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HERMITIAN OPERATORS ON SPACES OF VECTOR‐VALUED

LIPSCHITZ MAPS

SHIHO OI

NIIGATA PREFECTURAL NAGAOKA HIGH SCHOOL

AHSTRACT. We characterize unital surjective linear isometries on algebra of Lipschitz
maps with the values in matrix algebras with the \ell_{1} norm  \Vert .  \Vert_{\infty}+L(\cdot) . The fact that
Hermitian operators completely characterizes unital surjective linear isometries lets us
prove this. The method is sometime referred to as Lumer’s method (see [5]). To apply
Lumer’s method, one needs to characterize Hermitian operators.

1. INTRODUCTION

We study Hermitian operators in Section 2 and surjective linear isometries in Section 3.
The relations between these operators emerge most clearly, when we see the fact that if  T

is a Hermitian operator and  U is a surjective linear isometry then  UTU^{-1} is a Hermitian
operator. Lumer in [10, 11] initiated a research to characterize surjective linear isometries
by applying this fact, and this method is called ‘Lumer’s method’ now.

If a semi‐inner product  [\cdot,  \cdot] satisfies  [v, v]=\Vert v\Vert_{v}^{2} for every  v in  V , then  [\cdot,  \cdot] is said to
be a semi‐inner product compatible with the norm of  V . In this paper we abbreviate a
semi‐inner product compatible with the norm as a semi‐inner product.

Definition 1.1. Let  [\cdot,  \cdot] be a semi‐inner product on a complex Banach space  V . Then a
bounded linear operator  T on  V is said to be a Hermitian operator if [Tv,  v ]  \in \mathbb{R} for all
 v\in V.

We first introduce the definition of the space of all  E ‐valued Lipschitz maps.

Definition 1.2. Let  X be a compact metric space. For any continuous map  F:Xarrow E,
we call a Lipschitz map if

 L(F)= \sup\{\frac{\Vert F(x)-F(y)\Vert_{E}}{d(x,y)} :x, y\in Xx\neq y\}<\infty.
The space of all  E ‐valued Lipschitz maps is denoted by Lip(X,  E ). We define some
complete norms on Lip(X,  E). We introduce two norms among them, which are known
as simple but important norms on Lip(X,  E ). First is

and second is

 \Vert\cdot\Vert_{L}=L(\cdot)+\Vert\cdot\Vert_{\infty}.

Both norms make Lip(X,  E ) a complete, so Lip(X,  E ) is a Banach space. However there
are points of agreement and difference between them. In this paper, we shall compare
two norms. For any  f\in Lip(X) and  e\in E we define the tensor product  f\otimes e by

 (f\otimes e)(x)=f(x)e\in E, x\in X.

We have  f\otimes e\in Lip(X, E) by definition.
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2. HERMITIAN OPERATOR

Fleming and Jamison in [4] proved the characterization of Hermitian operators on
 C(X, E) .

Theorem 2.1. [4, Theorem 4] Let  X be a compact Hausdorff space and  E a complex
Banach space. Suppose that  C(X, E) is the Banach space of all continuous functions on
 X with values in  E with the supremum norm. A bounded linear operator  T on  C(X, E)
is a Hermitian operator if and only if for each  x\in X there is a Hermitian operator  \phi(x)
on  E such that for any  F\in C(X, E) we have

 TF(x)=\phi(x)F(x) , x\in X.

In the case of Banach spaces of vector‐valued Lipschitz maps, the study of Hermitian
operator has been researched.

2.1. Hermitian operators on Lip(X,  E ) with  \Vert\cdot\Vert_{\max} . Defining  1\cdot\Vert_{\max} on Lip(X,  E),
some researchers study Hermitian operators. The following theorem is proved by Botelho,
Jamison, Jiménez‐Vargas and Villegas‐Vallecillos.

Theorem 2.2. [2, Theorem 2.4] Let  X be a compact and 2‐ connected metric space and
 E a Banach space. Then  T is a Hermitian operator on (Lip(X,  E),  \Vert\cdot\Vert_{m} ) if and only if
there exists a Hermitian operator  \phi :  Earrow E such that

 TF(x)=\phi(F(x)) , F\in Lip(X, E) , x\in X.

