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RECOVERING MODELLED DISTRIBUTIONS FROM PARACONTROLLED

CALCULUS

MASATO HOSHINO

ABSTRACT. The aim of this paper is a construction of a model space where the theory of
regularity structures (RS) and the theory of paracontrolled calculus (PC) is equivalent. As a
first step, we show the local behavior, namely the generalized Taylor expansion, of the iterated
paraproduct. Next we construct a specific Hopf algebra associated with such local structure.

1. INTRODUCTION

1.1. Hairer and GIP theories. Many singular SPDEs have motivations from statistical physics,
quantum field theory, etc., but they are sometimes ill‐posed without “renormalization” For ex‐
ample, the dynamical \Phi_{3}^{4} model

 (\partial_{t}-\triangle+m_{0}^{2})\Phi(t, x)=-\Phi(t, x)^{3}+\xi(t, x) , t>0, x
\in \mathbb{R}^{3},

where  \xi is a space‐time white noise, is ill‐posed. Indeed, since  \Phi is expected to have regularity
‐   \frac{1}{2}-inx , the cubic term  \Phi^{3} cannot be defined in classical sense.

The theory of paracontrolled calculus by Gubinelli, Imkeller and Perkowski [5] made it pos‐
sible to show the local well‐posedness for such SPDEs. To be precise, letting  \xi_{\epsilon} be a smooth
approximation for  \xi and choosing a sequence of renormalization constants  C_{\epsilon} , we can show the
convergence of the solution  \Phi_{\epsilon} of

 (\partial_{t}-\triangle+m_{0}^{2})\Phi_{\epsilon}(t, x)=-\Phi_{\epsilon}(t, x)^
{3}+C_{\epsilon}\Phi_{\epsilon}(t, x)+\xi(t, x)

locally in time. We can obtain similar results by the famous theory of regularity structures by
Hairer [7]. Compared with RS, PC has an advantage in showing detailed properties [6, 10, 11,
1, 4, 9] (global well‐posedness, ergodicity, etc.) On the other hand, PC can be applicable to less
number of SPDEs than RS. This is because PC is not algebraically sophisticated. Our ultimate
goal is to show the equivalence of RS and PC and construct an algebraic theory describing a
general version of PC.

One of the main differences between the two theories is in the definition of solutions. In PC,
solutions are written by using the Bony’s paraproduct [3]. For example, the solution of  \Phi_{3}^{4} is
written in the form

 \Phi=[-Y+\Phi'\Theta Y+\Phi^{\#},

where 1,  Y,  Y are stochastic data defined from  \xi,  \Phi' and  \Phi\# are unknown functions, and @ is
the Bony’s paraproduct. In RS, solutions are described based on local estimates. For  \Phi_{3}^{4} , the
solution must have the local form

 \Phi(s, y)=t(s, y)+\varphi(t, x)-(Y(s, y)-Y(t, x))

 +\Phi'(t, x)(Y(s, y)-Y(t, x))+(\nabla\Phi)\cdot(y-x)+ ,

where  \varphi,  \Phi',  \nabla\Phi are unknown functions. Therefore in order to get the relationship between these
two concepts, we need local estimates of Bony’s paraproduct.
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1.2. Bailleul‐Hoshino’s result. Bailleul and Hoshino [2] studied the relationship between RS
and PC. To describe their result, we briefly recall some notions in both theories. Stochastic
data as above is called a model in RS. An associated notion exists in PC, but such notion seems
to have no fixed name. (Since PC has been applied to only specific problems until now, such
notion has been called just a family of stochastic data.) Bailleul and Hoshino introduced a
notion of paracontrolled remainder as an abstraction of such stochastic data in the theory of PC.
For the definition of solution, the distribution with local behaviors as above is generalized as a
modelled distribution in RS. The distribution written by nonlocal operators as above is called a
paracontrolled distribution in PC.

Bailleul and Hoshino’s result is described as follows.

