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Abstract

The purpose of this manuscript is twofold: (i) to provide a family of inequalities that
unifies the hypercontractivity and its exponential variant of the Ornstein‐Uhlenbeck
semigroup; and (ii) to reveal a connection between the above‐mentioned family and a
family of  \Phi‐entropy inequalities.

1 Introduction and main result

Given a positive integer  d , let  \gamma_{d} be the  d‐dimensional standard Gaussian measure. For
every  p\geq 1 , define  L^{p}(\gamma_{d}) to be the set of measurable functions  f :  \mathbb{R}^{d}arrow \mathbb{R} such that
  \Vert f\Vert_{p}^{p}:=\int_{\mathbb{R}^{d}}|f(x)|^{p}\gamma_{d}(dx)<\infty . We denote by  Q=\{Q_{t}\}_{t\geq 0} the Ornstein‐Uhlenbeck
semigroup acting on  L^{1}(\gamma_{d}) : for  f\in L^{1}(\gamma_{d}) and  t\geq 0,

 (Q_{t}f)(x) := \int_{\mathbb{R}^{d}}f(e^{-t}x+\sqrt{1-e^{-2t}}y)\gamma_{d}(dy) 
, x\in \mathbb{R}^{d}.
It is well known that  Q enjoys the hypercontractivity: if  f\in L^{p}(\gamma_{d}) for some  p>1 , then

 \Vert Q_{t}f\Vert_{q(t)}\leq\Vert f\Vert_{p} for all  t\geq 0 , (HC)

where  q(t)=e^{2t}(p-1)+1 . The hypercontractivity (HC) was firstly observed by Nelson
[7] and found later by Gross [4] to be equivalent to the (Gaussian) logarithmic Sobolev
inequalityl:

  \int_{\mathbb{R}^{d}}|f|^{2}\log|f|d\gamma_{d}\leq\int_{\mathbb{R}^{d}}|\nabla
f|^{2}d\gamma_{d}+\Vert f\Vert_{2}^{2}\log\Vert f\Vert_{2} , (LSI)

which holds true for any weakly differentiable function  f in  L^{2}(\gamma_{d}) with  |\nabla f|\in L^{2}(\gamma_{d}) . It is
also known (see [1, Proposition 4]) that (HC) is equivalent to the exponential hypercontrac‐
tivity: for any  f\in L^{1}(\gamma_{d}) with  e^{f}\in L^{1}(\gamma_{d}) , it holds that

 \Vert\exp(Q_{t}f)\Vert_{e^{2t}}\leq\Vert e^{f}\Vert_{1} for all  t\geq 0.  (eHC)

One of the objectives of this manuscript is to show, by employing stochastic analysis,
that two hypercontractivities (HC) and  (eHC) are unified into

 *

This manuscript surveys the paper [6] by the author and is based on his talk given at Probability
Symposium (確率論シンポジウム) held at RIMS, Kyoto University, from December 17 to December 20, 2018.

lThe Gaussian logarithmic Sobolev inequality goes back to Stam [8].
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Theorem 1 ([6], Theorem 1.1). Let a positive function  c in  C^{1}((0, \infty)) satisfy

 c'>0 and  c/c' is concave on  (0, \infty) , (C)

and set

 u(t, x):= \int_{0}^{x}c(y)^{e^{2t}}dy, t\geq 0, x>0 . (1)

Then for any nonnegative, measurable function  f on  \mathbb{R}^{d} such that  u(0, f)\in L^{1}(\gamma_{d}) , we have

 v(t, \Vert u(t, Q_{t}f)\Vert_{1})\leq v(0, \Vert u(0, f)\Vert_{1}) for all  t\geq 0.  (uHC)

Here for every  t\geq 0 , the function  v(t, \cdot) is the inverse function of  u(t, x),  x>0.

