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Abstract

We discuss on the Vapnik‐Chervonenkis inequality in a stable structure follow‐

ing [1] and [2]. Some proofs may be modified but the results are essentially the
same.

1 Introduction and Preliminaries

In this note we are interested in the Vapnik‐Chervonenkis inequality with
model theoretic approach, especialy with assuming stability of structures or
formulas. The mathematical result is already known and pointed out in [1],
and its essential part is given in [2] and [4]. Here we follow them however
some proofs may be easier to understand.

Let X be a non‐empty set and let  \mathcal{B}\subset \mathcal{P}(X) be a  \sigma‐algebra (boolean
algebra, respectively) with  X\in \mathcal{B}.  A (finitely additive, resp.) probability
space on  \mathcal{B} is a tuple  (X, \mathcal{B}, \mu) such that  \mu :  \mathcal{B}arrow[0,1] is a  \sigma‐additive (finitely
additive, resp.) function with  \mu(X)=1.

For a given sequence  \overline{a}=a_{0},  a_{n-1}\in X and  B\in \mathcal{B} , we put Av  (B,\overline{a})=
 |\{k<n|a_{k}\in B\}|/n . We consider  Av(B,\overline{a}) as an approximation of  \mu(B)
by  \overline{a}.

For  C\subset \mathcal{B} and  \epsilon>0 , we say  \overline{a}\in X an  \epsilon‐approximation of  \mu on
 C if  |Av(C,\overline{a})-\mu(C)|<\epsilon for all  C\in C . In general, there is no  \epsilon‐
approximation of  \mu on  C (for example consider the case  C=\mathcal{P}(X) ), how‐
ever it is well known that if  X is a probability space (that is, not finitely

43



44

additive but  \sigma‐additive),  C is dependent (equivalently,  C has finite Vapnick‐
Chervonenkis(VC)‐dimension) and well‐behaved (see Section 2 for the defi‐
nition), then for all  \epsilon,  \delta>0 there is   n\in\omega and  B\subset X^{n} with  \mu(B)>1-\delta
such that for all  \overline{a}=(a_{0}, \ldots, a_{n-1})\in B,  \mu is  \epsilon‐approximated by  \overline{a} on  C . This
result is called the Vapnick‐Chervonenkis inequality. (See [2] for a detail.)

It is also known that there are counter examples for not well‐behaved
case.

Example 1. Let  X=\omega_{1} and  C=\{[a, \infty)\subset\omega_{1}|a\in\omega_{1}\} . Let  \mathcal{B} be the
 a‐algebra generated by  C . Consider  \mu :  \mathcal{B}arrow\{0,1\} such that  \mu(A)=1 if
and only if  A\subset\omega_{1} is unbounded. It is easy to check  \mu is  \sigma‐additive and  C

has finite VC‐dimension. However, every finite  \overline{a}\in X cannot   \frac{1}{2} ‐approximate
since there is  C\in C with  \overline{a}\cap C=\emptyset . In this case,  C is not well‐behaved.

Now we introduce model theoretic setting. Let  T be an  L‐theory and let
 M\models T . Let  \varphi(x, y) be an  L‐formula with  |x|=|y|=1 . (Here we assume  x

and  y are singleton, but it is easy generalizing them to tuples. )

Definition 2. 1. A Keisler measure  \mu on  M is a finitely additive proba‐
bility measure on the set  Def_{1}(M) of  M‐definable subsets of  M.

2. Let  \mu be a Keisler measure on  M . We say  \mu is  \epsilon‐approximated by  \overline{a}\in M

with respect to  \varphi over  B\subset M if  |Av(g(M, b),\overline{a})-\mu(\varphi(M, b))|<\epsilon for
all  b\in B.

Remark 3. Let  \mu be a  \{0,1\}‐valued Keisler measure on  M . Then  p_{\mu}(x)=
 \{\varphi(x, a)|\mu(\varphi(x, a))=1\} is a complete type over  M . Conversely, if   p(x)\in
 S_{1}(M) then by defining  \mu_{p}(\varphi(x, a))=1 if  \varphi(x, a)\in p we can see  \mu_{p} is a
Keisler measure on  M . Hence, Keisler measures on  M can be considered as
a generalization of types.

2 Approximating Keisler measures by types

Let  (X, \mathcal{B}, \mu) be a probability space. For  A\in \mathcal{B} , let  g_{A,k} :  X^{k}arrow[0,1] be
defined by  g_{A,k}(\overline{a})=|Av(A,\overline{a})-\mu(A)| and let  h_{A,k} :  X^{2k}arrow[0,1] be defined
by  h_{A,k}(\overline{a}, \overline{b})=|Av(A,\overline{a})-Av(A, \overline{b})|.

Definition 4. A class  C\subset \mathcal{B} is said to be well‐behaved if   \sup_{A\in C}g_{A,k} and

  \sup_{A\in C}h_{A,k} are  \mu‐measurable.
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By the definition, if  C is countable then it is well‐behaved.

Example 5. Consider  C in Example 1. Then  C is not well‐behaved. Indeed,
if   \sup_{A\in C}g_{A,k} and   \sup_{A\in C}h_{A,k} are  \mu‐measurable, then so is  D=\{(a, b)\in\omega_{1}^{2}|
 a<b\} . However, for all  a\in\omega_{1}D_{a}=\{b\in\omega|(a, b)\in D\} has measure 1,
so by Fubini’s theorem  \mu(D) must be 1. On the other hand, for all  b\in\omega_{1}

 D_{b}=\{a\in\omega_{1}|(a, b)\in D\} has measure  0 . Again, by Fubini’s theorem,  \mu(D)
must be  0 . This is a contradiction.

