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レヴィ市場におけるデジタルオプションに対する局
所的リスク最小化問題について

Ryoichi Suzuki*
Department of Mathematics, Keio University.

Abstract

The purpose of this paper is to announce the results of my research on local risk
minimization problem for digital options in Lévy markets ongoing now (2019 now).

In this paper, we consider a local risk minimization problem for digital option in
a Lévy market. To solve the problem, we next consider Malliavin differentiability of
indicator functions on canonical Lévy spaces. By using it, we obtain explicit represen‐
tation of a locally risk‐minimizing hedging strategy for digital option in market driven
Lévy process.
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1 Introduction

Locally risk‐minimizing (LRM) is a well‐known hedging method for contingent claims in
a quadratic way. By using Malliavin calculus, we can obtain explicit representations of
LRM for incomplete market models whose asset price process is described by a solution
to a stochastic differential equation (SDE) driven by a Lévy process ([2]).

On the other hand, there is one important derivative security describe by indicator
function called digital option. A digital option pays a fixed cash amount if some condition
is realized. Mathematical representation of digital (or binary) options are given by

1  [K,\infty)(S_{T})=\begin{array}{l}
1 for S_{T}\geq K,
0 otherwise,
\end{array}
where  \{S_{t}\}_{t\in[0,T]} is a stock price process and  K>0 is a constant number that is fixed by
the contract. It is popular and important derivative security. Therefore, to study digital
options, we consider Malliavin differentiability of indicator functions ([13]).
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In this paper, we first review local risk minimization problem. We next consider Malli‐
avin differentiability of indicator functions on canonical Lévy spaces. By using it, we ob‐
tain explicit representation of a locally risk‐minimizing hedging strategy for digital option
in market driven Lévy process.

2 Local risk minimization

In this section, we review basic notions of local risk minimization problem.
We now consider a incomplete financial market being composed of one risk‐free as‐

set and one risky asset with finite time horizon  T . For simplicity, we assume that the
interest rate of the market is given by  0, that is, the price of the risk‐free asset is 1 at all
times. The fluctuation of the risky asset is assumed to be given by a semi‐martingale  S

on a filtered probability space  (\Omega,\mathcal{F},\mathbb{P}, \{\mathcal{F}_{t}\}_{t\in[0,T]}) , where the filtration is supposed to
be right‐continuous, complete and  \mathcal{F}_{0} is trivial. The semi‐martingale  S has the following
decomposition

 S=S_{0}+M+A,

where  M a square‐integrable martingale for which  M_{0}=0, and with  A a predictable
process of finite variation  |A| . We also assume the following assumption.

Assumption 2.1  S satisfying the so‐called structure condition ( SC, for short). That is  S satisfies

  \Vert[M]_{T}^{1/2}+\int_{0}^{T}|dA_{s}|\Vert_{L^{2}(P)}<\infty , (2.1)

 A is absolutely continuous with respect to  \langle M\rangle with a density  A satisfies   E[\langle\int\lambda dM\rangle]<\infty , we
can rewrite the canonical decomposition as   S=S_{0}+M+ \int Ad\langle M\rangle . Thirdly, the mean‐variance
trade‐offprocess  K_{i}  := \int_{0}^{t}\lambda_{s}^{2}d\langle M\rangle_{s} is finite, that is,  K_{T} is finite  \mathbb{P}-a.s.

We define locally risk‐minimizing (LRM, for short) for a contingent claim  F\in L^{2}(\mathbb{P}) . We
first define  L^{2}‐strategy and cost process.

Definition 2.2 1.  \Theta_{S} denotes the space ofall  \mathbb{R}‐valued medictable processes  \zeta satisfying

  E[\int_{0}^{T}\zeta_{t}^{2}d\langle M\rangle_{t}+(\int_{0}^{T}|\zeta_{t}dA_{t}
|)^{2}]<\infty

2. An  L^{2} ‐strategy is given by a pair  \varphi=(\zeta, \eta) , where  \zeta\in\Theta_{S} and  \eta is an adapted process
such that  V(\varphi)  :=\zeta S+\eta is a right continuous process  with ] E[V_{t}^{2}(\varphi)]<\infty for every
 t\in[0, T] . Note that  \zeta_{t} (resp.  \eta_{i} ) represents the amount of units of the risky asset (resp. the
risk‐free asset) an investor holds at time  t.

