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1 Introduction

In [1] we constructed a quantum 2‐torus and studied its model theoretic
properties. Next step would be the study of definable bijections between

T_{q}^{2}(\mathbb{F}) and  T_{q}^{2},(\mathbb{F}) , analogue of regular isomorphisms between algebraic vari‐
eties in algebraic geometry.

Recall three main theorems proved in [1] ;

(1)  \mathcal{L}_{\omega_{1},\omega} ‐theory of the quantum 2‐torus is  \aleph_{1} ‐categorical.

(2) The theory of quantum line‐bundles is superstable.

(3) With the pairing function, within  (\Gamma, \cdot, 1, q) we can define  (\Gamma, \oplus, \otimes, 1, q) ,
and

 (\Gamma, \oplus, \otimes, 1, q)\simeq(\mathbb{Z}, +, \cdot, 0,1) .

Hence the theory of the quantum 2‐torus  (U, V, \mathbb{F}^{*}, \Gamma) with the pairing
function is undecidable and unstable.

In [2] we associate quantum 2‐tori  T_{\theta} with the structure over

 \mathbb{C}_{\theta}=(\mathbb{C}, +, \cdot, y=x^{\theta}) ,

where  \theta\in \mathbb{R}\backslash \mathbb{Q} , and introduce the notion of geometric isomorphisms be‐
tween such quantum 2‐tori.

We showed that the notion of geometric isomorphisms is closely con‐
nected with the fundamental notion of Morita equivalence of non‐commutative
geometry.
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Theorem 1 The quantum 2‐tori  T_{\theta_{1}} and  T_{\theta_{2}} are Morita equivalent
if and only if

  \theta_{2}=\frac{a\theta_{1}+b}{c\theta_{1}+d} for some  (\begin{array}{ll}
a   b
c   d
\end{array})\in GL_{2}(\mathbb{Z}) with  |ad-bc|=1.

Having Theorem 1, we study the isomorphism type of  T_{\theta} with respect to
GL  ( 2,  \mathbb{Z}) . For this we consider the structure  \overline{\mathbb{R}}/E where  E is the equivalence
relation defined by

 \theta_{1}E\theta_{2}\Leftrightarrow (   \theta_{2}=\frac{a\theta_{1}+b}{c\theta_{1}+d} for some  (\begin{array}{ll}
a   b
c   d
\end{array})\in GL_{2}(\mathbb{Z}),  |ad-bc|=1)
In the next section we introduce the notion of finite approximation and

weak ring defined by Zilber in [4] and [5]. Then we study the equivalence
relation from a finite approximation point of view. In section 3 we introduce
the notion of finitely approximated subset of  \mathbb{R} and show that any finitely
approximated subset is a closed subset of  \mathbb{R}.

2 Finite approximation

Let  L be a language. Consider the following situation:

 M_{1}  \subset  M_{2}  \subset . . .  M_{n}  \subset . . .  M^{*}

  \downarrow\lim
 N

Here each  M_{i} is a finite  L‐structure. We view an infinite L‐ structure  M^{*} as

a limit of the sequence capturing all the properties of  M_{i}' s , e.g., ultraproduct
of those finite structures.  N is another infinite  L‐structure. The mapping
  \lim:M^{*}arrow N is a homomorphism. We are interested in subsets  X of  N^{n}

that are finitely approximated (defined in section 3) by the sequnce of finite
structures.

From now on,

 \bullet  *\mathbb{Z} is the saturated nonstandard integers,

 \bullet  \mu is a highly divisible infinite nonstandard integer,

 \bullet  \overline{\mathbb{R}} is the one‐point compactification of  \mathbb{R} , i.e,  \overline{\mathbb{R}}=\mathbb{R}\cup\{\infty\},

 \bullet  P^{4} is a 4‐ary relation.
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Consider the following situation;

 (^{*}\mathbb{Z}/\mu^{2}, +, P^{4})

  \downarrow\lim_{\mu}
 (\overline{\mathbb{R}}, +, P^{4})

where   \lim_{\mu} is a homomorphism called finite approximation defined as follows;

for  \alpha with −   \frac{\mu^{2}}{2}\leq\alpha<\frac{\mu^{2}}{2} we have

  \frac{\alpha}{\mu}\in*\mathbb{Q}
wher  e^{*}\mathbb{Q} is the nonstandard rational numbers and we set

  \lim_{\mu}(\alpha)=st(\frac{\alpha}{\mu}) .