2.2. Hermitian operators on Lip(X,  E ) with  \Vert  \Vert_{L} . We conjecture that when we
consider Hermitian operators on Lip(X,  E ) with respect to  \Vert .  \Vert_{L} , a similar argument
will essentially still work to give similar results. But no proof of the characterization
of Hermitian operators in full generality has been published. General case is still open.
However Botelho, Jamison, Jiménez‐Vargas and Villegas‐Vaııecillos showed that similar
statement with [2, Theorem 2.4] holds in the case when  E=\mathbb{C} in [3].

Theorem 2.3. [3, Theorem 3.1] Let  X be a compact metric space. A bounded linear
operator  T on Lip(X) is Hermitian operator if and only if there exists a real number  \lambda

such that

 T=\lambda\cdot I.

Moreover Hatori and the author have characterized in the case where  E is a uniform

algebra.

Theorem 2.4. [6, Theorem 8] Let  X be a compact metric space and  A be a uniform
algebra. Then a bounded linear operator  T : Lip(X,  A )  arrow Lip(X, A) is a Hermitian
operator if and only if there exists a real‐valuel function  f\in A such that

 T=1\otimes f\cdot I.

In the case of non‐commutative, do we obtain a similar statement? When  E is a Banach
space of a finite dimension, we obtain the following the theorem in [12].

Theorem 2.5. Let  X be a compact metric space and  E a Banach space of a finite dimen‐
sion. Then  T is a Hermitian operator on Lip(X,  E ) if and only if there exists a Hermitian
operator  \phi :  Earrow E such that

 TF(x)=\phi(F(x)) , F\in Lip(X, E) , x\in X.
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We shall briefly outline the necessary condition of Theorem 2.5. First we need a key
lemma. The next lemma is fundamental in this article.

Lemma 2.6. Let  E be a Banach space of a finite dimension. Then we have

Lip(X,  E )  =Lip(X)\otimes E.

If  E is infinite dimension, we have Lip  (X)\otimes E\subset Lip(X, E).This is the main reason
why we assume that  E is a Banach space of a finite dimension.

Proof of Theorem 2.5. For any  e\in E , we obtain  L(1\otimes e)=0 . Moreover,  T is a Hermitian
operator, we have  \mathbb{R}\ni  [T({\imath}\otimes e), 1\otimes e]_{L} . This shows that  L(T(1\otimes e))=0 . This implies
that T(ı  \otimes e)  \in 1\otimes E for all  e\in E . Thus we define a Hermitian operator  \phi :  Earrow E by

 T(1\otimes e)=1\otimes\phi(e) , e\in E.

Next, we define a Hermitian operator  T_{0}:Lip(X, E)arrow Lip(X, E) by

 (T_{0}F)(x)=(TF)(x)-\phi(F(x)) .

We divide our proof into two steps.
(Step 1) For all  e\in E with  \Vert e\Vert=1 , we define  S_{e}:Lip(X)arrow Lip(X) as follows.

Lip (X)  arrow^{S_{e}}  Lip(X)
 u (1)

 f - [T_{0}(f\otimes e)(\cdot), e]_{E}

We also get  S_{e}(1)(x)=[T_{0}(1\otimes e)(x), e]_{E}=0 . Since we see that  S_{e} is a Hermitian operator
on Lip(X), by Theorem 2.3 we have

 [T_{0}(f\otimes e)(x), e]_{E}=0, f\in Lip(X) .

(Step 2) For all  f\in Lip(X),  x\in X , we define  S_{fx} :  Earrow E as follows.

 E arrow^{S_{fx}} E
(1) (1)

 e - T_{0}(f\otimes e)(x)

By  [T_{0}(f\otimes e)(x), e]_{E}=0 for any  e\in E with  \Vert e\Vert=1 , applying [ı0, Theorem 5] we obtain

 T_{0}(f\otimes e)(x)=0.

By Lemma 2.6, we have

 T_{0}(F)=0, F\in Lip(X, E) .

We conclude that

 (TF)(x)=\phi(F(x)) .

 \square 

3. SURJECTIVE LINEAR ISOMETRY

The basic problem of interest is whether every surjective linear isometry  U of Lip(X,  E )
that carries 1 into 1 is of the form

 U(F)=Fo\phi,

where  \phi :  Xarrow X is a homeomorphism.
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3.1. Isometry on Lip(X,  E ) with  \Vert\cdot\Vert_{\max} . If we define the norm  \Vert\cdot\Vert_{\max} on Lip(X,  E ),
there are some results for isometries. We now introduce one of them.

