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1 Introduction

In [1] we constructed a quantum 2-torus and studied its model theoretic
properties. Next step would be the study of definable bijections between
TZ(F) and Tq% (F), analogue of regular isomorphisms between algebraic vari-
eties in algebraic geometry.

Recall three main theorems proved in [1] ;

(1) Ly, o-theory of the quantum 2-torus is N;-categorical.
(2) The theory of quantum line-bundles is superstable.

(3) With the pairing function, within (I', -, 1, ¢) we can define (I', &, ®, 1, q),
and
(Fa D, ®, ]-a Q) = (Z’ +,0 07 1)

Hence the theory of the quantum 2-torus (U, V,F* T") with the pairing
function is undecidable and unstable.

In [2] we associate quantum 2-tori Ty with the structure over
CG = ((Cv +, 5y = x@)’

where § € R\ Q, and introduce the notion of geometric isomorphisms be-
tween such quantum 2-tori.
We showed that the notion of geometric isomorphisms is closely con-

nected with the fundamental notion of Morita equivalence of non-commutative

geometry.

*joint work with Boris Zilber, Oxford University

35



36

Theorem 1 The quantum 2-tori Ty, and Ty, are Morita equivalent
if and only if

61+
Oy = T for some ( CCL Z ) € GLy(Z) with |ad — be| = 1.

_c€1+d

Having Theorem 1, we study the isomorphism type of Ty with respect to
GL(2,Z). For this we consider the structure R/FE where E is the equivalence
relation defined by

b

0 b
atp + for some< Cc‘ J > € GLy(Z), |ad — be| :1).

091+d
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In the next section we introduce the notion of finite approximation and
weak ring defined by Zilber in [4] and [5]. Then we study the equivalence
relation from a finite approximation point of view. In section 3 we introduce
the notion of finitely approximated subset of R and show that any finitely
approximated subset is a closed subset of R.

2 Finite approximation

Let L be a language. Consider the following situation:

My ¢ My Cc -+ M, C --- M*

J lim

N

Here each M; is a finite L-structure. We view an infinite L- structure M™ as
a limit of the sequence capturing all the properties of M;’s, e.g., ultraproduct
of those finite structures. N is another infinite L-structure. The mapping
lim : M* — N is a homomorphism. We are interested in subsets X of N"
that are finitely approximated (defined in section 3) by the sequnce of finite
structures.

From now on,

e *7 is the saturated nonstandard integers,
e 1 is a highly divisible infinite nonstandard integer,
e R is the one-point compactification of R, i.e, R = R U {co},

e P*is a 4-ary relation.



Consider the following situation;
(“Z/p?, +, P*)

lim,

(R, +, P*)
where lim,, is a homomorphism called finite approzimation defined as follows;
2 2
for a with —% <a< % ¢ have
g c *Q
1

where *Q is the nonstandard rational numbers and we set

lim(a) = st (%)

The interpretation of P* is defined as follows
® On *Z//ﬂ, P4(a1, bl,ag, b2) <— a1b; = a2b2,

¢ on R’ P4(x17y1,$2792) —
(11 = 22y2 mod Z) \/ (x1 = 00, y1 = 00)].
Observe that
T1y1 = Toys mod Z = 2T — 2mi(z2y2)

and
— e2mi(zy)

RxR-——= ScCC,

where S is a unit circle and viewed as a multiplicative group.
We have the following commutative diagram;

LI XL/ S L

e2mi(zy)

RxR —— Scc

2mi 2%
Observe also, ¢ '#* € S.
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2.1 Equivalence relation E'% on *Z/?

We define an equivalence relation E" % on *Z/u? corresponding to the equiv-
alence relation ER.

Definition 2 (E'%) Let a1, a2 € *Z/u? be such that
—kp < ay,as < kp, for some k < p.

Then

E*Z(al,ag) g

Ja,b,¢,d, 8 € *Z [(\ad —be| = 1) A (4B = ara2) A (aaq + b = B + daQ)].
Remark 3 We want to have the following equation

a%‘f‘b_aoq—i-b,u_&g

= —. 1
c%—l—d cap +dp (1)

By multiplying both sides by pu we get

ac i + by
_— =
coy + dp 2
which may look equivalent to
(acyp + bu? = cajag + dasp). (2)

Howewver, in *7/u?, we have bu? ~ 0. Thus we introduce (3 and the relation
(1B = arag) A (aaq + b = cf + day)

replaces the equation (2) in order to define the equivalence relation E™%(ay, ao)
above.