The interpretation of  P^{4} is defined as follows

 e on  *\mathbb{Z}/\mu^{2},  P^{4}(a_{1}, b_{1}, a_{2}, b_{2})\Leftrightarrow a_{1}b_{1}=a_{2}b_{2},
 \bullet on  \overline{\mathbb{R}},   P^{4}(x_{1}, y_{1}, x_{2}, y_{2})\Leftrightarrow

 [ (x_{1}y_{1}\equiv x_{2}y_{2} mod \mathbb{Z})\vee(x_{1}=\infty, y_{1}=\infty)]
.

Observe that

 x_{1}y_{1}\equiv x_{2}y_{2} mod  \mathbb{Z}\Leftrightarrow e^{2\pi i(x_{1}y_{1})}=e^{2\pi i(x_{2}y_{2})}

and

 \overline{\mathbb{R}}\cross\overline{\mathbb{R}}arrow^{e^{2\pi i(xy)}}S\subset 
\mathbb{C},
where  S is a unit circle and viewed as a multiplicative group.

We have the following commutative diagram;

 *\mathbb{Z}/\mu^{2}\cross*\mathbb{Z}/\mu^{2} arrow^{ab} *\mathbb{Z}/\mu^{2}

 \downarrow  \downarrow
 \overline{\mathbb{R}}\cross\overline{\mathbb{R}}  arrow^{e^{2\pi i(xy)}} S\subset \mathbb{C}

Observe also,  e^{2\pi i\frac{ab}{\mu^{2}}}\in S.
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2.1 Equivalence relation  E^{\mathbb{Z}}* on  *\mathbb{Z}/\mu^{2}

We define an equivalence relation  E^{*}on\mathbb{Z}/\mu^{2} corresponding to the equiv‐
alence relation  E^{\mathbb{R}}.

Definition 2  (E^{*}\mathbb{Z}) Let  \alpha_{1},  \alpha_{2}\in*\mathbb{Z}/\mu^{2} be such that

 -k\mu\leq\alpha_{1},  \alpha_{2}<k\mu , for some  k\ll\mu.

Then

 E^{*}\mathbb{Z}(\alpha_{1}, \alpha_{2})  \Leftrightarrow^{def}

 \exists a,  b,  c,  d,  \beta\in*\mathbb{Z}[(|ad-bc|=1)\wedge(\mu\beta=\alpha_{1}\alpha_{2})
\wedge(a\alpha_{1}+b\mu=c\beta+d\alpha_{2})].
Remark 3 We want to have the following equation

  \frac{a\frac{\alpha 1}{\mu}+b}{c\frac{\alpha_{1}}{\mu}+d}=\frac{a\alpha_{1}+
b\mu}{c\alpha_{1}+d\mu}=\frac{\alpha_{2}}{\mu} . (1)

By multiplying both sides by  \mu we get

  \frac{a\alpha_{1}\mu+b\mu^{2}}{c\alpha_{1}+d\mu}=\alpha_{2},
which may look equivalent to

 (a\alpha_{1}\mu+b\mu^{2}=c\alpha_{1}\alpha_{2}+d\alpha_{2}\mu) . (2)

However, i  n^{*}\mathbb{Z}/\mu^{2} , we have  b\mu^{2}\approx 0 . Thus we introduce  \beta and the relation

 (\mu\beta=\alpha_{1}\alpha_{2})\wedge(a\alpha_{1}+b\mu=c\beta+d\alpha_{2})

replaces the equation (2) in order to define the equivalence relation  E^{*}\mathbb{Z}(\alpha_{1}, \alpha_{2})
above.