Theorem 1.1 (Only rough image). For the stochastic data, a model and a family of paracon‐
trolled remainders are equivalent notions. For the definition of solution, any modelled distribution
can be translated into a paracontrolled distribution.

The remaining problem is that we do not know whether any paracontrolled distribution can
be translated into a modelled distribution. Hence in this paper, we take a constructive approach,
that is, to construct a situation where the equivalence between PD and MD holds and to decom‐
pose any general situation into such primary situation. Our main result is for the construction
of such model space.

1.3. Main result. Our main result consists of two steps.

(1) Analytic step: To show local behaviors of iterated paraproducts.
(2) Algebraic step: To construct an algebra representing such local structure.

Section 2 is for the analytic part, and Section 3 is for the algebraic part.
The theory of RS consists of analytic part and algebraic part, but its analysis is not easy to

combine with known real analysis. There is still no algebraic theory compatible with the theory
of PC. Our result may clarify the relation between two theories and be a first step to combine
them.

2. LOCAL ESTIMATES

2.1. Preliminaries. We recall the Littlewood‐Paley theory on  \mathbb{R}^{d} . Fix smooth radial functions
 \chi and  \rho on  \mathbb{R}^{d} such that,

  eSupp(\chi)\subset\{|x|<\frac{4}{3}\} and  Supp(\rho)\subset   \{\frac{3}{4}<|x|<\frac{8}{3}\},
 \bullet   \chi(x)+\sum_{j=0}^{\infty}\rho(2^{-j}x)=1 for any  x\in \mathbb{R}^{d}.

Set  \rho_{-1}  :=\chi and  \rho_{j}  :=\rho(2^{-j}\cdot) for  j\geq 0 . We define

 \triangle_{j}f:=\mathcal{F}^{-1}(\rho_{j}\mathcal{F}f) , f\in S'(\mathbb{R}^{d}
) ,

where  \mathcal{F} is the Fourier transform on  S'(\mathbb{R}^{d}) . For  \alpha\in \mathbb{R} , we define the (nonhomogeneous) Besov
space

 C^{\alpha}:= \{f\in S'(\mathbb{R}^{d});\Vert f\Vert_{\alpha}:=\sup 2^{j\alpha}
\Vert\triangle_{j}f\Vert_{L^{\infty}}<\infty\}.
 j\geq-1

If  f\in C^{\alpha} , we say that  f has a regularity  \alpha.

Another way to define a regularity of function is the Taylor expansion. It is well known that
two definitions are (almost) equivalent.
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Proposition 2.1. Let  \alpha\in(0, \infty)\backslash \mathbb{N} . For  f\in C^{\alpha} , define

  \triangle_{yx}f=f(y)-\sum_{|k|<\alpha}\frac{(y-x)^{k}}{k!}\partial^{k}f(x) .

Then one has

 |\triangle_{yx}f|\lessapprox\Vert f\Vert_{\alpha}|y-x|^{\alpha}.

2.2. Main results. Our aim is to show local behaviors as above for iterated paraproducts. The
Bony’s paraproduct is defined by

 f @  g= \sum_{i\leq j-2}\triangle_{i}f\triangle_{j}g.
The following estimate is well known.

Proposition 2.2. Let  \alpha>0 and  \beta\in \mathbb{R} . Then we have the bounded

 \Vert f\mathfrak{F}g\Vert_{\beta}\lessapprox\Vert f\Vert_{\alpha}\Vert g\Vert_{
\beta}.

The above estimate only says that the Taylor expansion of  f\Theta g is possible up to  \beta . One of
our main results describes more detailed behavior of  f\Theta g.