3. For  F\in L^{2}(\mathbb{P}) , the process  C^{F}(\varphi) defined by  C_{t}^{F}(\varphi)  :=F1_{\{t=T\}}+V_{t}( \varphi)-\int_{0}^{t}\zeta_{s}dS_{s} is
called the cost process of  \varphi=(\zeta, \eta) for  F.
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We next introduce the definition of a small perturbation.

Definition 2.3 (Small Perturbation) A trading strategy  \Delta=(\delta,\varepsilon) is called a small perturba‐
tion if it satisfies the following:

I.  \delta is bounded,

2.   \int_{0}^{T}|\delta_{t}dA_{t}| is bounded,

3.  \delta_{T}=\varepsilon_{T}=0.

For any subinterval  (s, t ] of  [0, T] , we define the small perturbation

 \triangle|_{(\cdot,t]}:=(\delta 1_{(s,t]},\varepsilon 1_{[s,t)}) .

We also define partitions  T=(t_{i})_{0\leq i\leq N} of the interval  [0, T] . A partition of  [0, T] is a finite
set  \tau=\{t_{0}, t_{1}, \cdot\cdot\cdot, t_{k}\} of times with  0=t_{0}<t_{1}<. . .  <t_{k}=T and the mesh size of  \tau is

 |T|  := \max_{i_{i},t_{i+1}\in\tau}(t_{i+1}-t_{i}) . A sequence  (\tau_{n})_{n\in]N} is called increasing if  \tau_{n}\subseteq T_{n+1} for all  n

and it tends to the identity if   \lim_{narrow\infty}|T_{n}|=0 . We next define the locally risk‐minimizing.

Definition 2.4 (Locally Risk‐minimizing) For a trading strategy  \varphi, a small perturbation  \Delta

and a partition  \tau of  [0, T] the risk quotient  r^{\tau}[\varphi,\Delta] is defined as follows:

 r^{\tau}( \varphi,\triangle):= \sum \frac{R_{t_{i}}(\varphi+
\triangle|_{(t_{i\prime}t_{i+1}]})-R_{t_{i}}(\varphi)}{E[\langle M\rangle_{t_{i+
1}}-\langle M\rangle_{t_{i}}|\mathcal{F}_{f_{i}}]}1_{(t_{i\prime}t_{i+1}]\prime}  t_{i\prime}t_{i+1}\in\tau

where  R_{t_{j}}=E[(C_{T}-C_{t_{i}})^{2}|\mathcal{F}_{t_{i}}]. A trading strategy  \varphi is called locally risk‐minimizing if

 1\dot{{\imath}}m\dot{{\imath}}nfr^{\tau_{n}}(\varphi,\Delta)narrow\infty\geq 0

 \mathbb{P}\otimes\langle M\rangle-a.e . on  \Omega\cross[0, T] for every small perturbation  \Delta and every increasing sequence  (\tau_{n})_{n\in]N}
ofpartitions of  [0, T] tending to the identity.

The definition of LRM is very complicated to use. However, under Assumption 2.1, The‐
orem 1.6 of Schweizer [8] implies that the following definition of LRM is equivalent to
original one:

Definition 2.5 An  L^{2}‐strategy  \varphi is said locally risk‐minimizingfor  F if  V_{T}(\varphi)=0 and  C^{F}(\varphi)
is a martingale orthogonal to  M, that is,  C^{F}(\varphi)M is a martingale.

Remark 2.6 Note that  \varphi is not self‐financing. In fact, if  \varphi is self‐financing, then  C(\varphi) is a
constant. If there exists a self‐financing  \varphi s.t.  V_{T}(\varphi)=0, we have  F=V_{0}( \varphi)+\int_{0}^{T}\zeta_{s}dS_{s}.
This is a contradiction.