Theorem 3.1. [1, Theorem 6] Let  X and  Y be compact metric spaces and  E and  D

quasi sub‐reflexive Banach spaces’ with trivial centralizers. Let  U : (Lip(X,  E ),  \Vert\cdot\Vert_{\max} )  arrow

 (Lip(Y, D), \Vert\cdot\Vert_{\max}) be a surjective linear isometry so that  U and  U^{-1} have property  Q^{2}
Then there exist  \varphi :  Yarrow X with  L( \varphi)\leq\max\{1, diam(X)\},  L( \varphi^{-1})\leq\max\{1, diam(Y)\}
and Lipschitz map  yarrow\psi(y) , where  \psi(y) :  Earrow Di\mathcal{S} surjective linear isometry for  y\in Y
such that

 UF(y)=\psi(y)F(\varphi(y)) , F\in Lip(X, E), y\in Y.

The next theorem is critical to their arguments in [1]. Note that a map  \delta_{x} is the
evaluation function on Lip(X,  E ) for  x\in X . In addition, a map  \Gamma is an isometric linear
embedding from Lip(X,  E ) with the norm  \Vert\cdot\Vert_{\max} into the algebra of continuous map on a
compact Hausdorff space (We omit the details, which are notationally complicated. See
[1]).

Theorem 3.2. Let  X be compact metric spaces and  E quasi sub‐reflexive Banach spaces.
If  x\in X and   e^{*}\in ext  (E^{*}) , we have

  e^{*}\circ\delta_{x}\in ext  (\Gamma(Lip(X, E)))^{*}

3.2. Isometry on Lip(X,  E ) with  \Vert\cdot\Vert_{L} . The case when we consider Lip(X,  E ) with the
norm  \Vert .  \Vert_{L} can be proved. Jarosz and Pathak proved that this statement holds in the
case when  E=\mathbb{C}.

Theorem 3.3. [9, Example 8] Let  X_{j} be a compact metric space for  j=1,2 . Suppose
that  U : Lip  (X_{1})arrow Lip(X_{2}) rs a map. Then  U is a surjective isometry if and only if there
exists  \alpha\in \mathbb{C} with  |\alpha|=1 , a surlective   isomet_{7}y\phi :  X_{2}arrow X_{1} such that

 U(f)=\alpha f\circ\phi(x) , f\in Lip(X_{1}), x\in X_{2}.

Moreover Hatori and the author have characterized in the case where  E is a unital

commutative  C^{*} algebra.

Theorem 3.4. [7, Corollary 14] Let  X_{j} be a compact metric space and  Y_{j} a compact
Hausdorff space for  j=1,2 . Suppose that  U : Lip  (X_{1}, C(Y_{1}))arrow Lip(X_{2}, C(Y_{2})) is a
map. Then  U is a surjective isometry if and only if there exists  h\in C(Y_{2}) with  |h|=1
on  Y_{2} , a continuous map  \phi :  X_{2}\cross Y_{2}arrow X_{1} such that  \phi(\cdot, y) :  X_{2}arrow X_{1} is a surjective
isometry for every  y\in Y_{2} , and a homeomorphism  \tau : Y2  arrow Yı which satisfy that

 U(F)(x, y)=h(y)F(\phi(x, y), \tau(y)) , (x, y)\in X_{2}\cross Y_{2}

Essential to the Lumer’s method is the following theorem.

Theorem 3.5. Let  V_{1} and  V_{2} be Banach spaces. Suppose that  T is a Hermitian operator
on  V_{1} and  U is an isometry from  V_{1} onto  V_{2} . Then we have  UTU^{-1} is a Hermitian
operator.

It is interesting that this can result in a significant loss of convex or extreme points.
Note that  M_{n}(\mathbb{C}) is the Banach algebra of complex matrices of degree  n by  M_{n}(\mathbb{C}) . The
metric we consider on  M_{n}(\mathbb{C}) is operator norm. Theorem 2.5 deduce Theorem 3.6 in [12]
by applying above Theorem 3.5.

