Some remarks on Hrushovski constructions in irrational case

岡部峻典

(Shunsuke Okabe) 神戸大学大学院システム情報学研究科 (Kobe University Graduate School of System Informatics)

March 25, 2019

Abstract

In rational case, the index of a free amalgamation class \mathscr{C}_f is infinite if and only if the theory of the Fraïssé limit \mathcal{M}_f of \mathscr{C}_f is model complete. On the other hand, it is unknown whether the same assertion holds or not in irrational case. However, we can construct a free amalgamation class with the model complete theory from a given class. In this paper, we will introduce the constructions of free amalgamation classes with generic structures having model complete theories.

1 Introduction

Definition 1.1. Let $\alpha \in \mathbb{R}$ with $0 < \alpha < 1$ and $A \subseteq B$ be finite graphs.

(1)
$$\delta_{\alpha}(A) := |A| - \alpha |E(A)|.$$

(2)
$$\delta_{\alpha}(B/A) := \delta_{\alpha}(B) - \delta_{\alpha}(A) = |B \setminus A| - |E(B) \setminus E(A)|.$$

(3)
$$A \leq_{\alpha} B : \iff \delta_{\alpha}(X/A) > 0$$
 for all $A \subsetneq X \subseteq B$.

(4) $\mathscr{C}_{\alpha} := \{A \mid \emptyset \leq_{\alpha} A\}.$

We say A is closed in B when $A \leq_{\alpha} B$.

Definition 1.2. Let $A \subseteq B, C$ with $A = B \cap C$ and $D \supseteq B, C$ with D = BC. $D = B \otimes_A C$ if D has no edges between $B \setminus A$ and $C \setminus A$, called a *free amalgam* of B and C over A.

Definition 1.3. Suppose $\mathscr{C} \subseteq \mathscr{C}_{\alpha}$ is closed under ismorphism.

- (1) (Hereditary Property) For all $A \in \mathscr{C}$, every $B \subseteq A$ is in \mathscr{C} .
- (2) (Free Amalgamation Property) For all $A, B, C \in \mathscr{C}$ with $A \leq_{\alpha} B, C$, we have $B \otimes_A C \in \mathscr{C}$.

 ${\mathscr C}$ is *free amalgamation class* if ${\mathscr C}$ has the hereditary property and the free amalgamation property.

Note that \mathscr{C}_{α} is the free amalgamation class.

Fact 1.4. If \mathscr{C} is the free amalgamation class, then there is a countable graph \mathcal{M} called a generic structure which has the following conditions:

- (1) Every $A \subseteq_{\text{fin}} \mathcal{M}$ is in \mathscr{C} .
- (2) For all $A \subseteq_{\text{fin}} \mathcal{M}$, there is $B \subseteq_{\text{fin}} \mathcal{M}$ such that $A \subseteq B \leq_{\alpha} \mathcal{M}$.
- (3) For all $A, B \in \mathscr{C}$ with $A \leq_{\alpha} \mathcal{M}$ and $A \leq_{\alpha} B$, we can closedly embed B into \mathcal{M} fixing A pointwise.

2 Model completeness in rational cases

Let $m, d \in \mathbb{N} \setminus \{0\}$ be relatively prime with each other and m < d, and $\alpha = m/d$.

Definition 2.1. A function $f : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is good if the following conditions hold:

- (1) $f(0) = 0, f(1) \le 1.$
- (2) f is a concave, unbounded and (piecewise) smooth function.
- (3) $f'(x) \le 1/dx$.

Example 2.2. Let $\alpha = 1/2$. Then $f(x) = \log(x+1)/2$ is good.

Fact 2.3. Let f be good and $\mathscr{C}_f := \{A \in \mathscr{C}_\alpha \mid f(|X|) \leq \delta_\alpha(X) \text{ for all } X \subseteq A\}$. Then \mathscr{C}_f is the free amalgamation class.

Definition 2.4. $A \in \mathscr{C}$ is absolutely closed in \mathscr{C} if for all $B \in \mathscr{C}$, $A \subseteq B$ implies $A \leq_{\alpha} B$.

Fact 2.5. Suppose that for all $A \in \mathcal{C}$, there is $C \in \mathcal{C}$ with $A \leq_{\alpha} C$ such that C is absolutely closed. Then the theory of the generic structure of \mathcal{C} is model complete.

Fact 2.6. Let $\alpha \in \mathbb{Q}$ with $0 < \alpha < 1$ and f be Hrushovski's good concave function. Then \mathscr{C}_f has the above condition, so $\operatorname{Th}(\mathcal{M}_f)$ is model complete.

3 Main Theorem

When α is irrational, it is impossible to consider good functions. We replace a condition in the definition of good functions.

Definition 3.1. Let $\alpha \in \mathbb{R}$ with $0 < \alpha < 1$. $f : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is good if the following conditions hold:

(1) $f(0) = 0, f(1) \le 1.$

- (2) f is a concave, unbounded and (piecewise) smooth function.
- (3) $f'(x) \le d_{\alpha}^{+}(x)/dx$.