Theorem 2.3. Let  \alpha,  \beta>0,  \alpha+\beta\not\in \mathbb{N},  f\in C^{\alpha} , and  g\in C^{\beta} . Define

  \triangle_{yx}(f, g)=(f5g)(y)-\sum_{|k|<\alpha+\beta}\frac{(y-x)^{k}}{k!}
\partial_{*}^{k}(f, g)(x)-\sum_{|\ell|<\alpha}\frac{(y-x)^{\ell}}{\ell!}
\partial^{\ell}f(x)\triangle_{yx}g,
where

  \partial_{*}^{k}(f, g)=\partial^{k}(f, g)-\sum_{k=\ell+m,|\ell|<\alpha,|m|\geq
\beta}\frac{k!}{\ell!m!}(\partial^{\ell}f)(\partial^{m}f) .

Then one has

 |A_{yx}(f, g)|\lessapprox\Vert f\Vert_{\alpha}\Vert g\Vert_{\beta}|y-x|^{\alpha
+\beta}.
This result can be extended to iterated paraproducts. For any distribution  f on  \mathbb{R}^{d} , we set

 f_{i}= \triangle_{i}f, f_{i-}=\sum_{j\leq i-2}f_{j}.
For any  f^{i}\in S'(\mathbb{R}^{d}),  i=1,  n , we define

 (f^{1} f^{n})= \sum_{i}(f^{1} f^{n})_{i}, (f^{1}, \ldots, f^{n})_{i}=(f^{1}, 
\ldots, f^{n-1})_{i-}(f^{n})_{i}
Note that

 (f^{1} f^{n})\neq(\ldots((f^{1}\Theta f^{2})\otimes f^{3}) \Theta f^{n-1})
5f^{n},
but we conjecture that they have similar local estimates.

Theorem 2.4. Let  \alpha_{1},  \alpha_{n}>0,  \alpha_{1}+\cdots+\alpha_{n}\not\in \mathbb{N} , and let  f^{i}\in C^{\alpha_{i}},  i=1,  n . Define

  \triangle_{yx}(f^{1}, \ldots, f^{n})=(f^{1}, \ldots, f^{n})(y)- \sum \frac{(y-
x)^{k}}{k!}\partial_{*}^{k}(f^{1}, \ldots, f^{n})(x)
 |k|<\alpha_{1}+\cdots+\alpha_{n}

 - \sum^{n-1} \sum \frac{(y-x)^{l}}{l!}\partial_{*}^{l}(f^{1}, \ldots, f^{m})(x)
\triangle_{yx}(f^{m+1}, \ldots, f^{n})
 m=1|l|<\alpha_{1}+\cdots+\alpha_{m}

with some coefficients  \partial_{*}^{l}  (f^{1} f^{m})(x) defined continuously from  f^{1},  f^{n} . Then one has

 |\triangle_{yx}(f^{1}, \ldots, f^{n})|\lessapprox\Vert f^{1}\Vert_{\alpha_{1}} 
\Vert f^{n}\Vert_{\alpha_{n}}|y-x|^{\alpha_{1}+\cdots+\alpha_{n}}.
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2.3. Proof of the main result. We give the proof of simple cases. The following result is used
as a convergence criterion.

Lemma 2.5. Let   \{X_{yx}=\sum_{j=1}^{\infty}X_{yx}^{j}\}_{x,y\in \mathbb{R}^{d}} be a family of absolutely convergent series. Assume
that for some  C>0,  \alpha>0 , and  \epsilon>0 , the bound

 |X_{yx}^{j}|\leq C2^{j(\theta-\alpha)}|y-x|^{\theta}
holds for any  \theta\in(\alpha-\epsilon, \alpha+\epsilon) . Then one has

 |X_{yx}|\lessapprox C|y-x|^{\alpha}.

We show Theorem 2.3 for a simple case. Let  \alpha,  \beta\in(0,1),  \alpha+\beta>1 , and  f\in C^{\alpha},  g\in C^{\beta} . For
each Littlewood‐Paley blocks and their partial sums, we recall the following estimates.

Lemma 2.6. Let  \alpha\in(0,1) and  f\in C^{\alpha} . Set  f_{i+}  :=f-f_{i-}.