We next define Föllmer‐Schweizer decomposition (  \Gamma S decomposition, for short).
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Definition 2.7 An  F\in L^{2}(\mathbb{P}) admits a Föllmer‐Schweizer decomposition if it can be described
 by

 F=F_{0}+ \int_{0}^{T}\zeta_{t}^{F}dS_{i}+L_{T}^{F} , (2.2)

where  F_{0}\in \mathbb{R},  \zeta^{F}\in\Theta_{S} and  L^{F} is a square‐integ able martingale orthogonal to  M with  L_{0}^{F}=0.
Proposition 5.2 of Schweizer [8] shows the following:

Proposition 2.8 (Proposition 5.2 of Schweizer [8]) UnderAssumption 2.1, an LRM  \varphi=(\zeta,\eta)
for  F exists if and only if  F admits an  FS decomposition, and its relationship is given by

  \zeta_{f}=\zeta_{t}^{F}, \eta_{t}=F_{0}+\int_{0}^{t}\zeta_{s}^{F}dS. +L_{t}
^{F}-F1_{\{f=T\}}-\zeta_{t}^{F}S_{t}.
3 Malliavin calculus for canonical Lévy processes

Throughout this report, we consider Malliavin calculus for canonical Lévy processes,
based on [4] and [10]. We now begin with preparation of the probabilistic framework
and the underlying Lévy process X under which we discuss Malliavin calculus in the se‐
quel. Let  T>0 be a finite time horizon,  (\Omega_{W}, \mathcal{F}_{W},P_{W}) the Wiener space, that is, the
usual canonical space for a one‐dimensional standard Brownian motion, with the space
of continuous functions on  [0, T] , the  \sigma‐algebra generated by the topology of uniform
convergence and Wiener measure; and  L its coordinate mapping process, that is, a one‐
dimensional standard Brownian motion with  W_{0}=0 . Let  (\Omega_{I},\mathcal{F}_{J},\mathbb{P}_{I}) be the canonical

Lévy space (see Solé et al. [10], Delong‐Imkeller [4] and Suzuki [11, 12]) for a pure jump
Lévy process on  [0, T] with Lévy measure  v . Now, we assume that   \int_{\mathbb{R}_{0}}z^{2}v(dz)<\infty,
where  \mathbb{R}_{0}  :=\mathbb{R}\backslash \{0\} and denote  (\Omega,\mathcal{F},\mathbb{P})=(\Omega_{VV}\cross\Omega_{I},\mathcal{F}_{7V}
\cross \mathcal{F}_{I},\mathbb{P}_{I\wedge}, \cross \mathbb{P}_{I}) and we call

it canonical Lévy space. Let  \Gamma=\{\mathcal{F}_{i}\}_{t\in[0,T]} be the canonical filtration completed for  \mathbb{P}.

Let X be a square integrable centered Lévy process on  (\Omega, \mathcal{F},\mathbb{P}) . We now denote  N the
Poisson random measure defined as

  N(t, A):=\sum_{s\leq t}1_{A}(\triangle X_{s}) ,

 A\in \mathcal{B}(\mathbb{R}_{0}) and  t\in[0, T] , where  \Delta X_{s}  :=X_{s}-X_{s-} . In addition, we define its compensated
measure as  \overline{N}(dt,dz)  :=N(dt,  dz)-v(dz)dt . Then, Lévy‐Itô decomposition implies that

 X_{t}= \sigma W_{t}+\int_{0}^{t}\int_{\mathbb{R}_{0}}z\overline{N}(ds,dz) , (3.3)

where  \sigma\geq 0.

We consider the finite measure  q defined on  [0, T]\cross \mathbb{R} by

 q(E)= a^{2}\int_{E(0)}dt6_{0}(dz)+\int_{E'}z^{2}dtv(dz) , E\in \mathcal{B}([0, 
T]\cross \mathbb{R}) ,
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where  E(0)=\{(t,0)\in[0, T]\cross \mathbb{R};(t,0)\in E\} and  E'=E-E(0) , and the random measure
 Q on  [0, T]\cross \mathbb{R} by

 Q(E)= \sigma\int_{E(0)}dW_{t}\delta_{0}(dz)+\int_{E'}z\tilde{N}(dt,dz) , E\in 
\mathcal{B}([0, T]\cross \mathbb{R}) .

Let  L_{T,q,n}^{2}(\mathbb{R}) denote the set of product measurable, deterministic functions  h :  ([0, T]\cross
 \mathbb{R})^{n}arrow \mathbb{R} satisfying

  \Vert h\Vert_{L_{T,q,n}^{2}}^{2}=\int_{([0,T]\cross \mathbb{R})^{n}}|h((t_{1},
z_{1}), \cdots, (t_{n},z_{n}))|^{2}q(dt_{1},dz_{1})\cdots q(dt_{n},dz_{n})
<\infty.
For   n\in IN and  h_{n}\in L_{T,q,n}^{2}(\mathbb{R}) , we denote

 I_{n}(h_{n})= \int_{([0,T]\cross \mathbb{R})^{n}}h((t_{1},z_{1}), \cdots, (t_{n
\prime}z_{n}))Q(dt_{1},dz_{1})\cdots Q(dt_{n;}dz_{n}) .

