \frac{d}{dt}[\mathcal{P}((e_{n}, d_{*}Y))_{n\in \mathbb{N}}^{(j)
}]_{t})^{\frac{1}{2}}, j\in\{1,2\},
 a^{(1)}a^{(2)}(t)= \frac{d}{dt}\langle \mathcal{P}((e_{n}, d_{*}Y))_{n\in 
\mathbb{N}}^{(1)}, \mathcal{P}((e_{n}, d_{*}Y))_{n\in \mathbb{N}}^{(2)}
\rangle_{t}

and

(sgn  a )  a(t)=\{\begin{array}{ll}
|a^{(1)}(t)|   , if a^{(2)}(t)=0
\frac{a^{(1)}a^{(2)}(t)}{|a^{(2)}(t)|}+\sqrt{-1}|a^{(2)}(t)|   , if a^{(2)}(t)
\neq 0,
\end{array}
respectively.

(Assertion 2)

Suppose  a\in \mathscr{L} . Then, the assumptions 1 and 2 in Assertion 1 holds and therefore, (A)
and (B) in Assertion 1 hold.

Remark 1 See Subsection 3.1 for  z^{(1)},  z^{(2)} and sgn  z for  z\in \mathbb{Z}.

Remark 2 Refer to [1] for the precise meanings of the statements (A) and (B).
Remark 3 The same assertions as mentioned in this theorem hold, even if finite elements
 (e_{n}, d_{*}Y) of  ((e_{n}, d_{*}Y))_{n\in \mathbb{N}} are replaced with different random variables.
Remark 4  b is identified constructively in  \mathcal{L}_{0} and  B from  ((e_{n}, d_{*}Y))_{n\in \mathbb{N}} since  a is identified
so.

Remark 5 The cross variation method for identification is presented in [16], where Ogawa
and Uemura obtained the results mentioned in Subsection 2.1.
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