(1)  \Vert f_{\dot{i}}\Vert_{L^{\infty}}\leq\Vert f\Vert_{\alpha}2^{-i\alpha}.
(2)  \Vert\nabla f_{i-}\Vert_{L^{\infty}}\lessapprox\Vert f\Vert_{\alpha}2^{-
i(\alpha-1)}.
(3)  \Vert f_{\dot{i}+}\Vert_{L^{\infty}}\lessapprox\Vert f\Vert_{\alpha}2^{-
i\alpha}.

Lemma 2.7. Let  \alpha\in(0,1) and  f\in C^{\alpha} . Then for any  0\in[1,2] , we have

 |f_{i}(y)-f_{i}(x)-(y-x)\cdot\nabla f_{i}(x)|\lessapprox\Vert f\Vert_{\alpha}2^
{-i(\alpha-\theta)}|y-x|^{\theta}.

We start the proof from the usual Taylor expansion

 T_{yx}(f, g)_{i}=(f, g)_{i}(y)-(f, g)_{i}(x)-(y-x)\cdot\nabla(f, g)_{i}(x) .

Taking a sum over  i , we have

 T_{yx}(f, g)=(f\Theta g)(y)-(f\Theta g)(x)-(y-x)\cdot\nabla(f3g)(x) ,

but  \nabla(f\mathfrak{S}g)(x) is not defined pointwise because  f @  g\in C^{\beta} . Now we decompose

 T_{yx}(f, g)_{i}=(f_{i-}(y)-f_{i-}(x)-(y-x)\cdot\nabla f_{i-}(x))g_{i}(y)
 +f_{i-}(x)(g_{i}(y)-g_{i}(x)-(y-x)\cdot\nabla g_{i}(x))

 +(y-x)\cdot\nabla f_{i-}(x)(g_{i}(y)-g_{i}(x))=:(I)+(\mathbb{I})+(M) .

For (I), since  \alpha-\theta<0 if  \theta\in[1,2] , we have

 |f_{i-}(y)-f_{i-}(x)-(y-x) \cdot\nabla f_{i-}(x)|\lessapprox\Vert 
f\Vert_{\alpha}\sum_{j\leq i-2}2^{-j(\alpha-\theta)}|y-x|^{\theta}
 \lessapprox\Vert f\Vert_{\alpha}2^{-i(\alpha-\theta)}|y-x|^{\theta}.

Since  \Vert g_{i}\Vert_{L}\infty\leq\Vert g\Vert_{\beta}2^{-i\beta} , we have

 |(I)|\lessapprox\Vert f\Vert_{\alpha}\Vert g\Vert_{\beta}2^{-i(\alpha+\beta-
\theta)}|y-x|^{\theta}.
Similarly, for any  \theta\in[1,2],

 |(1II)|\lessapprox\Vert f\Vert_{\alpha}\Vert g\Vert_{\beta}2^{-i(\alpha+\beta-
\theta)}|y-x|^{\theta}.
We cannot obtain the required estimates from (Ⅱ) since we have only  \Vert f_{i-}\Vert_{L}\infty\lessapprox\Vert f\Vert_{\alpha} . Instead,
we consider the modified expansion

 \triangle_{yx}(f, g)_{i}:=T_{yx}(f, g)_{i}-f(x)(g_{i}(y)-g_{i}(x)-(y-x)
\cdot\nabla g_{i}(x))
 =(I)+(1I)-f_{i+}(x)(g_{i}(y)-g_{i}(x)-(y-x)\cdot\nabla g_{i}(x))

 =:(I)+(III) —  (Ⅱ)'.
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Since 1  f_{\dot{i}}+1_{L}\infty\lessapprox\Vert f\Vert_{\alpha}2^{-i\alpha} , for  \theta\in[1,2] we have

 |A_{yx}(f, g)_{i}|\lessapprox\Vert f\Vert_{\alpha}\Vert g\Vert_{\beta}2^{-
i(\alpha+\beta-\theta)}|y-x|^{\theta},
so we can apply Lemma 2.5. To show the pointwise convergence of   \sum_{i}\triangle_{yx}(f, g)_{i} , we reorganize
the terms as follows.

