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Zero set, theorem of a definable closed set
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1 Introduction

Let M = (R,+,-,<,...) be an o-minimal expansion of the standard struc-
ture R = (R,+,-,<) of R. Note that if M = R, then a definable C"
manifold is a C" Nash manifold. Definable C" categories based on M are
generalizations of the C" Nash category.

For any definable closed subset A of R™ and 1 < r < oo, there exists a
definable C" function f : R™ — R such that A = f~1(0) ([2]). We consider
the case where » = co and its applications.

General references on o-minimal structures are [1], [2], see also [11]. The
term “definable” means “definable with parameters in M”.

Theorem 1.1. Let X be an affine definable C*° manifold and V' a definable
subset closed in X. Then there exists a non-negative definable C* function
f:X — R such that f~1(0)=V.

As applications of Theorem 1.1, we have the following results.

Theorem 1.2. Let M = (R, +,-,<,¢",...) be an exponential o-minimal
expansion of the standard structure R = (R, +, -, <) of the field of real num-
bers with C° cell decomposition. Then every n-dimensional definable C'*°
manifold X is definably C™ imbeddable into R*" 1.
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Theorem 1.2 is proved in [3] and its definable C" case (1 < r < 00) is
proved in [8]. We give another proof of it.

Theorem 1.2 is the definable version of Whitney’s imbedding theorem
(e.g. 2.14 [4]). Even in the Nash category (i.e. M = R), we cannot drop the
assumption that M is exponential by Theorem 1.2 [10].

Theorem 1.3 ([6]). If0 < s < oo and M is an exponential o-minimal ex-
pansion of R = (R, 4+, -, <) with C> cell decomposition, then every definable
C*® map between definable C* manifolds is approximated in the definable C*
topology by definable C'*™° maps.

Its equivariant version is proved in [6].
Using Theorem 1.3 and by a way similar to the proof of Theorem 1.2 and
1.3 [5], we have another proof of the following theorem ([3]).

Theorem 1.4 ([3]). Let 1 = s < r < oo, then every definable C* manifold
admits a unique definable C™ manifold structure up to definable C™ diffeo-
morphism.

2 Proof of our results.

Proof of Theorem 1.1. By definition of affineness and 3.2 [9], X is definably
O diffeomorphic to a definable C* submanifold of some R’ which is closed
in R!. We identify X with its image. Thus V is closed in R'. Since M admits
C® cell decomposition, there exists a C* cell decomposition D partitioning
V. For every cell C € D, the closure C' of C in X lies in V. Thus if
V=0CU---UC,, thenV = C,U---UC,,. If C;is bounded and k-
dimensional, then Cj is definably C> diffeomorphic to [—1,1]*. Hence Cj is
the zeros of a definable C'*° function. Thus the case where V' is compact is
proved.

Let C; be unbounded. Replacing R! by R, we may assume that 0 ¢ C;.
Let i : R — {0} — R — {0},i(r) = 25, where ||z|| denotes the norm

IEEE
of z. Then C! = i(C;) U {0} is the one point compactification of C;. Thus
there exists a definable C*° function ¢ : R — R with C/ = ¢~1(0). Hence
C; is definably C* diffeomorphic to the set C¥ = {(x,y) € R*! x R|y)(z) =
0, ||z]|>y = 1}. Therefore C; is the zeros of a definable C* function. Since
V =C,U---UCGC,, V is the zeros of a definable C* function ¢. Thus
f:=¢*: X — R is the required function. |



The following is a definable C'*° partition of unity.

Proposition 2.1. Let {U;}¥_, be a definable open covering of a definable C*°
manifold X . Then there exist definable C™ functions A; - X — R (1 <i < k)
such that 0 < \; < 1, supp \; C U; and Zle A= 1.

If X is affine, then the definable C" version of Proposition 2.1 is known
in 4.8 [7].

Proof. We now prove that there exists a definable open covering {V;}¥_,
of X such that V; C U, (1 <i < k), where V; denotes the closure of V; in X.

We proceed by induction on k. If £ = 1, then there is nothing to prove.
Assume that there exists a definable open covering {V;}*=! U{U,} of X such
that V; C U;, (1 <i<k—1).

Let X;_1 := Uf;ll‘/;. By the inductive hypothesis, there exists a definable
open covering {W’,}f;ll of X;._1 such that ¢l W; C V;, where ¢l W; means the
closure of W; in X;_4.

We may assume that U}, is affine. Let Z, := Ukmu;“;llw and C'l Z;, denote
the closure of Zy, in Uy. By Theorem 1.1, there exists a non-negative definable
C function ¢, : U, — R such that ¢, ' (0) = Cl Zj. Since ¢l Wy C V4, ¢y is
extensible to a non-negative definable C* function ¢;. : U, U W; — R such
that (b,lc_l(()) = Cl Z;, UW;. Inductively, we have a non-negative definable
C* function ¢ : X — R such that ¢~'(0) = Cl Z, UW;--- U W,_;. Let
Vi == {x € Uplo(z) > 0}. Then V;, = {z € X|¢(z) > 0}, Vi C Uy and
{Vi}%_, is the required definable open covering of X.

By Theorem 1.1, we have a non-negative definable C'*° function y; : U; —
R such that p;*(0) = U; — Vi. Thus p; is extensible to a non-negative
definable C* function g} : X — R such that p;~'(0) = X —V;. Therefore
A=/ Zle i} is the required definable C" partition of unity. |

Proof of Theorem 1.1. Let {¢; : U; — R"}* | be a definable C" atlas
of X. By Proposition 2.1, we have definable C* functions \; : X — R,
(1 <i < k)such that 0 < \; < 1, supp \; C U and Zle A; = 1. Thus the
map F : X — R" xR¥ defined by F(z) = (A (2)¢1(x), ... \e(2)dp(x), M1 (2),
..y A\k(2)) is a definable C*° imbedding. Hence X is affine. Thus it is either
compact or compactifiable by 1.2 [7]. Hence we may assume that X is affine
and compact at the beginning. A similar argument of the proof of 1.4 [12],
every definable C* map f : X — R?"*! can be approximated in the C"
topology by an injective definable C* immersion h : X — R?*"*!. Since X
is compact, h is the required definable C*° imbedding. |
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