The relation  E^{\mathbb{R}} has the following property;

Proposition 4 For any  \theta_{1},  \theta_{2}\in \mathbb{R} , if  E^{\mathbb{R}}(\theta_{1}, \theta_{2}) then there are  \alpha_{1},  \alpha_{2}\in*\mathbb{Z}
such that  E^{*}\mathbb{Z}(\alpha_{1}, \alpha_{2}) where   \lim_{\mu}(\alpha_{1})=\theta_{1} and   \lim_{\mu}(\alpha_{2})=\theta_{2}.
 Proof:Take  \theta_{1},  \theta_{2}\in\overline{\mathbb{R}} such that  E^{\mathbb{R}}(\theta_{1}, \theta_{2}) . Fix  a,  b,  c,  d\in \mathbb{Z} such that

  \theta_{2}=\frac{a\theta_{1}+b}{e\theta_{1}+d}.
Take  \alpha_{1} such that

st  ( \frac{\alpha_{1}}{\mu})=\theta_{1}.
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Claim 5 There are  k_{1},  n_{1}\in\prime \mathbb{Z} such that  k_{1},   n_{1}\ll\mu and

st  ( \frac{k_{1}}{n_{1}})= st  ( \frac{\alpha_{1}}{\mu})=\theta_{1},
where  k_{1},  n_{1}\in\prime \mathbb{Z} means that  k_{1},  n_{1} are nonstandard integers (but not infi‐
nite).

 Proof:Take k  ,  n_{1}\in\prime \mathbb{Z} to satisfy

 ak_{1}+bn_{1}ck_{1}+dn_{1}  \approx \frac{a\frac{\alpha_{1}}{\mu}+b}
{c\frac{\alpha_{1}}{\mu}+d}.
QED

Put

  \frac{k_{2}}{n_{2}}=\frac{ak_{1}+bn_{1}}{ck_{1}+dn_{1}},
and set   \alpha_{2}=\frac{\mu k_{2}}{n_{2}} . Then we have st  ( \frac{\alpha_{2}}{\mu})=\theta_{2} and

  \frac{a\frac{\alpha_{1}}{\mu}+b}{c\frac{\alpha_{1}}{\mu}+d} = a\alpha_{1}+b\mu
c\alpha_{1}+d\mu
 = \underline{\alpha_{2}}.

 \mu

Thus

  \theta_{2}=\frac{a\theta_{1}+b}{c\theta_{2}+d}
Put now

 \beta:=\alpha_{1^{\frac{k_{2}}{n_{2}}}}.
Then we have

 (\mu\beta=\alpha_{1}\alpha_{2})\wedge(a\alpha_{1}+b\mu=c\beta+d\alpha_{2}.

Therefore  E^{*}\mathbb{Z}(\alpha_{1}, \alpha_{2}) holds.
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3 Finitely approximated subsets of reals

We work in the following situation;

 \Phi \subset (^{*}\mathbb{Z}/\mu^{2})^{n}

  \downarrow\lim_{\mu} \downarrow\lim_{\mu}
 \Psi \subset (\overline{\mathbb{R}})^{n}

Here  \Phi is a lst‐order definable set and  \Psi is a set.

Definition 6 If  \Phi,  \Psi satisfy the following conditions;

 \bullet for any  \overline{\alpha}=  (\alpha_{1}, \cdots , \alpha_{n})  with- \frac{\mu^{2}}{2}\leq\alpha_{1},  \cdot\cdot\cdot ,   \alpha_{n}<\frac{\mu^{2}}{2},
if  \overline{\alpha}\in\Phi then   \lim_{\mu}(\overline{\alpha})\in\Psi,

 \bullet for any  \overline{\theta}=(\theta_{1}, \cdots, \theta_{n}) with  \theta_{i}\in\overline{\mathbb{R}} , if  \overline{\theta}\in\Psi , then there are

 \alpha_{1},
 \cdot\cdot\cdot ,  \alpha_{n} with‐   \frac{\mu^{2}}{2}\leq\alpha_{1},  \cdot\cdot\cdot ,   \alpha_{n}<\frac{\mu^{2}}{2} , such that  \overline{\alpha}\in\Phi and   \lim_{\mu}(\overline{\alpha})=

 \overline{\theta},

then we say that  \Psi is finitely approximated by  \Phi.