The theorem asserts that if a nonnegative, measurable function  f on  \mathbb{R}^{d} is such that
 u(0, f)\in L^{1}(\gamma_{d}) , then so is  u(t, Q_{t}f) for any  t\geq 0 thanks to monotonicity of the function
 u(t, x) in spatial variable  x . We give examples of  c fulfilling the condition (C).

Example 1. (i) For each  p>1 , the power function  c(x)=x^{p-1} fulfills (C); indeed,

  \frac{c(x)}{c(x)}=\frac{x}{p-1},
and hence  (c/c')"\equiv 0 . Therefore  (uHC) applies and yields (HC). Observe that the addition
of 1 that appears in the definition of  q(t) may be seen as a consequence of the integration in
(1).
(ii) The exponential function  c(x)=e^{x} fulfills (C); indeed, we have  c/c'\equiv 1 , hence  (c/c')"\equiv
 0 . This choice of  c in  (uHC) yields  (eHC) in the form

 e^{-2t}\log\Vert\exp(e^{2t}Q_{t}f)\Vert_{1}\leq\log\Vert e^{f}\Vert_{1} for all  t\geq 0.

Note that if  c satisfies  (c/c')"\equiv 0 , then it is identical with either  x^{\alpha} for some  \alpha\neq 0 or  e^{x}

up to affine transformation for variable  x.

(iii) The third example deals with a mixture of (HC) and  (eHC) . For two exponents  p,  \alpha

such that  p+\alpha\geq 1 and  0<\alpha\leq 1 , take

 c(x)=x^{p+\alpha-1}\exp(x^{\alpha}) , x>0,

which fulfills (C). By L’Hôpital’s rule, the corresponding  u admits the asymptotics

 u(t, x) \sim\frac{e^{-2t}}{\alpha}x^{q(t)+(e^{2t}-1)\alpha}\exp(e^{2t}
x^{\alpha}) as   xarrow\infty

for every  t\geq 0 (here we abuse the notation  q(t) when  p\leq 1 ). Therefore Theorem 1 entails
that the following implication is true: for any nonnegative, measurable function  f on  \mathbb{R}^{d},

 f^{p}\exp(f^{\alpha})\in L^{1}(\gamma_{d})\Rightarrow(Q_{t}f)^{q(t)+(e^{2t}-1)
\alpha}\exp\{e^{2t}(Q_{t}f)^{\alpha}\}\in L^{1}(\gamma_{d}), \forall t\geq 0.
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2 Outline of proof of Theorem 1

To prove Theorem 1, we employ stochastic analysis. For this purpose, we prepare a d‐
dimensional standard Brownian motion  W=\{W_{t}\}_{0\leq t\leq 1} defined on a probability space
 (\Omega, \mathcal{F}, \mathbb{P}) , and denote by  \{\mathcal{F}_{t}\}_{0\leq t<1} the augmentation of the natural filtration of  W:\mathcal{F}_{t}=

 \sigma(W_{s}, s\leq t)\vee \mathcal{N} . For each  f\in L^{\overline{1}}(\gamma_{d}) , define

 M_{t}\equiv M_{t}(f):=E[f(W_{1})|\mathcal{F}_{t}]

 \equiv E[f(W_{1-t}+x)]|_{x=W_{t}}, 0\leq t\leq 1,
where the second line is due to the Markov property of  W . The last expression reveals the
identity in law:

(  Q_{t}f , îd)  (d)=(M_{e-2t}(f), \mathbb{P})
for every fixed  t\geq 0 and what in fact we are going to prove is

Proposition 1 ([6], Proposition 3.1). For a positive  c in  C^{1}((0, \infty)) satisfying (C), set

  u(t, x):=\int_{0}^{x}c(y)^{1/t}dy,  t\in(0,1],  x>0 . (1 )

Then for any nonnegative, measurable function  f such that  u(1, f)\in L^{1}(\gamma_{d}) , we have

 v(t, E[u(t, M_{t}(f))])\leq v(1, E[u(1, M_{1}(f))]) for all  t\in(0,1]. (uHC')

Here for every  0<t\leq 1 , we denote by  v(t, \cdot) the inverse function of  u(t, \cdot) .

