An extension of the Hartshorne theorem on the characterization of cofinite complexes

Ken-ichiroh Kawasaki^{*} *Department of Mathematics, Nara University of Education.

Abstract

This report is the announcement of the result on the characterization of cofinite complexes (the first one is in the talk at the RIMS conference[‡]). Let A be a homomorphic image of a Gorenstein ring of finite Krull dimension, J an ideal of A, and N^{\bullet} a bounded-below complex of A-modules. Suppose that A is complete with respect to a J-adic topology. In this report, we introduce that N^{\bullet} is a J-cofinite complex if and only if the support of $H^{i}(N^{\bullet})$ is in V(J) for all i, and $\operatorname{Ext}^{j}(A/J, N^{\bullet})$ is of finite type for all j.

1 Introduction

In this report, we shall introduce the following theorem.

Theorem 1 Let A be a ring, which is a homomorphic image of a Gorenstein ring of finite Krull dimension, J an ideal of A. Suppose that A is complete with respect to a J-adic topology. Let N^{\bullet} be a complex of A-modules in $\mathcal{D}^+(A)$, where $\mathcal{D}^+(A)$ is the derived category consisting of complexes bounded below. Then the following conditions are equivalent:

- (1) The complex N^{\bullet} is J-cofinite.
- (2) The complex N^{\bullet} satisfies the following conditions:
 - a) Supp $H^i(N^{\bullet}) \subseteq V(J)$ for each *i*,
 - b) $\operatorname{Ext}^{j}(A/J, N^{\bullet})$ is of finite type for each j.

We assume that all rings are commutative and noetherian with identity throughout this report.

²⁰⁰⁰ Mathematics Subject Classification. Primary 14B15, 13D03, 18G15

^{*} This work was supported by the Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University. The results included in the report will be submitted as a paper to the other publication elsewhere.

keywords: Local Cohomology Cofinite Complex Cofinite Module Abelian category

2 Preliminaries

We shall recall the definitions on cofiniteness. For the basic definitions, the reader is referred to [15] and [16] (see [3], [4], [2] and [14] for the notation on derived categories and derived functors).

Before defining the J-cofiniteness on complexes, we introduce the definition of the dualizing functor (cf. $[14, \S 4.3, p. 70]$):

Definition 1 Let A be a ring, equipped with a dualizing complex \mathbf{D}^{\bullet} for A and J an ideal of A (see [19, (1.1) Definition, p. 215] for the definition of the (fundamental) dualizing complex). We denote by $D_J(-)$ the functor $\mathbb{R} \operatorname{Hom}^{\bullet}(-, \mathbb{R}\Gamma_J(\mathbf{D}^{\bullet}))$ on the derived category $\mathcal{D}(A)$. In this paper, we call this functor $D_J(-)$ the J-dualizing functor (cf. [14, p. 70]). Note that the J-dualizing functor is defined over unbounded complexes by [20, Theorem C, p. 125]. In the case J = (0), then we simply denote $D_J(-)$ by D(-).

The *J*-cofiniteness on *complexes* is defined as follows (see $[3, \S2, p. 149]$ for the definition over regular rings):

Definition 2 Let A be a ring, equipped with a dualizing complex \mathbf{D}^{\bullet} for A and J an ideal of A. Let N^{\bullet} be an object of the derived category $\mathcal{D}(A)$. We say N^{\bullet} is J-cofinite, if there exists $M^{\bullet} \in \mathcal{D}_{ft}(A)$, such that $N^{\bullet} \simeq D_J(M^{\bullet})$ in $\mathcal{D}(A)$. Here $D_J(-)$ is the J-dualizing functor on $\mathcal{D}(A)$ defined as above and $\mathcal{D}_{ft}(A)$ is the derived category consisting of complexes with cohomology modules of finite type over A.

