On Finite Approximation

板井 昌典 東海大学 理学部 情報数理学科 Masanori Itai * Dept of Math Sci, Tokai University

1 Introduction

In [1] we constructed a quantum 2-torus and studied its model theoretic properties. Next step would be the study of definable bijections between $T_q^2(\mathbb{F})$ and $T_{q'}^2(\mathbb{F})$, analogue of regular isomorphisms between algebraic varieties in algebraic geometry.

Recall three main theorems proved in [1];

- (1) $\mathcal{L}_{\omega_1,\omega}$ -theory of the quantum 2-torus is \aleph_1 -categorical.
- (2) The theory of quantum line-bundles is superstable.
- (3) With the pairing function, within $(\Gamma, \cdot, 1, q)$ we can define $(\Gamma, \oplus, \otimes, 1, q)$, and

$$(\Gamma, \oplus, \otimes, 1, q) \simeq (\mathbb{Z}, +, \cdot, 0, 1).$$

Hence the theory of the quantum 2-torus $(\mathbf{U}, \mathbf{V}, \mathbb{F}^*, \Gamma)$ with the pairing function is undecidable and unstable.

In [2] we associate quantum 2-tori T_{θ} with the structure over

$$\mathbb{C}_{\theta} = (\mathbb{C}, +, \cdot, y = x^{\theta}),$$

where $\theta \in \mathbb{R} \setminus \mathbb{Q}$, and introduce the notion of geometric isomorphisms between such quantum 2-tori.

We showed that the notion of geometric isomorphisms is closely connected with the fundamental notion of Morita equivalence of non-commutative geometry.

^{*}joint work with Boris Zilber, Oxford University

Theorem 1 The quantum 2-tori T_{θ_1} and T_{θ_2} are Morita equivalent if and only if

$$\theta_2 = \frac{a\theta_1 + b}{c\theta_1 + d} \text{ for some } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{Z}) \text{ with } |ad - bc| = 1.$$

Having Theorem 1, we study the isomorphism type of T_{θ} with respect to $\operatorname{GL}(2,\mathbb{Z})$. For this we consider the structure $\overline{\mathbb{R}}/E$ where E is the equivalence relation defined by

$$\theta_1 E \theta_2 \iff \left(\theta_2 = \frac{a\theta_1 + b}{c\theta_1 + d} \text{ for some} \left(\begin{array}{c}a & b\\c & d\end{array}\right) \in \mathrm{GL}_2(\mathbb{Z}), \ |ad - bc| = 1\right).$$

In the next section we introduce the notion of finite approximation and weak ring defined by Zilber in [4] and [5]. Then we study the equivalence relation from a finite approximation point of view. In section 3 we introduce the notion of finitely approximated subset of \mathbb{R} and show that any finitely approximated subset is a closed subset of \mathbb{R} .

2 Finite approximation

Let L be a language. Consider the following situation:

$$M_1 \subset M_2 \subset \cdots M_n \subset \cdots M^*$$

$$\downarrow \lim_{N}$$

Here each M_i is a finite *L*-structure. We view an infinite *L*- structure M^* as a limit of the sequence capturing all the properties of M_i 's, e.g., ultraproduct of those finite structures. N is another infinite *L*-structure. The mapping lim : $M^* \to N$ is a homomorphism. We are interested in subsets X of N^n that are finitely approximated (defined in section 3) by the sequence of finite structures.

From now on,

- *Z is the saturated nonstandard integers,
- μ is a highly divisible infinite nonstandard integer,
- $\overline{\mathbb{R}}$ is the one-point compactification of \mathbb{R} , i.e., $\overline{\mathbb{R}} = \mathbb{R} \cup \{\infty\}$,
- P^4 is a 4-ary relation.

Consider the following situation;

$$(^*\mathbb{Z}/\mu^2, +, P^4)$$

$$\lim_{(\overline{\mathbb{R}}, +, P^4)}$$

where \lim_{μ} is a homomorphism called *finite approximation* defined as follows;

for α with $-\frac{\mu^2}{2} \le \alpha < \frac{\mu^2}{2}$ we have $\frac{\alpha}{\mu} \in {}^*\mathbb{Q}$

where ${}^*\mathbb{Q}$ is the nonstandard rational numbers and we set

$$\lim_{\mu} (\alpha) = \operatorname{st}\left(\frac{\alpha}{\mu}\right).$$

The interpretation of P^4 is defined as follows

- on $*\mathbb{Z}/\mu^2$, $P^4(a_1, b_1, a_2, b_2) \iff a_1b_1 = a_2b_2$,
- on $\overline{\mathbb{R}}$, $P^4(x_1, y_1, x_2, y_2) \iff$ $[(x_1y_1 \equiv x_2y_2 \mod \mathbb{Z}) \bigvee (x_1 = \infty, y_1 = \infty)].$

Observe that

$$x_1y_1 \equiv x_2y_2 \mod \mathbb{Z} \iff e^{2\pi i (x_1y_1)} = e^{2\pi i (x_2y_2)}$$

and

$$\overline{\mathbb{R}} \times \overline{\mathbb{R}} \xrightarrow{e^{2\pi i (xy)}} S \subset \mathbb{C}$$

where S is a unit circle and viewed as a multiplicative group.