By density arguments, it suffices to show  (uHC') for  f\in C_{b}^{1}(\mathbb{R}^{d}) with  x\in \mathbb{R}^{d}\dot{{\imath}}nff(x)>0.
Here  C_{b}^{1}(\mathbb{R}^{d}) is the set of bounded  C^{1} ‐fUnctions on  \mathbb{R}^{d} with bounded derivatives. Set a

 d‐dimensional process  \theta=\{\theta_{t}\}_{0\leq t\leq 1} by

 \theta_{t}=E[\nabla f(W_{1-t}+x)]|_{x=W_{t}}.
By the Clark‐Ocone formula,

 M_{t}= E[f(W_{1})]+\int_{0} オオ  \theta_{s}\cdot dW_{s} f。r all  0\leq t\leq 1,  \mathbb{P}-a.s.

In fact, denoting  F(W)=f(W_{1}) , we see that  \theta_{t} is nothing but

 \mathbb{E}[D_{t}F(W)|\mathcal{F}_{t}]

with  DF(W) the Malliavin derivative of  F(W) . In what follows we write

 N_{t}\equiv N_{t}(f):=u(t, M_{t}(f)) .

What to do is to show that

  \frac{d}{dt}v(t, E[N_{t}])\geq 0, 0<t\leq 1,
via the following two lemmas: set for  (t, x)\in(0,1] \cross(0, \infty) ,

 U(t, x)  := \{(\frac{u_{tx}}{u_{x}})_{x}\frac{1}{u_{x}}\}(t, x) and  \varphi(t, x)  :=- \frac{1}{U(t,v(t,x))},
where in the definition of  U , subscripts stand for partial differentiations with respect to
corresponding variables.
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Lemma 1. We have for  0<t\leq 1,

 2 u_{x}(t, v(t, E[N_{t}]))\frac{d}{dt}v(t, E[N_{t}])
 = \int_{0}^{1}\mathbb{E}[U(t, v(t, \mathbb{E}[N_{t}|\mathcal{F}_{s}]))
|E[D_{\mathcal{S}}N_{t}|\mathcal{F}_{s}]|^{2}]ds+E[u_{xx}(t, M_{t})|\theta_{t}|^
{2}].

Lemma 2. We have for  0<t\leq 1 and  0\leq s\leq 1,

  E[U(t, v(t, E[N_{t}|\mathcal{F}_{s}]))|E[D_{s}N_{t}|\mathcal{F}_{s}]|^{2}]\geq
-E[\frac{|D_{\mathcal{S}}N_{t}|^{2}}{\varphi(t,N_{t})}]
We postpone proofs of these two lemmas to the next section.

Proof of Proposition 1. By Lemmas 1 and 2, we have

 2 u_{x}(t, v(t, \mathbb{E}[N_{t}]))\frac{d}{dt}v(t, \mathbb{E}[N_{t}])
  \geq-\int_{0}^{1}E[\frac{|D_{s}N_{t}|^{2}}{\varphi(t,N_{t})}]ds+E[u_{xx}(t, M_
{t})|\theta_{t}|^{2}] . (2)

By chain rule for  D,

 D_{s}N_{t}=u_{x}(t, M_{t})D_{s}M_{t}

 =1_{[0,t]}(s)u_{x}(t, M_{t})\theta_{t}

as  M_{t}=E[f(W_{1-t}+x)]|_{x=W_{t}} . Hence the right‐hand side of (2) is rewritten as

  \mathbb{E}[\{-t\frac{(u_{x}(t,x))^{2}}{\varphi(t,u(t,x))}+u_{xx}(t, x)\}|_{x=
M_{t}}\cross|\theta_{t}|^{2}]
Because of expressions