 \triangle_{yx}(f, g)_{i}
 =(f_{i-g_{i}})(y)-(f_{i-g_{i}})(x)-(y-x)\cdot\nabla(f_{i-g_{i}})(x)-f(x)(g_{i}
(y)-g_{i}(x)-(y-x)\cdot\nabla g_{i}(x))

 =(f_{i-}g_{i})(y)-(f_{\dot{i}-}g_{i})(x)-f(x)(g_{i}(y)-g_{i}(x))-(y-x)
\cdot(\nabla(f_{i-}g_{i})-f\nabla g_{i})(x) .

Since

 \Vert\nabla(f_{i-g_{i}})-f\nabla g_{i}\Vert_{L}\infty=\Vert(\nabla f_{i-})g_{i}
-f_{i}+\nabla g_{i}\Vert_{L}\infty

 \lessapprox\Vert f\Vert_{\alpha}\Vert g\Vert_{\beta}2^{-i(\alpha-1)}2^{-i\beta}
+\Vert f\Vert_{\alpha}\Vert g\Vert_{\beta}2^{-i\alpha}2^{-i(\beta-1)}
 \lessapprox\Vert f\Vert_{\alpha}\Vert g\Vert_{\beta}2^{-i(\alpha+\beta-1)}

and  \alpha+\beta>1 , we see that   \sum_{i}(\nabla(f_{\dot{i}-}g_{i})-f\nabla g_{i})(x) absolutely converges for any  x . Finally
applying Lemma 2.5, we obtain

 | \triangle_{yx}(f, g)|=|\sum_{i=-1}^{\infty}\triangle_{yx}(f, g)_{i}
|\lessapprox\Vert f\Vert_{\alpha}\Vert g\Vert_{\beta}|y-x|^{\alpha+\beta}.
3. HOPF ALGEBRA STRUCTURE

The algebraic part of RS is a generalization of the rough path theory. Their algebraic structures
are defined by the Hopf algebra. First we recall the definition of Hopf algebra.

3.1. Definition of the Hopf algebra. A unital algebra  (A, m, 1) is a triplet of a linear space
 A , a linear map  m:A\otimes Aarrow A satisfying the associativity

 m(m\otimes Id_{A})=m(Id_{A}\otimes m) ,

and a linear map 1 :  \mathbb{R}arrow A satisfying  m(Id_{A}\otimes 1)=m(1\otimes Id_{A})=Id_{A} . (Here we identify
 A\otimes \mathbb{R}\simeq \mathbb{R}\otimes A\simeq A.) Its dual  (C, \triangle, 1^{*}) is a linear space called a coalgebra, i.e.,  C is a linear
space,  \triangle :  Carrow C\otimes C (called coproduct) is a linear map satisfying the coassociativity

 (\triangle\otimes Id_{C})A=(Id_{C}\otimes\triangle)\triangle,

and 1
 *

:  Carrow \mathbb{R} is a linear map satisfying  (Id_{C}\otimes 1^{*})\triangle=(1^{*}\otimes Id_{C})\triangle=Id_{C} . If a linear space
 B has both an algebra structure with  (m, 1) and a coalgebra structure with  (\triangle, 1^{*}) , and  \triangle and
1

 *

are algebra homomorphisms, then  (B, m, \triangle, 1,1^{*}) is called a bialgebra.
Let  (H, m, \triangle, 1,1^{*}) be a bialgebra. If an algebra homomorphism  \mathcal{A} :  Harrow H exists and

satisfies

 m(Id_{H}\otimes \mathcal{A})\triangle=m(\mathcal{A}\otimes Id_{H})\triangle=11^
{*},
then  (H, m, \triangle, 1,1^{*}, \mathcal{A}) is called a Hopf algebra and  \mathcal{A} is called an antipode. For a Hopf algebra
 H , we denote by  Ch(H) the set of all nonzero algebra homomorphisms  f :  Harrow \mathbb{R} . We define
the product on  Ch(H) by

 f*g=(f\otimes g)\triangle, f, g\in Ch(H) .