 1E is quasi sub‐reflexive if  e^{*}\in ext(E^{*})\Rightarrow\exists e\in S(E) s.t.  e^{*}(e)=1.
 2U have property  Q if  \forall y\in Y,  \forall u\in D,  \exists F\in Const(X, E) s.t.  UF(y)=u
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Theorem 3.6. Let  X_{j} be a compact metric space  forj=1,2 . Then  U:Lip(X_{1}, M_{n}(\mathbb{C}))arrow I
 Lip(X_{2}, M_{n}(\mathbb{C})) is a linear surjective isometry such that  U(1)=1 if and only if there exists
a unitary matrix  V\in M_{n}(\mathbb{C}) , and a surjective isometry  \varphi :  X_{2}arrow X_{1} , such that

 (UF)(x)=VF(\varphi(x))V^{-1}, F\in Lip(X_{1}, M_{n}(\mathbb{C})), x\in X_{2}
or

 (UF)(x)=VF^{t}(\varphi(x))V^{-1}, F\in Lip(X_{1}, M_{n}(\mathbb{C})), x\in 
X_{2},
where  F^{t}(y) denote transpose of  F(y) for  y\in X_{1}.

We now prove Theorem 3.6. We shall omit the proof of sufficient condition for Theorem
3.6. We assume that  U:Lip(X_{1}, M_{n}(\mathbb{C}))arrow Lip(X_{2}, M_{n}(\mathbb{C})) be a surjective linear isome‐
try with  U(1)=1 . We denote the set of all Hermitian elements of  M_{n}(\mathbb{C}) by  H(M_{n}(\mathbb{C})) .
We denote a left multiplication operator for  A\in M_{n}(\mathbb{C}) by  M_{A} , which is a bounded
operator such that

 M_{A}(B)=AB
for  B\in M_{n}(\mathbb{C}) .

Lemma 3.7. If  A\in H(M_{n}(\mathbb{C})) , then  M_{A} is a Hermitian operator.

Theorem 3.8. [13, Corollary]  A operator  T be a Hermitian on a unital  C^{*} algebra if and
only if there exist a Hermitian element  E and a  *‐derivation  D such that

 T=M_{E}+iD.

Moreover, by an argument for the Banach algebra of complex matrices, we obtain the
next theorem.

Theorem 3.9. If  D on  M_{n}(\mathbb{C}) is  *‐derivation then there exists  B\in M_{n}(\mathbb{C}) with  B^{*}=-B

such that

 D(A)=BA-AB, A\in M_{n}(\mathbb{C}) .

Applying above two theorem and Theorem 2.5, we obtain a characterization of Hermit‐
ian operators on Lip(X,  M_{n}(\mathbb{C}) ).

Theorem 3.10.  A operator  T:Lip(X, M_{n}(\mathbb{C}))arrow Lip(X, M_{n}(\mathbb{C})) is a Hermitian if and
only if there exist  E\in H(M_{n}(\mathbb{C})) and  D:*‐derivation on  M_{n}(\mathbb{C}) such that

 T=M_{1\otimes E}+i\hat{D}.
Note that

 M_{1\otimes E}(F)(x)=EF(x) , F\in Lip(X, M_{n}(\mathbb{C}))
and

 \hat{D}(F)(x)=D(F(x)) , F\in Lip(X, M_{n}(\mathbb{C})), x\in X
 =BF(x)-F(x)B,  B\in\Lambda ff_{n}(\mathbb{C}) with  B^{*}=-B.

Lemma 3.11. For any  E\in H(M_{n}(\mathbb{C})) , there exists  E_{0}\in H(it_{1}l_{n}(\mathbb{C})) such that

 U(1\otimes E)=1\otimes E_{0}

Proof. Since  E\in H(M_{n}(\mathbb{C})) we have  M_{1\otimes E} is a Hermitian operator on Lip(X,  M_{n}(\mathbb{C}) ).
By Theorem 3.5  UM_{1\otimes E}U^{-1} is a Hermitian operator. Applying Theorem 3.10 there exists
 E_{0}\in H(M_{n}(\mathbb{C})) and  *‐derivation  D on  M_{n}(\mathbb{C}) such that

 (UM_{1\otimes E}U^{-1})(F)(x)=E_{0}F(x)+iD(F(x))

84



85

for any  F\in Lip(X_{1}, M_{n}(\mathbb{C})) and  x\in X_{2} . This implies that

 U(1\otimes E)(x)=(UM_{1\otimes E}U^{-1})(1)(x)=E_{0}
for all  x\in X_{2}.  \square 

We define a map  \psi_{0}:H(M_{n}(\mathbb{C}))arrow H(M_{n}(\mathbb{C})) by

(1)  U(1\otimes E)=1\otimes\psi_{0}(E) .