  \frac{1}{\varphi(t,u(t,x))}=\frac{1}{t^{2}}\frac{c'(x)}{c(x)}c(x)^{-1/t},  u_{x}(t, x)=c(x)^{1/t} and   u_{xx}(t, x)=\frac{1}{t}\frac{c'(x)}{c(x)}c(x)^{1/t},
we have for any  x>0,

 -t \frac{(u_{x}(t,x))^{2}}{\varphi(t,u(t,x))}+u_{xx}(t, x)=(-t\cross\frac{1}{t^
{2}}+\frac{1}{t})\frac{c'(x)}{c(x)}c(x)^{1/t}
 =0,

which shows that the right‐hand side of (2) is identical with  0 . Since  u_{x}(t, x) is positive for
all  0<t\leq 1 and  x>0 , we obtain from (2),

  \frac{d}{dt}v(t, \mathbb{E}[N_{t}])\geq 0
as desired.  \square 
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3 Proof of Lemmas 1 and 2

In this section we prove Lemmas 1 and 2.

Proof of Lemma 1. Since  dM_{t}=\theta_{t}\cdot dW_{t} by the Clark‐Ocone formula, Itô’s formula entails
that

du  (t, M_{t})= u_{t}(t, M_{t})dt+u_{x}(t, M_{t})\theta_{t}\cdot dW_{t}+\frac{1}{2}
u_{xx}(t, M_{t})|\theta_{t}|^{2}dt,
hence

  \frac{d}{dt}\mathbb{E}[u ( ち  M_{t})]= \mathbb{E}[u_{t}(t, M_{t})]+\frac{1}{2}\mathbb{E}[u_{xx}( ち  M_{t})|\theta_{t}|^{2}].

Recall  N_{t}=u(t, M_{t}) . As  v is the inverse function of  u in spatial variable, there holds the
relation

  u_{x}(t, v(t, E[N_{t}]))\frac{d}{dt}v(t, \mathbb{E}[N_{t}])
 = E[u_{t}(t, M_{t})]-u_{t}(t, v(t, \mathbb{E}[N_{t}]))+\frac{1}{2}E[u_{xx}(t, 
M_{t})|\theta_{t}|^{2}] . (3)

Noting  u_{t}(t, M_{t})=u_{t}(t, v(t, E[N_{t}|\mathcal{F}_{1}])) , we develop the process

 u_{t}(t, v(t, \mathbb{E}[N_{t}|\mathcal{F}_{\tau}])) , 0\leq\tau\leq 1,

via the Clark‐Ocone formula for  E[N_{t}|\mathcal{F}_{\tau}] :

  \mathbb{E}[N_{t}|\mathcal{F}_{\tau}]=E[N_{t}]+\int_{0}
ア

 \mathbb{E}[D_{s}N_{t}|\mathcal{F}_{s}]  dW_{s},  0\leq\tau\leq 1,  \mathbb{P}-a.s.,

together with Itô’s formula, to see that

  d_{\tau}u_{t}(t, v(t, E[N_{t}|\mathcal{F}_{\tau}]))=\frac{u_{tx}}{u_{x}}(t, 
v(t, E[N_{t}|\mathcal{F}_{\tau}]))\mathbb{E}[D_{\tau}N_{t}|\mathcal{F}_{\tau}]
\cdot dW_{\tau}
 + \frac{1}{2}U(t, v(t, \mathbb{E}[N_{t}|\mathcal{F}_{\tau}]))|\mathbb{E}
[D_{\tau}N_{t}|\mathcal{F}_{\tau}]|^{2}d\tau.

