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1 Introduction

A graph is an R‐structure in which  R is irreflexive and symmetric. In this
article, we will use a compactness argument to examine the expressibility of
a class of finite graphs. First let us explain a simple example as follows: Let
 C be the class of all finite circles, i.e., all graphs  H of the form:

 \bullet H=\{h_{1}, . . . , h_{n}\} ;

 \bullet  R^{H}=\{h_{1}h_{2}, h_{2}h_{3}, . . . , h_{n-1}h_{n}, h_{n}h_{1}\} , where hk denotes  (h, k),  (k, h) .

Then  C is not an elementary class, because finiteness cannot be represented
by a sentence or even by a set of sentences. Furthermore, there is no R‐
sentence  \varphi such that, for any finite graphs  G,

 G\models\varphi\Leftrightarrow G\in C.

For showing this, we can use a compactness argument: Suppose that there
were such a sentence  \varphi . Let  T be the theory consisting of the following
sentences:

1. Graph axioms;

2. Every node has exactly two neighbors;

3. There is no (finite) cycles.
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Since every finite part of  T is satisfied by a graph in  C , by compactness, there
is a countable infinite graph  G_{0}\models T\cup\{\varphi\} . By extending  G_{0} , if necessary,
we can assume  G_{0} is a disjoint union of countably many  \mathbb{Z}‐chains. Notice
that every graph consisting of two circles does not belong to  C . So, again by
compactness, there is a countable infinite graph  G_{1}\models T\cup\{\neg\varphi\}.  G_{1} is also
assumed to be a disjoint union of countably many  \mathbb{Z}‐chains. So, we must
conclude  G_{0}\cong G_{1} , a contradiction.

In this paper, concerning finite graphs, we consider a different type of
(non‐)expressibility.

2 Preliminaries

Let  L=\{R(*, *)\} and  L^{*}=L\cup\{X_{i}(*) : i<n\} , where  R is a binary
predicate symbol, and  X_{i} ’s are unary predicate symbols. Let  T be a finite
set of  L‐sentences and  \varphi(X_{0}, \ldots, X_{n-1}) an  L^{*}‐sentence.

Definition 1.  PC_{fin}(\varphi, T) is the class of  L‐reducts of finite models of   T\cup

 \{\varphi\} . If  T is the axiom for graphs, we simply write  PC_{fin}(\varphi) for  PC_{fin}(\varphi, T) .
 PC stands for ‘pseudo elementary class.’

Example 2. 1. Let  C be the class of all non‐connected finite graphs.
Then, there is a sentence  \varphi such that  PC_{fin}(\varphi)=C . Let  \varphi be the
sentence asserting that (i) both  X_{0} and  \neg X_{0} are non‐empty, and (ii)
there is no edge between  X_{0} and  \neg X_{0} . Then clearly  \varphi satisfies the
required condition.

2. Let  C be the class of all finite graphs with a cycle. Then Then, there
is a sentence  \varphi such that  PC_{fin}(\varphi)=C.

Now another important point will be explained below. In the structure
 \mathbb{N} , by a coding method, finite sets are represented. In other words,  \mathbb{N} can be
considered as a model of finite set theory. So, we assume  \mathbb{N}=(\mathbb{N},  0,1,  +,  \cdot,  <

 ,  \in) , where  \in is the membership relation. Finite graphs are objects in  \mathbb{N}.

Let  G be a finite graph with the code  a_{G} , i.e.  G=\{g\in \mathbb{N} : \mathbb{N}\models g\in a_{G}\}.
The connectedness of  G can be expressed by a sentence in  \mathbb{N} as follows:  G

is connected  \Leftrightarrow there is a coded function  f :  [0, n]arrow G such that (i)
ran (f)=G, and (ii)  R(f(i), f(i+1))(\forall i<n) .

Let  \mathbb{N}^{*}\succ \mathbb{N} be a recursively saturated countable model. In  \mathbb{N}^{*} , a coded
set  \{x\in \mathbb{N}^{*} : x\in a\} , where  a\in \mathbb{N}^{*} , is not necessarily finite. Let  con(x) be

10



11

the formula expressing (in  \mathbb{N} ) that the graph coded by  x is connected, and
let  a\in \mathbb{N}^{*} be an element with  \mathbb{N}^{*}\models con(a) . The graph coded by  a is not
connected in general, although it is connected in the sense of  \mathbb{N}^{*}

3 Non‐expressibility

As an application of compactness argument to finite graphs, we show the
following proposition, which is due to Fagin [1].

Proposition 3. Let  C be the class of all finite connected graphs. Then there
is no  L^{*} ‐sentence  \varphi=\varphi(X_{0}, \ldots, X_{n-1}) with  C=PC_{fin}(\varphi) .

Sketch of Proof. A more detailed proof of a more general result be given in
our forthcoming paper. Suppose that there were a sentence  \varphi(X_{0}, \ldots, X_{n-1})
with  C=PC_{fin}(\varphi) . Let  C_{n} be the circle graph with the universe  [0, n-1]
and the edges  R(i, i+1)(i<n-1) and  R(n-1,0) . Now we work in  \mathbb{N}^{*}

Let  n^{*} be a nonstandard number, and let  G=C_{n^{*}} . Since   C_{n}\models\varphi for all  n,

we have some coded sets  D_{0} , . . . ,  D_{n-1} such that

 G\models\varphi(D_{0}, \ldots, D_{n-1}) . (1)

By the recursive saturation, there are two points  a<b\in \mathbb{N}^{*} such that
 tp_{\mathbb{N}^{*}}(a/n^{*}, d_{0}, \ldots, d_{n-1})=tp_{\mathbb{N}^{*}}
(b/n^{*}, d_{0}, \ldots, d_{n-1}) , where  d_{i} is the code of
 D_{i} . We define a new graph  G' by:

1. The universe of  G' is the same as  G , hence  |G'|=|G|=[0, n^{*}-1] ;

2.  R^{G'}=R^{G}\backslash \{a(a+1), b(b+1)\}\cup\{a(b+1), b(a+1)\}
Each of  G and  G' is a disjoint union of  \mathbb{Z}‐chains with coloring by  X_{i}' s.

By our construction,  G and  G' are definable (and hence both are coded in
 \mathbb{N}^{*}) . Moreover, they are isomorphic as  \{R, X_{0}, . . . , X_{n-1}\}‐structures, since
they have the same  \mathbb{Z}‐chains (counting multiplicity) with coloring. Hence we
have:

Claim A.  G\cong\{R,X_{0},\ldots,X_{n-1}\}G' . This isomorphism, say  \sigma , is not definable
in  \mathbb{N}^{*} But, each  D_{i} is  \sigma ‐invariant.

On the other hand,  G' is not connected in the sense of  \mathbb{N}^{*} (in fact, it is a
disjoint union of two circles), hence we have:

Claim B.  G'\models\neg\varphi(B_{0}, \ldots, B_{n-1}) , for all coded sets  B_{i}' s.

The two claims above together with (1) yield a contradiction.  \square 
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