By the Hopf algebra structure, we can see that 1
 *

is a unit of  Ch(H) and  f\mathcal{A} is an inverse of  f.
Hence  (Ch(H), *) is a group.

An example is the word Hopf algebra, which is used in the geometric rough path theory.
Another example is the Connes‐Kreimer Hopf algebra, which is used in the branched rough path
theory. See [S] for example. Our Hopf algebra below is a kind of generalization of the word Hopf
algebra for the multidimensional space and for higher regularities.
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3.2. Construction of a Hopf algebra associated with paraproducts. We start from the
word Hopf algebra.

Definition 3.1. Let  S be a finite set. Let  W(S)= \bigcup_{n=0}^{\infty}S^{n} be the set of all “words” generated
 by “alphabets”  S , and let  \mathcal{W}(S) be the algebra generated by  W(S) . We define the coproduct

 \triangle^{\circ} :  \mathcal{W}(S)arrow \mathcal{W}(S)\otimes \mathcal{W}(S) by extending the formula

  \triangle^{\circ}(\mathbb{F}^{1}, \ldots, \mathbb{F}^{n})=\sum_{i=0}^{n}
(\mathbb{F}^{i+1}, \ldots, \mathbb{F}^{n})\otimes(\mathbb{F}^{1}, \ldots, 
\mathbb{F}^{i}) ,
 \mathbb{F}^{1}

, . . . ,  \mathbb{F}^{n}\in S,

where we interpret  \zeta(\mathbb{F}^{n+1}, \ldots, \mathbb{F}^{n}) ” and  (\mathbb{F}^{1}, \ldots, \mathbb{F}^{0}) ” as an empty word  1=\emptyset.

Remark 3.1. We do not assume any expansion formula for the product, like the shuffie product

 (\mathbb{F}^{i}, \mathbb{F}^{j})\perp(\mathbb{F}^{k})=(\mathbb{F}^{i}, 
\mathbb{F}^{j}, \mathbb{F}^{k})+(\mathbb{F}^{i}, \mathbb{F}^{k}, \mathbb{F}^{j})
+(\mathbb{F}^{k}, \mathbb{F}^{i}, \mathbb{F}^{j}) .

Such relation is used in the geometric rough path theory. This is why our Hopf algebra is “a kind
of” generalization of the word Hopf algebra.

Proposition 3.2.  (\mathcal{W}(S), \triangle^{\circ}) is a Hopf algebra, i. e., there exists an antipode  \mathcal{A}^{\circ}.

Now we define the homogeneity for all words  \tau\in W(S) . We define  |1|=0 . We assume that
each  \mathbb{F}\in S is given a homogeneity  |\mathbb{F}|>0 . Then we define

 |( \mathbb{F}^{1}, \ldots, \mathbb{F}^{n})|:=\sum_{i=1}^{n}|\mathbb{F}^{i}|.
We add the notions of “derivatives” and “polynomials” to  \mathcal{W}(S) . Such structures did not

appear in the rough path theory, because there we need not consider a regularity greater than 1.

Definition 3.2. Fix  d\in \mathbb{N} . We define

 \tilde{W}(S)=\{\tau_{m} :=(\tau, m)\in W(S)\cross \mathbb{N}^{d};|\tau|>|m|\}.
Moreover, we introduce the Taylor polynomials  T=\{\mathbb{X}_{1}, \mathbb{X}_{d}\} . We define the homogeneity by

 |\tau_{m}|:=|\tau|-|m|, |\mathbb{X}_{j}|=1.

Let  \mathcal{H}(S) be the algebra generated by  \tilde{W}(S)\cup T.

We define the differentiation maps  \partial^{m} on  \mathcal{H}(S) .