Integrating both sides from  0 to 1 relative to  \tau and taking expectations lead to

 \mathbb{E}[u_{t}(t, M_{t})]-u_{t}(t, v(t, E[N_{t}]))

 = \frac{1}{2}\int_{0}^{1}E[U(t, v(t, E[N_{t}|\mathcal{F}_{\tau}]))|\mathbb{E}
[D_{\tau}N_{t}|\mathcal{F}_{\tau}]|^{2}]d\tau.
Plug the last expression into (3) to obtain

  u_{x}(t, v(t, E[N_{t}]))\frac{d}{dt}v(t, \mathbb{E}[N_{t}])
 = \frac{1}{2}\int_{0}^{1}\mathbb{E}[U(t, v(t, \mathbb{E}[N_{t}|\mathcal{F}
_{\tau}]))|E[D_{\tau}N_{t}|\mathcal{F}_{\tau}]|^{2}]d\tau+\frac{1}{2}\mathbb{E}
[u_{xx}(t, M_{t})|\theta_{t}|^{2}]

as claimed.  \square 
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Proof of Lemma 2. As  \varphi(t, x)=-1/U(t, v(t, x)) by definition, what to show is

  E[\frac{|E[D_{s}N_{t}|\mathcal{F}_{s}]|^{2}}{\varphi(t,\mathbb{E}[N_{t}
|\mathcal{F}_{s}])}]\leq \mathbb{E}[\frac{|D_{s}N_{t}|^{2}}{\varphi(t,N_{t})}] . (4)

Recall from [6, Lemma 3.1] that  \varphi>0 and  \varphi(t, \cdot) is concave for every  t\in(0,1 ] under the
condition (C). Observe a.s.,

 0 \leq E[\varphi(t, N_{t})|\frac{D_{s}N_{t}}{\varphi(t,N_{t})}-\frac{\mathbb{E}
[D_{s}N_{t}|\mathcal{F}_{s}]}{\varphi(t,\mathbb{E}[N_{t}|\mathcal{F}_{s}])}|^{2}
|\mathcal{F}_{s}]
 = E[\frac{|D_{s}N_{t}|^{2}}{\varphi(t,N_{t})}|\mathcal{F}_{s}]-
2\frac{|\mathbb{E}[D_{s}N_{t}|\mathcal{F}_{s}]|^{2}}{\varphi(t,\mathbb{E}[N_{t}|
\mathcal{F}_{s}])}+E[\varphi(t, N_{t})|\mathcal{F}_{s}]\frac{|\mathbb{E}[D_{s}N_
{t}|\mathcal{F}_{s}]|^{2}}{\{\varphi(t,\mathbb{E}[N_{t}|\mathcal{F}_{s}])\}^{2}}
  \leq E[\frac{|D_{s}N_{t}|^{2}}{\varphi(t,N_{t})}|\mathcal{F}_{S}]-
\frac{|E[D_{s}N_{t}|\mathcal{F}_{s}]|^{2}}{\varphi(t,E[N_{t}|\mathcal{F}_{s}])}

because of

 E[\varphi(t, N_{t})|\mathcal{F}_{s}]\leq\varphi(t, E[N_{t}|\mathcal{F}_{s}]) a.
s.

by the conditional Jensen inequality. This observation entails (4).  \square 

Remark 1. (i) In each of two cases that  c(x)=x^{p-1} for some  p>1 and that  c(x)=e^{x} , the
corresponding  \varphi is a linear function in spatial variable (see [6, Remark 3.1 (2)]), which entails
that (4) holds as equality. This fact enables us to obtain the following “hypercontractive
identities for any  f\in C_{b}^{1}(\mathbb{R}^{d}) with   \inf_{x\in \mathbb{R}^{d}}f(x)>0,

  \Vert Q_{t}f\Vert_{q(t)}=\Vert f\Vert_{p}\exp\{-\int_{0}^{t}\frac{e^{-2\tau}}{
\Vert Q_{\tau}f||_{q(\tau)}^{q(\tau)}}\Xi(e^{-2\tau})d\tau\},
  \Vert\exp(Q_{t}f)\Vert_{e^{2t}}=\Vert e^{f}\Vert_{1}\exp\{-\int_{0}^{t}
\frac{e^{-2\tau}}{\Vert\exp(Q_{\tau}f)\Vert_{e^{2\tau}}^{e^{2\tau}}}\Xi(e^{-
2\tau})d\tau\}

for all  t\geq 0 ; see [6, Remark 3.2 (1)]. Here the nonnegative function  \Xi(t)\equiv\Xi_{c,f}(t),  t\in(0,1],
is defined by