Over regular rings R of finite Krull dimension, it is proved by Hartshorne (cf. [3, Theorem 5.1, p. 154]). Over the rings A which is a homomorphic image of a Gorenstein ring of finite Krull dimension, the theorem as a variant of [3, Theorem 5.1, p. 154] is proved under the additional conditions (ii) and (ii) (cf. [11, Theorem 5, p. 318]). Our aim in the report, we introduce an extension of the Hartshorne theorem over the ring A, without the conditions (i) and (ii).

3 Sketch proof of the main theorem

The purpose of this section is to give a sketch proof of the main theorem as an extension of [3, Theorem 5.1, p. 154]) without regularity assumption. The argument on the way out functors is used in [3, Theorem 5.1, p. 154]) over the regular rings. On the other hands, we use the spectral sequences. First let us prove the lemma:

Lemma 2 Let A be a ring, which is a homomorphic image of a Gorenstein ring of finite Krull dimension, J an ideal of A, and M^{\bullet} in $\mathcal{D}_{ft}^{-}(A)$. Suppose that A is complete with respect to a J-adic topology. Then $\operatorname{Ext}^{j}(T^{\bullet}, D_{J}(M^{\bullet}))$ is of finite type for all j, for each T^{\bullet} in $\mathcal{D}_{ft}^{-}(A)$ with $\operatorname{Supp} H^{l}(T^{\bullet}) \subset V(J)$ for all l. Here $\mathcal{D}_{ft}^{-}(A)$ is the derived category consisting of complexes bounded above with cohomology modules of finite type over A. *Proof.* We have an isomorphism in the derived category $\mathcal{D}(A)$ using the Hom-tensor adjunction (cf. [14, the Hom-tensor adjunction, p. 53]):

$$\mathbb{R} \operatorname{Hom}^{\bullet}(T^{\bullet}, D_J(M^{\bullet}))) \simeq \mathbb{R} \operatorname{Hom}^{\bullet}(M^{\bullet}, D(T^{\bullet})).$$

Then we have the lemma, using the spectral sequences and by Yoneda's lemma. See [12] for the detailed calculation. $\hfill \Box$

Proof of Theorem 1: See [12] for the detailed proof.

4 An application of the theorem

We recall the following claim (cf. [Kaw3, Claim 1]):

Claim 3 Let R be a ring, and J an ideal of R. Let $N^{\bullet} \in \mathcal{D}^+(R)$ be a bounded-below complex. Then the following conditions are equivalent:

- (i) $\operatorname{Ext}^{j}(R/J, N^{\bullet})$ is of finite type over R for all j;
- (ii) $\operatorname{Ext}^{j}(R/\sqrt{J}, N^{\bullet})$ is of finite type over R for all j;
- (iii) $\operatorname{Ext}^{j}(R/P, N^{\bullet})$ is of finite type over R for all j and for each $P \in \operatorname{Min}(R/J)$;
- (iv) $\operatorname{Ext}^{j}(W, N^{\bullet})$ is of finite type over R for all j and for each R-module W of finite type over R such that $\operatorname{Supp}(W) \subseteq V(J)$;
- (v) $\operatorname{Ext}^{j}(W^{\bullet}, N^{\bullet})$ is of finite type over R for all j and for each $W^{\bullet} \in \mathcal{D}_{ft}^{b}(R)$ such that $\operatorname{Supp}(H^{l}(W^{\bullet})) \subseteq V(J)$ for all l;
- (vi) $\operatorname{Ext}^{j}(W^{\bullet}, N^{\bullet})$ is of finite type over R for all j and for each $W^{\bullet} \in \mathcal{D}_{ft}^{-}(R)$ such that $\operatorname{Supp}(H^{l}(W^{\bullet})) \subseteq V(J)$ for all l.

We can give the following corollary as an application form Theorem 1.

Corollary 4 Let A be a ring, which is a homomorphic image of a Gorenstein ring of finite Krull dimension, J an ideal of A. Suppose that A is complete with respect to a J-adic topology. Let N^{\bullet} be a complex of A-modules in $\mathcal{D}^{+}(A)$. Then the following conditions are equivalent:

- (1) The complex N^{\bullet} is J-cofinite.
- (2) The complex N^{\bullet} satisfies the following conditions:
 - a) Supp $H^{i}(N^{\bullet}) \subseteq V(J)$ for each i,
 - b) the equivalence conditions in Claim 3.