Definition 3.3. We define the map  \partial_{i} :  \mathcal{H}(S)arrow \mathcal{H}(S) for  i=1,  d by

 \partial_{i}\tau_{m}=\tau_{m+e_{i}}, e_{i}=(0, \ldots, 0,1, 0, \ldots, 0)i,
for  \tau\in W(S) and  m\in \mathbb{N}^{d},

 \partial_{i}\mathbb{X}_{j}=0

for  \mathbb{X}_{j}\in T , and the Leibniz rule

 \partial_{i}(\tau\sigma)=(\partial_{i}\tau)\sigma+\tau(\partial_{\dot{i}}
\sigma) .

For each mutiindex  m=(m_{1}, \ldots, m_{d})\in \mathbb{N}^{d} , we write  \partial^{m}=\partial_{1}^{m_{1}}\cdots\partial_{d}^{m_{d}}.

Proposition 3.3. We define the coproduct  \triangle^{\circ} on  \mathcal{H}(S) as an extension of the coproduct  \triangle^{\circ} on
 \mathcal{W}(S) , by imposing

 \triangle^{\circ}X_{i}=\mathbb{X}_{i}\otimes 1+1\otimes \mathbb{X}_{i},
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 \triangle^{\circ}(\tau\sigma)=(\triangle^{o}\tau)(\triangle^{\circ}\sigma) .

Then  (\mathcal{H}(S), \triangle^{o}) is a Hopf algebra. We denote by  \mathring{A} again the antipode of  \mathcal{H}(S) .

To obtain the algebraic structure associated with paraproducts, we define the “twisted” co‐
product.

Definition 3.4. We define the new coproduct  \triangle by

  \triangle=\exp(\mathbb{X}\otimes\partial)\triangle^{\circ}:=\exp(\sum_{i}
\mathbb{X}_{i}\otimes\partial_{i})\triangle^{\circ},
where we use the notation  \exp(A)  := \sum_{n=0}^{\infty}\frac{A^{n}}{n!} . Since  \partial^{m}\tau=0 for given  \tau\in \mathcal{H}(S) and a large
 m\in \mathbb{N}^{d},  \triangle\tau is actually a finite series.

Proposition 3.4.  (\mathcal{H}(S), \triangle) is a Hopf algebra. Its antipode  \mathcal{A} is given by

  \mathcal{A}=\exp(-\mathbb{X}\partial)\mathring{\mathcal{A}}:=\exp(-\sum_{i}
\mathbb{X}_{i}\partial_{i})\mathring{\mathcal{A}}.
3.3. Models and modelled distributions on  \mathcal{H}(S) . We interpret the result in Section 2 in
the algebraic language as above. We fix the functions

 f_{1}\in C^{\alpha_{1}}, f_{2}\in C^{\alpha_{2}}, f_{n}\in C^{\alpha_{n}}

for  \alpha_{i}>0 such that,

 \alpha_{i_{1}}+\alpha_{i_{2}}+\cdots+\alpha_{i_{k}}\not\in \mathbb{N}

for any  i_{1}<i_{2}<  <i_{k} . Then we consider the set  S=\{\mathbb{F}^{1}, \mathbb{F}^{n}\} and homogeneities
 |\mathbb{F}^{i}|=\alpha_{i}.

Proposition 3.5. Define the family  \{g_{x}\}_{x\in \mathbb{R}^{d}}\subset Ch(\mathcal{H}(S)) by  g_{x}(\mathbb{X}_{j})=x_{j} and

 g_{x}((\mathbb{F}^{i_{1}}, \ldots, \mathbb{F}^{i_{k}})_{m})=\partial_{*}^{m}(f_
{i_{1}}\ldots, f_{i_{k}})(x) ,

where  \partial_{*}^{m}(f_{i_{1}}\ldots, f_{i_{k}}) is a function continuously depending on  f_{i_{1}}\ldots,  f_{i_{k}} defined in Section 2.
Then we have

 |(g_{y}*g_{x}^{-1})(\tau)|\lessapprox|y-x|^{|\tau|}
for any  \tau\in\tilde{W}(S)\cup T . In other words,  g is  a model on  \mathcal{H} (see Section 1).