We have the following commutative diagram;

Observe also, $e^{2\pi i \frac{ab}{\mu^2}} \in S$.

2.1 Equivalence relation $E^{*\mathbb{Z}}$ on $*\mathbb{Z}/\mu^2$

We define an equivalence relation $E^*\mathbb{Z}$ on $*\mathbb{Z}/\mu^2$ corresponding to the equivalence relation $E^{\mathbb{R}}$.

Definition 2 $(E^*\mathbb{Z})$ Let $\alpha_1, \alpha_2 \in {}^*\mathbb{Z}/\mu^2$ be such that

$$-k\mu \leq \alpha_1, \alpha_2 < k\mu, \text{ for some } k \ll \mu.$$

Then

$$E^{*\mathbb{Z}}(\alpha_1, \alpha_2) \quad \stackrel{\text{def}}{\longleftrightarrow} \\ \exists a, b, c, d, \beta \in {}^*\mathbb{Z} \left[(|ad - bc| = 1) \land (\mu\beta = \alpha_1\alpha_2) \land (a\alpha_1 + b\mu = c\beta + d\alpha_2) \right]$$

Remark 3 We want to have the following equation

$$\frac{a\frac{\alpha_1}{\mu}+b}{c\frac{\alpha_1}{\mu}+d} = \frac{a\alpha_1+b\mu}{c\alpha_1+d\mu} = \frac{\alpha_2}{\mu}.$$
(1)

By multiplying both sides by μ we get

$$\frac{a\alpha_1\mu + b\mu^2}{c\alpha_1 + d\mu} = \alpha_2,$$

which may look equivalent to

$$(a\alpha_1\mu + b\mu^2 = c\alpha_1\alpha_2 + d\alpha_2\mu).$$
(2)

However, in \mathbb{Z}/μ^2 , we have $b\mu^2 \approx 0$. Thus we introduce β and the relation

 $(\mu\beta = \alpha_1\alpha_2) \land (a\alpha_1 + b\mu = c\beta + d\alpha_2)$

replaces the equation (2) in order to define the equivalence relation $E^{*\mathbb{Z}}(\alpha_1, \alpha_2)$ above.

The relation $E^{\mathbb{R}}$ has the following property;

Proposition 4 For any $\theta_1, \theta_2 \in \mathbb{R}$, if $E^{\mathbb{R}}(\theta_1, \theta_2)$ then there are $\alpha_1, \alpha_2 \in {}^*\mathbb{Z}$ such that $E^{*\mathbb{Z}}(\alpha_1, \alpha_2)$ where $\lim_{\mu}(\alpha_1) = \theta_1$ and $\lim_{\mu}(\alpha_2) = \theta_2$.

Proof: Take $\theta_1, \theta_2 \in \overline{\mathbb{R}}$ such that $E^{\mathbb{R}}(\theta_1, \theta_2)$. Fix $a, b, c, d \in \mathbb{Z}$ such that

$$\theta_2 = \frac{a\theta_1 + b}{c\theta_1 + d}$$

Take α_1 such that

$$\operatorname{st}\left(\frac{\alpha_1}{\mu}\right) = \theta_1.$$

Claim 5 There are $k_1, n_1 \in {}^{'}\mathbb{Z}$ such that $k_1, n_1 \ll \mu$ and

$$\operatorname{st}\left(\frac{k_1}{n_1}\right) = \operatorname{st}\left(\frac{\alpha_1}{\mu}\right) = \theta_1,$$

where $k_1, n_1 \in \mathbb{Z}$ means that k_1, n_1 are nonstandard integers (but not infinite).

Proof:Take $k_1, n_1 \in \mathbb{Z}$ to satisfy

$$\frac{ak_1 + bn_1}{ck_1 + dn_1} \approx \frac{a\frac{\alpha_1}{\mu} + b}{c\frac{\alpha_1}{\mu} + d}$$

Put

$$\frac{k_2}{n_2} = \frac{ak_1 + bn_1}{ck_1 + dn_1},$$

and set $\alpha_2 = \frac{\mu k_2}{n_2}$. Then we have st $\left(\frac{\alpha_2}{\mu}\right) = \theta_2$ and

$$\frac{a\frac{\alpha_1}{\mu} + b}{c\frac{\alpha_1}{\mu} + d} = \frac{a\alpha_1 + b\mu}{c\alpha_1 + d\mu}$$
$$= \frac{\alpha_2}{\mu}.$$

Thus

$$\theta_2 = \frac{a\theta_1 + b}{c\theta_2 + d}.$$

Put now

$$\beta := \alpha_1 \frac{k_2}{n_2}.$$

Then we have

$$(\mu\beta = \alpha_1\alpha_2) \land (a\alpha_1 + b\mu = c\beta + d\alpha_2.$$

Therefore $E^{*\mathbb{Z}}(\alpha_1, \alpha_2)$ holds.