  \Xi(t)=\int_{0}^{1}E[\varphi(t, N_{t})|\frac{D_{s}N_{t}}{\varphi(t,N_{t})}-
\frac{\mathbb{E}[D_{s}N_{t}|\mathcal{F}_{s}]}{\varphi(t,E[N_{t}|\mathcal{F}_{s}]
)}|^{2}]ds.
(ii) If we replace the definition (1 ) of  u(t, x) by

  u(t, x)=\int_{0}^{x}c(y)^{-1/t}dy,
then the inequality (4) is reversed, yielding a generalization of the reverse hypercontractivity:
if we let a positive  c in  C^{1}((0, \infty)) satisfy (C) and   \lim_{xarrow 0+}c(x)>0 , and set the function  u by

 u(t, x)= \int_{0}^{x}c(y)^{-e^{2t}}dy, t\geq 0, x>0,
in place of (1), then for any  f\in C_{b}^{1}(\mathbb{R}^{d}) with  x\in \mathbb{R}^{d}\dot{{\imath}}nff(x)>0 , we have

 v(t, \Vert u(t, Q_{t}f)\Vert_{1})\geq v(0, \Vert u(0, f)\Vert_{1}) for all  t\geq 0.

Here  v(t, \cdot) is the inverse function of  u(t, \cdot) for every  t\geq 0 as before. We refer to [6, Section 4]
for more details.
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4 Generalization of Gaussian logarithmic Sobolev inequality

Recall the fact ([4]) that differentiating the left‐hand side of (HC) at  t=0 yields (LSI); the
same argument enables us to obtain from  (uHC) the following generalization of (LSI):

Corollary 1 ([6], Corollary 3.1). For a function  c satisfying the assumptions in Theorem 1,
set

 G(x)= \int_{0}^{x}c(y)dy and  H(x)= \int_{0}^{x}c(y)\log c(y)dy
for  x>0 . Then for any  f\in C_{b}^{1}(\mathbb{R}^{d}) with   \inf_{x\in \mathbb{R}^{d}}f(x)>0 , we have

  \int_{\mathbb{R}^{d}}H(f)d\gamma_{d}\leq\frac{1}{2}\int_{\mathbb{R}^{d}}c'(f)|
\nabla f|^{2}d\gamma_{d}+H\circ G^{-1}(\Vert G(f)\Vert_{1}) .  (gLSI)

Here  G^{-1} is the inverse function of  G.

Proof. Since the left‐hand side of (3) is nonnegative as seen in the proof of Proposition 1,
evaluation of its right‐hand side at  t=1 yields  ( gLSI) .  \square 

Be aware that the initial value of  v(t, \Vert u(t, Q_{t}f)\Vert_{1}),  t\geq 0 , corresponds to the terminal
value of  v(t, E[N_{t}]),  0<t\leq 1.

Remark 2. Taking  c(x)=x^{p-1}(p>1) and  e^{x} , we recover (LSI) from  (gLSI) .