Theorem 3.6. For given  g\in C^{\beta} with  \beta>0 such that  \beta+\alpha_{1}+  +\alpha_{n}\not\in \mathbb{N} , we define the
function  \mathbb{G} :  \mathbb{R}^{d}arrow \mathcal{H}(S) by

  \mathbb{G}=\sum\frac{1}{k!}\partial_{*}^{k}(g, f_{1}, \ldots, f_{n})\mathbb{X}
^{k}+\sum\frac{1}{k_{1}!}\partial_{*}^{k_{1}}(g, f_{1}, \ldots, f_{n-1})
\mathbb{X}^{k_{1}}\mathbb{F}^{n}
 + \cdots+\sum\frac{1}{k_{n}!}(\partial^{k_{n}}g)\mathbb{X}^{k_{n}}(\mathbb{F}
^{1}, \ldots, \mathbb{F}^{n}) .

Then  \mathbb{G} is  a(\beta+\alpha_{1}+\cdots+\alpha_{n}) ‐class modelled distribution, i. e.,

 \Vert \mathbb{G}_{y}-(g_{y}*g_{x}^{-1})\mathbb{G}_{x}\Vert_{\theta}
\lessapprox|y-x|^{\beta+\alpha_{1}+\cdots+\alpha_{n}-\theta}

for any  \theta<\beta+\alpha_{1}+\cdots+\alpha_{n} , where  \Vert\cdot\Vert_{\theta} denotes the (equivalent) norm on the finite dimensional
space  \mathcal{H}(S)_{\theta}  :=\{\tau\in\tilde{W}(S)\cup T;|\tau|=\theta\rangle.

The above theorem implies the equivalence between the modelled distribution and the para‐
controlled distribution in the space  \mathcal{H}(S) .
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Theorem 3.7. If a function  \mathbb{G} :  \mathbb{R}^{d}arrow \mathcal{H}(S) of the form

  \mathbb{G}= \sum g_{k}\mathbb{X}^{k}+ \sum g_{k_{1},n}\mathbb{X}^{k_{1}}
\mathbb{F}^{n}
 |k|<\beta+\alpha_{1}+\cdots+\alpha_{n} |k_{1}|<\beta+\alpha_{1}+\cdots+
\alpha_{n}1

 +\cdot  \cdot

  \cdot+\sum_{|k_{n}|<\beta}g_{k_{n},1} ,...  n\mathbb{X}^{k_{n}}(\mathbb{F}^{1}, . . . \mathbb{F}^{n})
is  a(\beta+\alpha_{1}+\cdots+\alpha_{n}) ‐class modelled distribution, then there exist functions

 g_{1\ldots n}^{\#}\in C^{\beta},
 g_{2\ldots n}^{\#}\in C^{\beta+\alpha_{1}},

 g_{n}^{\#}\in C^{\beta+\alpha_{1}+\cdots+\alpha_{n-{\imath}}},
 g^{\#}\in C^{\beta+\alpha_{1}+\cdots+\alpha_{n}},

such that, we have the formula

 g_{k,j\ldots n}= \frac{1}{k!}\{\partial_{*}^{k}(g_{1\ldots n}^{\#}, f_{1}, 
\ldots, f_{\dot{j}-1})+\partial_{*}^{k}(g_{2\ldots n}^{\#}, f_{2}, \ldots, f_{j-
1})
 +\cdot \cdot \cdot+\partial_{*}^{k}(g_{(\dot{j}-1)\ldots n}^{\#}, f_{j-1})+
\partial^{k}g_{j\ldots n}^{\#}\}.

Namely, the modelled distribution  \mathbb{G} is determined by only  (n+1) independent functions.
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