The relation E® has the following property;

Proposition 4 For any 61,05 € R, if ER(61,05) then there are ay, an € *Z
such that E"2(aq, az) where limy,(a1) = 61 and lim,(az) = 6s.

Proof:Take 61,0y € R such that E®(0y,6,). Fix a,b, c,d € Z such that

7&91—1—()
- ch +d’

st <ﬂ> = 91.
2

2

Take o1 such that



Claim 5 There are ky,nq € "7 such that ki,ni < p and

k
st <—1) =st <ﬂ> =04,
ni o
where ki,ny € "7 means that k1,m1 are nonstandard integers (but not infi-
nite).

Proof:Take k1,n1 € "7 to satisfy

aki + bng N a=;
ck1 + dnq Tca

=2
_|_
S

=2
_|_
o

QED

Put
@ aki 4+ bny

ny  cky +dn;’

k
and set ap = &. Then we have st <%> = @5 and
n2 2

ast+b aoy + b
c%—i—d caq + dp

a2

Thus

Put now

Then we have
(1B = aran) A (acy + b = ¢ + das.
Therefore E"%(a1, as) holds.
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3 Finitely approximated subsets of reals

We work in the following situation;

® c (z/p)"
lim, lim,
v c (R

Here @ is a 1st-order definable set and W is a set.

Definition 6 If ®, U satisfy the following conditions;

p? w
o for any @ = (aq,- -+, ) with - <oy, o, <

if @ € @ then lim,(a) € ¥, ’
o for any 0 = (01,---,0,) with 0; € R, if 0 € U, then there are
Q1,0 wz’th—%Q <ap, o < %2, such that@ € ® andlim, (@) =
0,
then we say that U is finitely approximated by .

Proposition 7 Suppose @ is a 1st-order definable set such that U is finitely
approzimated by ®. Then W s closed in the usual metric topology. In other
words for a set of (K)n being closed is a necessary condition for being finitely
approximated.

Proof:
We work in one-dimensional case. The other cases are similar. Proof is
by contradiction. Assume W is not closed.

Consider an infinite sequence 1,6, - - ,0,,--- € R such that for each n,
0, €V, lim 0, =0and 6 ¢ V.
n— oo

Since Y is finitely approximated there is an infinite sequence aq, ag, -+, ayp, - -+ €
*Z/u? such that for each n, o, € @, and lim,(ay,) = 6,,.



Let 1,69, ,€,, -+ be an infinite sequence of rational numbers such
that lim,,_,., €, = 0. Since lim 6, = 0, we may assume each ¢,, satisfy
n—oo
1
—10 -0, =¢en,.
10— 6] =,

Then there is an N such that for any n > N we have
|On — On] < en.
Now consider a type
tz) ={z : |z — an| <enu}.

It is easy to see that t(x) is satisfiable. By saturation there is an a €
*Z/u? such that « realizes t(z) and o € ®. Further we have

o — o | < epp for all n.

Set ¢’ := lim,(a) = st (%) . Then for each n we have |0’ — 0,| < £,. Thus
0’ = 6. Now we have a contradiction since § € ¥ and ' € 0. QED

3.1 A sufficient condition for finite approximation

We examine carefully the argument in the proof of Proposition 7.

Let W be a subset of R, and {f,, : n € N} be a sequence in ¥ such that
0 = lin,,_,, in the usual metric topology.

For a Ist-order definable set @ to finitely approximate the subset ¥, we
need the following;

For any infinite sequence {a, : n € N} in ® with

e for each n, lim,(a,) = 0,,

e « realizes the type t(x) defined in the same way as in the proof of
Proposition 7.

then o € ® and lim,(«) = 6.

i) ar ag oy e o« YZ/u?

lim, lim,, .

=

i 0, 6y --- 6, --- 0
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If this is the case we say that the metric topology with respect to ¥ and the
topology in *Z/u? with respect to ® coincide.
In summary we have

Proposition 8 Closed set U is finitely approxzimated by ® if and only if the
metric topology with respect to W and the topology in *7/u* with respect to
® coincide.

This gives us a sufficient condition for finite approximation.
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