5 Connection with  \Phi‐entropy inequalities

Let  \Phi\in C^{2}((0, \infty)) be such that

 \Phi">0 and  1/\Phi" is concave on  (0, \infty) . (P)

Fix  f\in C_{b}^{1}(\mathbb{R}^{d}) with   \inf_{x\in \mathbb{R}^{d}}f(x)>0 . Then

Proposition 2 ([6], Proposition 3.3).  (gLSI) holds for any positive  c\in C^{1}((0, \infty)) satisfying
(C) if and only if for any  \Phi\in C^{2}((0, \infty)) satisfying (P), the  \Phi‐entropy inequality holds:

  \int_{\mathbb{R}^{d}}\Phi(f) dîd—   \Phi(\int_{\mathbb{R}^{d}}fd\gamma_{d})\leq\frac{1}{2}\int_{\mathbb{R}^{d}}
\Phi"(f)|\nabla f|^{2}d\gamma_{d}.  (\Phi I)

The quantity on the left‐hand side of  (\Phi I) is referred to as the  \Phi ‐entropy and gives a
nonnegative value by Jensen’s inequality when  \Phi is convex. Typical examples of  \Phi ’s fulfilling
(P) are  \Phi(x)=x\log x and  \Phi(x)=x^{2} (if we consider it on  \mathbb{R} ), and these two choices in  (\Phi I)
lead to (LSI) and Poincaré’s inequality, respectively.

Proof of Proposition 2. We start with if part. Given a positive  c\in C^{1}((0, \infty)) satisfying
(C), take  \Phi=HoG^{-1} with  H and  G given in Corollary 1. Then it is readily seen that  \Phi

fulfills (P). Writing  f for  G^{-1}(f) leads to  ( gLSI) .
We turn to only if part. For  \Phi\in C^{2}((0, \infty)) satisfying (P), take  c=\exp(\Phi') . Then  c

fulfills (C) and so does  c^{\alpha}=\exp(\alpha\Phi') for any  \alpha>0 . We replace  c by  c^{\alpha} in  (gLSI) , divide
both sides by  \alpha and let  \alphaarrow 0 . Then  (\Phi I) follows, which ends the proof.  \square 
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As already observed in Corollary 1, the hypercontractive family  (uHC) implies  (gLSI) ;
the next proposition shows that the converse is also true.

Proposition 3 (cf. [6], Proposition 3.4).  (gLSI) implies  (uHC) .

An important observation is that if a positive  c\in C^{1}((0, \infty)) fulfills (C), then so does  c^{\alpha}

for any  \alpha>0 as has already been seen above in a restrictive setting. Then  (gLSI) applied
to  c^{\alpha} yields

  \int_{\mathbb{R}^{d}}H_{\alpha}(f)d\gamma_{d}\leq\frac{\alpha}{2}\int_{\mathbb
{R}^{d}}(c^{\alpha-1}c')(f)|\nabla f|^{2}d\gamma_{d}+H_{\alpha}oG_{\alpha}^{-1}(
\Vert G_{\alpha}(f)\Vert_{1}) , (5)

where  G_{\alpha} and  H_{\alpha} are defined as in Corollary 1 with  c therein replaced by  c^{\alpha}.

Proof of Proposition 3. Write  \alpha(t)=e^{2t},  t>0 . Similarly to proof of Lemma 1, we compute

 u_{x}(t, v(t,  \Vert u(t, Q_{t}f)\Vert_{1}))\frac{d}{dt}v(t, \Vert u(t, Q_{t}f)
\Vert_{1})
 =-u_{t}(t, v(t,  \Vert u(t, Q_{t}f)\Vert_{1}))+\frac{d}{dt}  ||u (ち  Q_{t}f )  \Vert_{1}

 =-2H_{\alpha(t)} oG_{\alpha(t)}^{-1}(\Vert G_{\alpha(t)}(Q_{t}f)\Vert_{1})+
\frac{d}{dt}\Vert u(t, Q_{t}f)\Vert_{1} . (6)