It is easy to see that  E[I_{0}(h_{0})]=h_{0}and ] E[I_{n}(h_{n})]=0, for  n\geq 1.

In this setting, we introduce the following chaos expansion (see Section 2 of [10] and Sec‐
tion 3 of [4]).

Theorem 3.1 Any  \mathcal{F}‐measurable square integrable random variable  F on the canonical space has
a unique representation

 F= \sum_{n=0}^{\infty}I_{n}(h_{n}),\mathbb{P}-a.s.
with functions  h_{n}\in L_{T,q,n}^{2}(\mathbb{R}) that are symmetric in the  n pairs  (t_{i},z_{i}),  1\leq i\leq n and we have
the isometry

  E[F^{2}]=\sum_{n=0}^{\infty}n!\Vert h_{n}\Vert_{L_{T,q,n}^{2}}^{2}
Definition 3.2 (I) Let  D^{1,2} denote the set of  \mathcal{F} ‐measurable random variables  F\in L^{2}(\mathbb{P}) with
the representation  F=\Sigma_{n=0}^{\infty}I_{n}(h_{n}) satisfying

  \sum_{n=1}^{\infty}nn!\Vert h_{n}\Vert_{L_{T,q}^{2}}^{2},.<\infty.
(2) Let  F\in D^{1,2} . Then the Malliavin derivative  DF:\Omega\cross[0, T]\cross \mathbb{R}arrow \mathbb{R} of a random variable
 F\in D^{1,2} is a stochastic process defined by

 D_{t},{}_{z}F  := \sum_{n=1}^{\infty}nI_{n-1}(h_{n}((t,z), \cdot)) , valid for  q-a.e.  (t,z)\in[0, T]\cross \mathbb{R},\mathbb{P}-a.s.

(3) For  \sigma\neq 0, let  D_{0}^{1,2} denote the set of  \mathcal{F} ‐measurable random variables  F\in L^{2}(\mathbb{P}) with the
representation  F=\Sigma_{n=0}^{\infty}I_{n}(f_{n}) satisfying

  \sum_{n=1}^{\infty}nn!\int_{0}
ア

 \Vert f_{n}(\cdot, (t,0))\Vert_{L_{T,q,n-1}^{2}}^{2}\sigma^{2}dt<\infty.
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Then, for  F\in D_{0}^{1,2} , we can define

 D_{t},{}_{0}F= \sum_{n=1}^{\infty}nI_{n-1}(f_{n}((t_{;}0)_{;}\cdot)) , valid for  q-a.e.  (t,0)\in[0, T]\cross\{0\},\mathbb{P}-a.s.

(4) For  v\neq 0, let  D_{1}^{1,2} denote the set of  \mathcal{F} ‐measurable random variables  F\in L^{2}(\mathbb{P}) with the
representation  F= \sum_{n=0}^{\infty}I_{n}(f_{n}) satisfying

  \sum_{n=1}^{\infty}  nn .   \int_{0}^{T}\int_{\mathbb{R}_{0}}\Vert f_{n}(\cdot, (t,z))\Vert_{L_{T,q,n-1}
^{2}}^{2}z^{2}v(dz)dt<\infty.
Then, for  F\in D_{1}^{1,2} , we can define

 D_{i},{}_{z}F= \sum_{n=1}^{\infty}nI_{n-1}(f_{n}((t,z), \cdot)) , valid for  q-a.e.  (t,z)\in[0, T]\cross \mathbb{R}_{0},\mathbb{P}-a.s.