Where $d^+_{\alpha}(x) := \min\{p - q\alpha \mid p \le x, p/q > \alpha\}.$

Fact 3.2. Let $\alpha \in \mathbb{R}$ with $0 < \alpha < 1$ and f be good. Then \mathscr{C}_f is the free amalgamation class.

Fact 3.3. Each irrational α has infinitely many good functions.

To construct a free amalgamation class having good graphs, we will consider a weak notion of free amalgamation classes.

Definition 3.4. Let $n < \omega$. Suppose $\mathscr{C}_0 \subseteq \mathscr{C}_\alpha$ is closed under isomorphism and has the hereditary property. \mathscr{C}_0 is the *n*-free amalgamation class if for all $A, B, C \in \mathscr{C}_0$ with $A \leq_\alpha B, C$ and $D = B \otimes_A C$, we have $D \in \mathscr{C}_0$ only when |B|, |C| < n.

Definition 3.5. Suppose $\mathscr{C}_0 \subseteq \mathscr{C}_\alpha$ is 0-free amalgamation class. $F_\alpha(\mathscr{C}_0) := \{B_1 \otimes_A B_2 \mid A \cong A', B_i \cong B'_i \text{ and } A = B_1 \cap B_2 \leq_\alpha B_i \text{ for some } A', B'_i \in \mathscr{C}_0\}.$

Lemma 3.6. Let $n < \omega$ and \mathscr{C}_0 be an *n*-free amalgamation class. Then $F_{\alpha}(\mathscr{C}_0)$ is an n+1-free amalgamation class. In particular, $A \in \mathscr{C}_0 \iff A \in F_{\alpha}(\mathscr{C}_0)$ whenever |A| < n.

Lemma 3.7. Let \mathscr{C}_0 is 0-free amalgamation class. Then $\mathscr{C} := \lim_{n \to \infty} F^n_{\alpha}(\mathscr{C}_0)$ is the smallest free amalgamation class containing \mathscr{C}_0 .

Definition 3.8. Let $\alpha \in \mathbb{R}$ with $0 < \alpha < 1$. $A \subseteq B$ is an zero-extension if $\delta_{\alpha}(B/A) = 0$ and $\delta_{\alpha}(X/A) > 0$ for every intermediate X between A and B.

The zero-extension is the important notion for model completeness in rational cases, but irrational α has no zero-extensions. Then we introduce another notion. $A \subseteq B$ is an *intrinsic extension* if $\delta_{\alpha}(B/A) \leq 0$ and $\delta_{\alpha}(X/A) > 0$ for every intermediate X between A and B.

Example 3.9. Let $\alpha = 1/\sqrt{5}$. Then the below relative graph is intrinsic extension because 5/9 is the best approximation to α from below with denominator less than 10.

Lemma 3.10. Let $\alpha \in \mathbb{R}$ with $0 < \alpha < 1$ and f be good. Assume that $A \in \mathscr{C}_f$ has sufficiently many vertices. Then we can extend A to C which is not necessarily in \mathscr{C}_f but whose every proper subset is in \mathscr{C}_f by using an intrinsic extension. In particular, C is absolutely closed in a smallest free amalgamation class containing $\mathscr{C}_f \cup \{C\}$.

Theorem 3.11. Suppose α is irrational and has a good function. Then there is a free amalgamation class $\mathscr{C} \subseteq \mathscr{C}_{\alpha}$ such that its generic structure \mathcal{M} has a model complete theory.

Proof. It is enough to find an increasing sequence of unbounded free amalgamation classes $\mathscr{C}_0 \subseteq \mathscr{C}_1 \subseteq \cdots \subseteq \mathscr{C}_n \subseteq \cdots$ such that:

(1) For all A with at most n vertices, $A \in \mathscr{C}_n \iff A \in \mathscr{C}_{n+1}$.

- (2) For each $n < \omega$, there is $C \in \mathscr{C}_{n+1}$ such that every $A \in \mathscr{C}_n$ with n vertices can be closedly embedded into C.
- (3) Above C is absolutely closed in \mathscr{C}_m for all m > n.

Let $\mathscr{C} = \bigcup_{n < \omega} \mathscr{C}_n$. By the conditions, *C* is absolutely closed in \mathscr{C} . Hence \mathscr{C} has a generic structure \mathcal{M} having a model complete theory by Lemma ???.

4 Future works

Conjecture 4.1. There is an irrational α such that $\operatorname{Th}(\mathcal{M}_f)$ is model complete for all good f.

Problem 4.2. For all α having an unbounded free amalgamation class but no good function, is there \mathscr{C} such that its theory of the generic structure is model complete?

References

- [1] J.T. Baldwin, N. Shi, Stable generic structures, Ann. Pure Appl. Log. 79, p.1-35, 1996.
- [2] E. Hrushovski, A stable \aleph_0 -categorical pseudoplane, preprint, 1988.
- [3] F. O. Wagner, *Simple Theories*, Mathematics and Its Applications, Kluwer Academic Publishers, 2000.
- [4] H. Kikyo, Model complete generic graphs I, RIMS Kokyuroku 1938, p.15-25, 2015.
- [5] H. Kikyo, Model Completeness of Generic Graphs in Rational Cases, Archive for Mathematical Logic, Volume 57, Issue 7-8, p.769-794, 2018.