In the VC‐inequality, we have to assume  C\subset \mathcal{B} is well‐behaved. However,
if we consider Keisler measures in a saturated structure, then the assumption
is not needed. In fact, we can prove the following.

Fact 6. [2, Lemma 4.8] Let  M^{*}\succ M be an  |M| ‐saturated elementary ex‐
tension of  M . Take a dependent  L‐formula  \varphi(x, y) and put  C=\{\varphi(M^{*}, a)|
 a\in M\} . Suppose that  \mu is a Keisler measure on  M^{*} and let  \epsilon,  \delta>0 . Then
there is   k\in\omega and  \mu‐measurable  B\subset(M^{*})^{k} with  \mu(B)>1-\delta such that

every  \overline{b}=(b_{0}, \ldots, b_{k-1})\in Bc‐approximates  \mu on  C.

On the other hands, every Keisler measure on  M can be naturally ex‐
tended to a  \sigma‐additive probability measure on  M^{*} (see [3] for example).
Therefore we conclude that:

Corollary 7. Let  M be an  L‐structure and  \varphi(x, y) be a dependent L‐
formula. Let  C=\{\varphi(M, a) a\in M\} . Then for any Keisler measure
 \mu on  M and  \epsilon>0 there are types  p_{0}(x) ,  p_{k-1}(x)\in S(M) such that
 |\mu(C)-(\mu_{p_{0}}(C)+ +\mu_{p_{k-1}}(C))/k|<\epsilon for all  C\in C.

Hence we can say that every Keisler measure can be approximated by
 \{0,1\}‐valued Keisler measures.

3 Approximating  \{0,1\}‐valued Keisler mea‐
sures by Morley sequences

In this section we fix a model  M\models T , a stable  L‐formula  \varphi(x, y) and a
complete type  p(x) in  S_{\varphi}(M) . Here  S_{\varphi}(X) is the class of sets  p(x) of formulas
of the form  \varphi(x, a) or  \neg\varphi(x, a) with  a\in M such that  p(x) is consistent and

maximal. It is not essential but for simplicity we assume  M is countable. If
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we consider  p(x)\in S(M) instead of  S_{\varphi}(M) , it may be necessary that  M is
 \omega‐saturated.

In what follows we construct an infinite sequence  J which approximates
 \mu with respect to  \varphi over  M . In addition, we can construct  J as a Morley
sequence (with respect to  \varphi ), though we don’t show it, however one can
easily notice how to do that from the proof. The idea of this construction is
essentially in [4, Lemma 2.2].

Let  A_{0}\subset A\subset fin\ldots\subset M be an increasing sequence of finite sets with
  \bigcup_{n}A_{n}=M . Let  c_{n}\in M be any realization of  p|A_{n} and put  I=\{c_{n}|n\in\omega\}.
(Since  p|A_{n} is finite,  M contains such solutions.)

Proposition 8. For any infinite subsequence   I'\subset  I there is an infinite
subsequence  J\subset I' such that for any  \epsilon>0 there is   m\in\omega such that for any
subsequence  \overline{c} of  J with  |\overline{c}|=m\epsilon‐approximates  \mu_{p} for  \varphi over  M.

Proof. It is easy  I' satisfies the same condition assumed for  I . Hence without
loss of generality we assume  I'=I . We first define the subsequence  J=

 \{d_{k}|k\in\omega\}\subset I' . Take  c^{*} in a big model  M^{*} such that  c^{*}\models p(x) and put
 d_{-1}=c^{*} Let  d_{0}=c_{0} and suppose that  d_{i}=c_{n_{i}} is defined for all  i<k.

Let  n_{k} be the minimum natural number  n such that for all  b\in M there are

 a,  a'\in A_{n} such that  M^{*}\models\varphi(d_{i}, b)rightarrow\varphi(d_{i}, a) for all  -1\leq i<k . Since the

number of  g‐types over  d_{-1}\cdots d_{k-1} is finite, we can find such  A_{n} . Then put
 n_{k}=n and  d_{k}=c_{n_{k}}.

Now we prove  J satisfies the required condition. Since  \varphi(x, y) is stable,
there is   l\in\omega such that there is no  a_{i},  b_{j}(i, j<l) such that  \varphi(a_{i}, b_{j}) if and

only if  i<j for all  i,  j<l . Let   m>l/\epsilon and  \overline{d}\subset J with  |\overline{d}|=m . Since
the general cases are similar, we assume that  \overline{d}=d_{0}\ldots d_{m-1} . We show that
 |Av(\varphi(M, a),\overline{d})-\mu(\varphi(M, a))|<\epsilon for all  a\in M . First we prove that:

Claim A. If  |\{i<m|d_{i}\in\varphi(M, a)\}|\geq l then  M^{*}\models\varphi(c^{*}, a) .

Let  d_{i_{0}},  d_{i_{l}}\in\{i<m|d_{i}\in\varphi(M, a)\} and suppose  M^{*}\models\neg\varphi(c^{*}, a) .
Then for each  l'<l there is  a_{l'}\in A_{i_{l}} , such that  \varphi(d_{i_{s}}, a_{t}) if and only if  s<t

for all  s,  t<l , by the definition of  J . This contradicts to the assumption of
stability of  \varphi.

Similarly, we can prove:

Claim B. If  |\{i<m|d_{i}\in\neg\varphi(M, a)\}|\geq l then  M^{*}\models\neg\varphi(c^{*}, a) .

By using the above claims, we know that:
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1. If  \varphi(x, a)\in p(x) then  Av(\varphi(M, a),\overline{d})\geq 1-l/m.
2. If  \varphi(x, a)\not\in p(x) then  Av(\varphi(M, a),\overline{d})\leq l/m.

Since   m>l/\epsilon , we conclude that  l/m<\epsilon.  \square 
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