References

- K. Eto and K. -i. Kawasaki, A characterization of cofinite complexes over complete Gorenstein domains, Journal of Commutative algebra, Vol. 3, No. 4 Winter, (2011), pp. 537–550.
- [2] S. I. Gelfand and Yu. I. Manin, *Methods of Homological Algebra*, Springer-Verlag, Berlin, Heidelberg, New York, (1996).
- [3] R. Hartshorne, Affine duality and cofiniteness, Inventiones Mathematicae, 9 (1969/1970), 145–164.
- [4] R. Hartshorne, *Residue and Duality*, Springer Lecture Note in Mathematics, No. 20, Springer-Verlag, New York, Berlin, Heidelberg, (1966).
- [5] C. Huneke and J. Koh, Cofiniteness and vanishing of local cohomology modules, Mathematical Proceedings of the Cambridge Philosophical Society, 110 no. 3, (1991), 421– 429.
- [6] K. -i. Kawasaki, On a category of cofinite modules which is Abelian, Mathematische Zeitschrift, 269 Issue 1, (2011), 587–608.
- [7] K. -i. Kawasaki, On the finiteness of Bass numbers of local cohomology modules, Proceedings of American Mathematical Society, 124, (1996), 3275–3279.
- [8] K. -i. Kawasaki, On a characterization of cofinite complexes, Addendum to 'On a category of cofinite modules which is Abelian', Mathematische Zeitschrift, 275, (2013), 641–646.
- [9] K. -i. Kawasaki, Cofiniteness of local cohomology modules for principal ideals, Bulletin of the London Mathematical Society, 30, no. 3, (1998), 241–246.
- [10] K. -i. Kawasaki, On the category of cofinite modules for principal ideals, Nihonkai Journal of Mathematics, Vol. 22, No 2, (2011), pp. 67–71.
- [11] K. -i. Kawasaki, On the characterization of cofinite complexes over affine curves and hypersurfaces, Journal of Algebra, Vol. 479, (2017), pp. 314–325.
- [12] K. -i. Kawasaki, Note on a characterization of cofinite complexes, preprint.
- [13] T. Kawasaki, On arithmetic Macaulayfication of noetherian rings, Transactions of the American Mathematical Society, 354 no. 1, (2002), 123–149.
- [14] J. Lipman, Lectures on Local cohomology and duality, Local cohomology and its applications, Lecture Notes in pure and applied mathematics, vol. 226, Marcel Dekker, Jnc., New York-Basel, (2002), 39–89.
- [15] H. Matsumura, Commutative Algebra, Benjamin / Cummings, Reading, Massachusetts, 2nd ed., (1980).

- [16] H. Matsumura, *Commutative Ring Theory*, Cambridge studies in advance mathematics 8, Cambridge University Press, Cambridge, (1986).
- [17] L. Melkersson, Modules cofinite with respect to an ideal, Journal of Algebra, 285, (2005), 649–668.
- [18] L. Melkersson, Cofiniteness with respect to ideals of dimension one, Journal of Algebra, 372, (2012), 459–462.
- [19] R. Y. Sharp, Necessary conditions for the existence of dualizing complexes in commutative algebra, Sem. Algebre P. Dubreil 1977/78, Lecture Notes in Mathematics, vol. 740, Springer-Verlag, 1979, 213–229.
- [20] N. Spaltenstein, Resolution of unbounded complexes, Compositio Mathematica, 65 no. 2, (1988), 121–154.

^[†] The data of the talk in the conference:

Date: February 15, in 2018, $11:00 \sim 12:00$, Location: the room No. 111 in RIMS, Kyoto, in Japan, RIMS Conference Researches on theory of isometries and preserver problems from a various point of view.