Since  M_{n}(\mathbb{C})=H(M_{n}(\mathbb{C}))+iH(M_{n}(\mathbb{C})) , we also define a map  \psi :  M_{n}(\mathbb{C})arrow M_{n}(\mathbb{C}) by

 \psi(A)=\psi(E_{1}+iE_{2})=\psi_{0} (Eı)  + i  \psi0  (E_{2}) .

We have

(2)  U(1\otimes A)=1\otimes\psi(A) , A\in M_{n}(\mathbb{C}) .

Since  U is a surjective linear isometry, we deduce the next lemma.

Lemma 3.12. The map  \psi is a complex linear isometry from  M_{n}(\mathbb{C}) onto itself.

Lemma 3.13. For any  f\in Lip(X_{1}) , there exists  g\in Lip(X_{2}) such that

 U(f\otimes 1)=g\otimes 1

Proof. For any  B\in M_{n}(\mathbb{C}) with  B^{*}=-B , we define  D(A)  :=BA-AB for  A\in M_{n}(\mathbb{C}) .
We have

 U^{-1}i\hat{D}U=M_{1\otimes E}+i\hat{D'}=i\hat{D'}
because  0=(U^{-1}i\hat{D}U)(1)=(M_{1\otimes E}+i\hat{D'})(1)=1\otimes E . In addition we have

 iU^{-1}(BU(f\otimes 1)-U(f\otimes 1)B)(x)=(U^{-1}i\hat{D}U)(f\otimes 1)(x)
 =i\hat{D'}(f\otimes 1)(x)=0.

This shows  BU(f\otimes 1)=U(f\otimes 1)B . Thus there exists  g(x)\in \mathbb{C} such that

 U(f\otimes 1)(x)=g(x)1.

It is easy to see that  g\in Lip(X_{2}) since  U(f\otimes 1)\in Lip(X_{2}, M_{n}(\mathbb{C})) .  \square 

By Theorem Jarosz in [8], we get the next lemma.

Lemma 3.14. There exists a surjective isometry  \varphi :  X_{2}arrow X_{1} such that

(3)  U(f\otimes 1)(x)=f(\varphi(x))\otimes 1

for all  f\in Lip(X_{1}) and  x\in X_{2}.

Proof of Theorem 3.6. By (1) and (3), for  E\in H(AI_{n}(\mathbb{C})),  f\in Lip(X_{1}) and  x\in X_{2} , we
have that

 U(f\otimes E)(x)=U(M_{1\otimes E}(f\otimes 1))(x)=UM_{1\otimes E}U^{-1}
U(f\otimes 1)(x)

 =(M_{1\otimes\psi_{0}(E)}+i\hat{D})(U(f\otimes 1))(x)
 =M_{1\otimes\psi_{0}(E)}(U(f\otimes 1))(x)+i\hat{D}(U(f\otimes 1))(x)
 =\psi_{0}(E)(U(f\otimes 1)(x))=f(\varphi(x))\psi_{0}(E)
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For any  A\in M_{n}(\mathbb{C}) , there exists  E_{1},  E_{2}\in H(M_{n}(\mathbb{C})) such that  A=E_{1}+iE_{2} . Applying
(2), we get

 U(f\otimes A)(x)=U(f  \otimes (Eı  + iE2))(x)
 =U(f\otimes E_{1})(x)+iU(f\otimes E_{2})(x)

 =f(\varphi(x))\psi_{0}(E_{1})+if(\varphi(x))\psi_{0}(E_{2})
 =f(\varphi(x))\psi(A)

 =\psi((f\otimes A)(\varphi(x)))

for any  f\in Lip(X_{1}) and  x\in X_{2} . By Lemma 2.6 and the theorem of Schur in [14], we
conclude Theorem 3.6.  \square 

In Theorem 3.6 we characterize unital surjective linear isometries on the algebra of
Lipschitz maps from  X into  M_{n}(\mathbb{C}) whose centralizers are trivial. Comparison of Theorem
6 in [1] and Theorem 3.6 gives a fact that a similar result holds even though way to prove
are different.
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