(5) Let  D^{VV} be the classical Malliavin derivative with respect to the Brownian motion  VV and
Dom  D^{W} be the domain of  D^{W} (for more details see  f6J) .  7Ve define

 D^{W}:= {  F\in L^{2}(P);F(\cdot,\omega_{N})\in Dom  D^{W} for  P^{N}-a.e.  \omega_{N}\in\Omega_{N} }.
(6) Let  F be a random variable on  \Omega_{I\wedge\prime}\cross\Omega_{N} . Then we define the increment quotient operator

  \Psi_{t},{}_{z}F:=\frac{F(\omega_{w\prime}\omega_{N}^{t,z})-F(\omega_{w\prime}
\omega_{N})}{Z},z\neq 0,
where  \omega_{N}^{t,z} transforms  a element  \omega_{N}=((t_{1},z_{1}), (t_{2},z_{2})_{;}\cdots)\in\Omega_{N} into a new element

 \omega_{N}^{t,z}=((t,z), (t_{1\prime}z_{1}), (t_{2},z_{2}), \cdots)\in\Omega_{N
\prime}
by adding a jump ofsize  z at time  t into the trajectory. Moreover, we denote

  D^{I}:=\{F\in L^{2} (IP); E[\int_{0}^{T}\int_{\mathbb{R}_{0}}|Y_{t},{}_{z}
F|^{2}z^{2}v(dz)dt]<\infty\}.
By Propositions 2.6.1, 2.6.2 in [3] and result of [1] (see section 3.3), we can derive the
following:

Proposition 3.3 1. If  F\in D^{7V} , then  F\in D_{0}^{1,2} and

 D_{i},{}_{0}F=1_{\{\sigma>0\}}\sigma^{-1}D_{f}^{I\wedge l}F(\cdot,\omega_{N})
(\omega_{W})
for  q ‐a.e.  (t,z)\in[0, T]\cross\{0\},\mathbb{P}-a.s.

2. If  F\in D^{\int} , then  F\in D_{1}^{1,2} and  D_{t},{}_{z}F=\Psi_{t},{}_{z}Fforq ‐a.e.  (t,z)\in[0, T]\cross \mathbb{R}_{0},\mathbb{P} ‐a.s.

3.  D^{1,2}=D^{iV}\cap D^{\int} holds.
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4 Malliavin differentiability of indicator functions on canon‐
ical Lévy spaces

In this section, we consider Malliavin differentiability of indicator functions on canonical
Lévy spaces, based on the papers [13] and [5].

In the case of the Wiener functionals we have already known the following:

Proposition 4.1 ([9]) If  A\in \mathcal{F}_{I\wedge i} , then, the indicator function of  A belongs to  DomD^{W} if and
only if  \mathbb{P}_{W}(A) is equal to zero or one.

However, in the case of the functionals of canonical Lévy processes, this result is not
generally satisfied. We first consider the following examples.

Example 4.2 Consider now the case   0\neq v(\mathbb{R})<\infty . In this case, we can also show that if
 \mathbb{P}(A)=0 or 1, then  1_{A}\in D^{1,2} . However, the reverse is not always true. We give a counterexam‐
ple of it. We take  \sigma=0,  v=\lambda\delta_{\{1\}},\lambda>0 and  X_{t}=N_{t} , where  \{N_{t}\}_{t\in[0,T]} be the Poisson process

with   \mathbb{P}(N_{t}=k)=\frac{(\lambda t)^{k}}{k!}e^{-\lambda t},k\in 1N . Let  F=1_{A},  A=\{N_{T}=k_{0}\},  k_{0}\in 1N . Then,  N_{T}\in D^{1,2}
and  D_{t,z}N_{T}=1 . Moreover, Proposition 3.3 implies that

  Y_{t},{}_{z}F=\frac{1_{\{k_{0}\}}(N_{T}(\omega_{N}^{i,z}))-1_{\{k_{0}\}}(N_{T}
)}{z}
 = \frac{1_{\{k_{0}\}}(N_{T}+z\frac{N_{T}(\omega_{N}^{t,z})-N_{T}}{z})-
1_{\{k_{0}\}}(N_{T})}{Z}
 = \frac{1_{\{k_{0}\}}(N_{T}+zD_{f,z}N_{T})-1_{\{k_{0}\}}(N_{T})}{Z}
 = \frac{1_{\{k_{0}\}}(N_{T}+z)-1_{\{k_{0}\}}(N_{T})}{z},z\neq 0

and

  E[\int_{0}^{T}\int_{\mathbb{R}_{0}}|\Psi_{t},{}_{z}F|^{2}z^{2}v(dz)dt]=E[\int_
{0}^{T}\int_{\mathbb{R}_{0}}|1_{\{k_{0}\}}(N_{T}+z)-1_{\{k_{0}\}}(N_{T})|^{2}
v(dz)dt]
 \leq 4T\nu(\mathbb{R}_{0})<\infty.