The last term is calculated and estimated as

  \int_{\mathbb{R}^{d}}u_{t}(t, Q_{t}f)d\gamma_{d}+\int_{\mathbb{R}^{d}}u_{x}(t,
Q_{t}f)LQ_{t}fd\gamma_{d}
 =2 \int_{\mathbb{R}^{d}}H_{\alpha(t)}(Q_{t}f)d\gamma_{d}+\int_{\mathbb{R}^{d}}\
{c(Q_{t}f)\}^{\alpha(t)}LQ_{t}fd\gamma_{d}
 =2 \int_{\mathbb{R}^{d}}H_{\alpha(t)}(Q_{t}f)d\gamma_{d}-\alpha(t)\int_{\mathbb
{R}^{d}}\{c^{\alpha(t)-1}c'\}(Q_{t}f)|\nabla Q_{t}f|^{2}d\gamma_{d}
 \leq 2H_{\alpha(t)}\circ G_{\alpha(t)}^{-1}(\Vert G_{\alpha(t)}(Q_{t}f)
\Vert_{1}) ,

where for the first and second lines, we used  L to denote the Ornstein‐Uhlenbeck operator
 \triangle-x\cdot\nabla , and for the third line, we used integration by parts (ibp for short) and chain rule
for  \nabla , and for the last, we used (5). Combining the last estimate with (6), we have

  \frac{d}{dt}v(t, \Vert u(t, Q_{t}f)\Vert_{1})\leq 0
for any  t>0 , which proves  (uHC) .  \square 

6 Concluding remarks

In this manuscript, we have provided a framework that embraces (HC) and  (eHC) , as well as
the family of  \Phi‐entropy inequalities  (\Phi I) indexed by  \Phi\in C^{2}((0, \infty)) fulfilling (P), on which
we add specific comments as follows.

(i) The condition (C) is not artificial in view of  \Phi‐entropy inequalities  (\Phi I) . It should
also be mentioned that  (uHC) possesses a certain optimality (see [6, Subsection A.2])
observed by an anonymous referee of [6], who also pointed out to us that under (C)
(with additional assumption that  c is of class  C^{3} ), functionals as on the right‐hand side
of  (uHC) are considered in [5, Theorem 106 (i)] to discuss their convexity in a discrete
setting.
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(ii) Equivalence between  (uHC) and  (\Phi I) holds true in a general setting of Markov triple
 (E, \mu, \Gamma) with associated Dirichlet form  (\mathcal{E}, \mathcal{D}(\mathcal{E})) , the notion elaborated in [2, Chap‐
ters 4−7]; in particular, if the triple  (E, \mu, \Gamma) is such that under the condition (P),

  \int_{E}\Phi(f)d\mu-\Phi(\int_{E}fd\mu)\leq\frac{R}{2}\int_{E}\Phi"(f)
\Gamma(f, f)d\mu (\Phi I')
for any positive  f\in \mathcal{D}(\mathcal{E}) for some  R>0 , and that its carré  du champ  \Gamma satisfies

  \int_{E}\Gamma(f, g)d\mu=-\int_{E}gLfd\mu , (ibp)

 \Gamma(\psi(f), g)=\psi'(f)\Gamma(f, g) , (chain rule)

then by rewriting  (\Phi I') similarly to (5), the same reasoning as in the proof of Proposi‐
tion 3 applies and leads to  (uHC) with replacement:

 Q_{t} by  e^{tL} and  e^{2t} in (1) by  e^{2t/R}.

For instance, if a probability measure  \mu on  E=\mathbb{R}^{d} is given in the form  \mu(dx)=
 e^{-V(x)}dx with  V\in C^{2}(\mathbb{R}^{d}) whose Hessian matrix satisfies  y\cdot Hess_{V}(x)y\geq\rho|y|^{2},  x,   y\in
 \mathbb{R}^{d} , for some  \rho>0 , then the  \Phi‐entropy inequality  (\Phi I') for  \Gamma(f, f)=|\nabla f|^{2} is known
(cf. [3, Corollary 2.1]) to hold with   R=1/\rho , and hence  (uHC) holds true for the
semigroup generated by   L=\triangle-\nabla V\cdot\nabla , with exponent  e^{2t} in (1) replaced by  e^{2\rho t}.

See [6, Subsection 3.2] for more detailed description.
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