Proposition 7 Suppose  \Phi is a  1_{\mathcal{S}}t‐order definable set such that  \Psi is finitely
approximated by  \Phi . Then  \Psi is closed in the usual metric topology. In other
words for a set of  (\overline{\mathbb{R}})^{n} being closed is a necessary condition for being finitely
approximated.

Proof:

We work in one‐dimensional case. The other cases are similar. Proof is

by contradiction. Assume  \Psi is not closed.

Consider an infinite sequence  \theta_{1},  \theta_{2} , ,  \theta_{n},  \in\overline{\mathbb{R}} such that for each  n,

 \theta_{n}\in\Psi,1\dot{{\imath}}m\theta_{n}narrow\infty=\theta and  \theta\not\in\Psi.

Since  \Psi is finitely approximated there is an infinite sequence  \alpha_{1},  \alpha_{2},
 \cdot\cdot\cdot ,  \alpha_{n},  \cdot\cdot\in

 *\mathbb{Z}/\mu^{2} such that for each  n,  \alpha_{n}\in\Phi , and   \lim_{\mu}(\alpha_{n})=\theta_{n}.

40



41

Let  \varepsilon_{1},  \varepsilon_{2},  \cdot\cdot\cdot ,  \varepsilon_{n},  \cdot\cdot\cdot be an infinite sequence of rational numbers such
that   \lim_{narrow\infty}\varepsilon_{n}=0 . Since   \lim_{narrow\infty}\theta_{n}=\theta , we may assume each  \varepsilon_{n} satisfy

  \frac{1}{2}|\theta-\theta_{n}|=\varepsilon_{n}.
Then there is an  N such that for any  n>N we have

 |\theta_{N}-\theta_{n}|<\varepsilon_{n}.

Now consider a type

 t(x)=\{x:|x-\alpha_{n}|<\varepsilon_{n}\mu\}.

It is easy to see that  t(x) is satisfiable. By saturation there is an  \alpha\in

 *\mathbb{Z}/\mu^{2} such that  \alpha realizes  t(x) and  \alpha\in\Phi . Further we have

 |\alpha-\alpha_{n}|<\varepsilon_{n}\mu for all  n.

Set  \theta'  := \lim_{\mu}(\alpha)=st(\frac{\alpha}{\mu}) . Then for each  n we have  |\theta'-\theta_{n}|<\varepsilon_{n} . Thus

 \theta'=\theta . Now we have a contradiction since  \theta\not\in\Psi and  \theta'\in\Psi . QED

3.1 A sufficient condition for finite approximation

We examine carefully the argument in the proof of Proposition 7.

Let  \Psi be a subset of  \overline{\mathbb{R}} , and  \{\theta_{n} : n\in \mathbb{N}\} be a sequence in  \Psi such that
 \theta=1in_{narrow\infty} in the usual metric topology.

For a lst‐order definable set  \Phi to finitely approximate the subset  \Psi , we
need the following;

For any infinite sequence  \{\alpha_{n} : n\in \mathbb{N}\} in  \Phi with

 e for each  n,   \lim_{\mu}(\alpha_{n})=\theta_{n},

 \bullet  \alpha realizes the type  t(x) defined in the same way as in the proof of
Proposition 7.

then  \alpha\in\Phi and   \lim_{\mu}(\alpha)=\theta.

 \Phi  \alpha_{1}  \alpha_{2} . . .  \alpha_{n} . . .  \alpha  *\mathbb{Z}/\mu^{2}

  \downarrow\lim_{\mu} \downarrow\lim_{\mu}
 \Psi  \theta_{1}  \theta_{2} . . .  \theta_{n} . . .  \theta  \overline{\mathbb{R}}
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If this is the case we say that the metric topology with respect to  \Psi and the
topology i  n^{*}\mathbb{Z}/\mu^{2} with respect to  \Phi coincide.

In summary we have

Proposition 8 Closed set  \Psi is finitely approximated by  \Phi if and only if the
metric topology with respect to  \Psi and the topology i  n^{*}\mathbb{Z}/\mu^{2} with respect to
 \Phi coincide.

This gives us a sufficient condition for finite approximation.
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