QED

3 Finitely approximated subsets of reals

We work in the following situation;

Here Φ is a 1st-order definable set and Ψ is a set.

Definition 6 If Φ , Ψ satisfy the following conditions;

- for any $\overline{\alpha} = (\alpha_1, \cdots, \alpha_n)$ with $-\frac{\mu^2}{2} \le \alpha_1, \cdots, \alpha_n < \frac{\mu^2}{2}$, if $\overline{\alpha} \in \Phi$ then $\lim_{\mu} (\overline{\alpha}) \in \Psi$,
- for any $\overline{\theta} = (\theta_1, \cdots, \theta_n)$ with $\theta_i \in \overline{\mathbb{R}}$, if $\overline{\theta} \in \Psi$, then there are $\alpha_1, \cdots, \alpha_n$ with $-\frac{\mu^2}{2} \leq \alpha_1, \cdots, \alpha_n < \frac{\mu^2}{2}$, such that $\overline{\alpha} \in \Phi$ and $\lim_{\mu}(\overline{\alpha}) = \overline{\theta}$,

then we say that Ψ is finitely approximated by Φ .

Proposition 7 Suppose Φ is a 1st-order definable set such that Ψ is finitely approximated by Φ . Then Ψ is closed in the usual metric topology. In other words for a set of $(\mathbb{R})^n$ being closed is a necessary condition for being finitely approximated.

Proof:

We work in one-dimensional case. The other cases are similar. Proof is by contradiction. Assume Ψ is not closed.

Consider an infinite sequence $\theta_1, \theta_2, \dots, \theta_n, \dots \in \overline{\mathbb{R}}$ such that for each n, $\theta_n \in \Psi$, $\lim_{n \to \infty} \theta_n = \theta$ and $\theta \notin \Psi$.

Since Ψ is finitely approximated there is an infinite sequence $\alpha_1, \alpha_2, \cdots, \alpha_n, \cdots \in \mathbb{Z}/\mu^2$ such that for each $n, \alpha_n \in \Phi$, and $\lim_{\mu \to \infty} (\alpha_n) = \theta_n$.

Let $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n, \dots$ be an infinite sequence of rational numbers such that $\lim_{n\to\infty} \varepsilon_n = 0$. Since $\lim_{n\to\infty} \theta_n = \theta$, we may assume each ε_n satisfy

$$\frac{1}{2}|\theta - \theta_n| = \varepsilon_n.$$

Then there is an N such that for any n > N we have

$$|\theta_N - \theta_n| < \varepsilon_n.$$

Now consider a type

$$t(x) = \{x : |x - \alpha_n| < \varepsilon_n \, \mu\}.$$

It is easy to see that t(x) is satisfiable. By saturation there is an $\alpha \in {}^*\mathbb{Z}/{\mu^2}$ such that α realizes t(x) and $\alpha \in \Phi$. Further we have

$$|\alpha - \alpha_n| < \varepsilon_n \mu$$
 for all n .

Set $\theta' := \lim_{\mu} (\alpha) = \operatorname{st} \left(\frac{\alpha}{\mu}\right)$. Then for each *n* we have $|\theta' - \theta_n| < \varepsilon_n$. Thus $\theta' = \theta$. Now we have a contradiction since $\theta \notin \Psi$ and $\theta' \in \Psi$. **QED**

3.1 A sufficient condition for finite approximation

We examine carefully the argument in the proof of Proposition 7.

Let Ψ be a subset of $\overline{\mathbb{R}}$, and $\{\theta_n : n \in \mathbb{N}\}$ be a sequence in Ψ such that $\theta = \lim_{n \to \infty} \mathbb{N}$ in the usual metric topology.

For a 1st-order definable set Φ to finitely approximate the subset Ψ , we need the following;

For any infinite sequence $\{\alpha_n : n \in \mathbb{N}\}$ in Φ with

- for each n, $\lim_{\mu \to \infty} (\alpha_n) = \theta_n$,
- α realizes the type t(x) defined in the same way as in the proof of Proposition 7.

then $\alpha \in \Phi$ and $\lim_{\mu}(\alpha) = \theta$.

If this is the case we say that the metric topology with respect to Ψ and the topology in ${}^*\mathbb{Z}/{\mu^2}$ with respect to Φ coincide.

In summary we have

Proposition 8 Closed set Ψ is finitely approximated by Φ if and only if the metric topology with respect to Ψ and the topology in ${}^*\mathbb{Z}/{\mu^2}$ with respect to Φ coincide.

This gives us a sufficient condition for finite approximation.

References

- [1] Masanori Itai, Boris Zilber, Notes on a model theory of a quantum 2torus T_q^2 for generic q, arXive:1503.06045v1, 2015
- [2] Masanori Itai, Boris Zilber, A model theoretic Rieffel's theorem of quantum 2-torus arXiv:1708.02615v1, 2017
- [3] Masanori Itai and Boris Zilber, On finite approximation, in preparation, 2019
- [4] Boris Zilber, The semantics of the canonical commutation relation arxiv:1604.07745v1, 2016
- [5] Boris Zilber, Structural approximation and quantum mechanics (Draft), preprint, 2018