Hence,  F\in D^{\int} . Therefore, by Proposition 3.3, we have  F\in D_{1}^{1,2} . In this case, since  D_{1}^{1_{J}2}=D^{1,2},
we obtain  F\in D^{1,2} . However,   \mathbb{P}(X_{T}=k_{0})=\frac{(AT)^{k_{0}}}{k_{0}!}e^{-\lambda T}\neq 0 or 1.

Example 4.3 Consider now the case   v(\mathbb{R})=\infty . In this case, we can also show that if  \mathbb{P}(A)=
 0 or 1, then  1_{A}\in D^{1,2} . However, the reverse is not always true. The   counte\gammaexample is provided
by (f51). We take  \sigma=0,  v(dx)=|x|^{-\alpha-1}1_{[-1,1]\backslash \{0\}}(x)dx for  a\in(0,1) and  A=\{X_{T}\geq K\} for
some  K\in \mathbb{R} . Then,   v(\mathbb{R})=\infty and Proposition 28.3 and Theorem 24.10 (ii) in  f7J imply that  X_{T}
has a density  f with support  \mathbb{R} such that   \Vert f\Vert_{\infty}=\sup_{\in \mathbb{R}}|f(x)|<\infty . Hence,  \mathbb{P}(A)\in(0,1) .
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Since  X_{T}(\omega_{N}^{t,z})=X_{T}(\omega)+z, then, we have

  Y_{t,z}1_{A}=Y_{t,z}1_{[K,\infty)}(X_{T})=\frac{1_{[K,\infty)}(X_{T}
(\omega_{N}^{t,z}))-1_{[K,\infty)}(X_{T})}{z}1_{R_{0}}(z)
 = \frac{1_{[K,\infty)}(X_{T}+z)-1_{[K,\infty)}(X_{T})}{z}1_{R0}(z)
 =- \frac{1}{z}1_{\{K\leq X_{T}<K-z\}}1_{\{z<0\}}+\frac{1}{z}1_{\{K-z\leq X_{T}
<K\}}1_{\{z>0\}}.

Therefore, we obtain

  E[\int_{0}^{T}\int_{R}|Y_{t,z}1_{[K,\infty)}(X_{T})|^{2}q(dt,dz)]
 = \int_{0}^{T}\int_{\mathbb{R}_{0}}\frac{1}{z^{2}}\{\mathbb{P}(K\leq X_{T}<K-z)
1_{\{z<0\}}+P(K-z\leq X_{T}<K)1_{\{z>0\}}\}z^{2}v(dz)dt
 =T \int_{-1}^{0}(\int_{K}^{K-z}f(x)dx)v(dz)+T\int_{0}^{1}(K-zKf(x)dx)v(dz)
  \leq T\int_{-1}^{0}\Vert f\Vert_{\infty}|z|\nu(dz)+T\int_{0}^{1}\Vert f\Vert_{
\infty}|z|v(dz)<\infty.

Hence,  1_{A}\in D^{1,2}.

From Examples 4.2 and 4.3, we have the following:

Theorem 4.4 If  v(\mathbb{R})\neq 0, we have then the following: If  \mathbb{P}(A)=0 or 1, then  1_{A}\in D^{1,2} , but
the reverse is not always true.

Moreover, we can get the following:

Theorem 4.5 Assume that  v(\mathbb{R})=0,  \sigma\neq 0 and  A\in \mathcal{F} . Then,  1_{A}\in D^{1,2} if and only if
 \mathbb{P}(A)=0 or 1.

5 LRM for digital option under geometric Lévy model

In this section, we consider local risk minimization problem for digital option under geo‐
metric Lévy model. We consider the following:

 S_{t} :=S_{0} \exp\{\mu t+\int_{0}^{t}\int_{\mathbb{R}_{0}}x\tilde{N} (dt,dx)\}
, t\in[0, T], S_{0}>0.
Moreover,  S is also a solution to the stochastic differential equation

 dS_{f}=5_{t-}[ \mu^{S}dt+\int_{\mathbb{R}_{0}}(e^{x}-1)\tilde{N} (dt,dx)] ,
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where  \mu^{S}  := \mu+\int_{\mathbb{R}_{0}}(e^{\chi}-1-x)v(dx) . Now, defining  L_{t}  :=\log S_{t} for all  t\in[0, T] , we
obtain a Lévy process  L . Moreover,  dM_{t}  :=S_{t-} \int_{\mathbb{R}_{0}}(e^{x}-1)\tilde{N}  ( dt,  dx) is the martingale part
of  S and  dA_{t}=S_{t-}\mu^{S}dt.

To consider the LRM, we first calculate  \Psi_{t},{}_{z}S_{T} : By the definition of  \Psi_{i,z} , we obtain

  \Psi_{t},{}_{z}S_{T}=\frac{S_{T}(\omega^{t,z})-5_{T}}{z}1_{\mathbb{R}0}(z)
 = \frac{S_{0}e^{\tau(\omega^{t,z})}-5_{T}}{z}1_{\mathbb{R}_{0}}(z)
 = \frac{S_{0}e^{z\frac{L_{T}(\omega^{t,z})-L_{T}}{z}+L_{T}}-5_{T}}{z}1_{\mathbb
{R}_{0}}(z)
 = \frac{S_{0}e^{Y_{f,z}L_{T}+L_{T}}-S_{T}}{Z}1_{\mathbb{R}_{0}}(z)
 = \frac{5_{0}e^{z+L_{T}}-5_{T}}{z}1_{\mathbb{R}_{0}}(z)=z^{-1}S_{T}(e'-1)
1_{\mathbb{R}_{0}}(z) ,

and we can see that

 S_{T}(\omega^{t,z})=S_{0}e^{z+L_{T}},z\neq 0.
Hence, we have

 Y_{t,z}1_{\{S_{T}\geq K\}}

 = \frac{1_{[K,\infty)}(S_{T}(\omega^{t,z}))-1_{[K,\infty)}(T)}{Z}1_{R_{0}}(z)
 = \frac{1_{[K/S_{0},\infty)}(e^{z+L_{T}})-1_{[K/S_{0},\infty)}(e^{L_{T}})}{Z}1_
{\mathbb{R}_{0}}(z)
 = \frac{1_{[\log K/S_{0},\infty)}(z+L_{T})-1_{[\log K/5_{0},\infty)}(L_{T})}{Z}
1_{R_{0}}(Z)
 =(- \frac{1}{Z}1_{\{\log K/5_{0}\leq L_{T}<\log K/S_{0}-z\}^{1}\{z<0\}}+
\frac{1}{Z}1_{\{\log K/S_{0}-z\leq L_{T}<\log K/S_{0}\}^{1}\{z>0\})}I_{R_{0}}(Z)

Hence, by using the main results of [2], we can get the following:

Theorem 5.1 Under the geometric Lévy model, LRMfor digital option  1_{\{S_{T}\geq K\}}\in D^{1,2},K>0
is given by

 \zeta_{t}^{1_{\{s_{T}\geq K\}}}

 = \frac{\int_{\mathbb{R}_{0}}E_{\mathbb{P}^{*}}[z\Psi_{t},{}_{z}F|\mathcal{F}
_{t-}](e^{z}-1)v(dz)}{S_{t-}(\int_{\mathbb{R}_{0}}(e^{\chi}-1)^{2}v(dx))}
 = \frac{\int_{\mathbb{R}_{0}}E_{\mathbb{P}^{*}}[-1_{\{logK/S_{0}\leq L_{T}<\log
K/s_{0-z\}}}1_{\{z<0\}}+1_{\{\log K/s_{0-z\leq L_{T}<logK/S_{0}\}}}1_{\{z>0\}}
|\mathcal{F}_{t-}](e^{z}-1),(dz)}{S_{t-}(\int_{\mathbb{R}_{0}}(e^{\chi}-1)^{2}
v(dx))},
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where   \lambda_{t}=\frac{\mu t}{S_{t-}(\int_{R_{0}}(e^{z}-1)v(dz))},  dM_{i}=S_{t-} [   \int_{\mathbb{R}_{0}} (ez—l) Ñ(dt,  dz) ] and  dZ_{t}=-\lambda_{i}Z_{t-}dM_{t},

 d\mathbb{P}^{*}=Z_{T}d\mathbb{P}.
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