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Abstract

We discuss on the Vapnik-Chervonenkis inequality in a stable structure follow-
ing [1] and [2]. Some proofs may be modified but the results are essentially the
same.

1 Introduction and Preliminaries

In this note we are interested in the Vapnik-Chervonenkis inequality with
model theoretic approach, especialy with assuming stability of structures or
formulas. The mathematical result is already known and pointed out in [1],
and its essential part is given in [2] and [4]. Here we follow them however
some proofs may be easier to understand.

Let X be a non-empty set and let B C P(X) be a o-algebra (boolean
algebra, respectively) with X € B. A (finitely additive, resp.) probability
space on B is a tuple (X, B, 1) such that p : B — [0, 1] is a o-additive (finitely
additive, resp.) function with p(X) = 1.

For a given sequence a = ay, ...,a,—1 € X and B € B, we put Av(B,a) =
{k <n|a, € B}|/n. We consider Av(B,a) as an approximation of u(B
by a.

For C € B and ¢ > 0, we say a € X an c-approximation of u on
C if |Av(C,a) — p(C)] < € for all C € C. In general, there is no e-
approximation of p on C (for example consider the case C = P(X)), how-
ever it is well known that if X is a probability space (that is, not finitely
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additive but o-additive), C is dependent (equivalently, C has finite Vapnick-
Chervonenkis(VC)-dimension) and well-behaved (see Section 2 for the defi-
nition), then for all ¢,0 > 0 there is n € w and B C X" with u(B) >1—19
such that for all @ = (aq, ...,a,—1) € B, p is e-approximated by @ on C. This
result is called the Vapnick-Chervonenkis inequality. (See [2] for a detail.)

It is also known that there are counter examples for not well-behaved
case.

Example 1. Let X = w; and C = {[a,00) C wy | a € wy}. Let B be the
o-algebra generated by C. Consider p : B — {0,1} such that pu(A) = 1 if
and only if A C w; is unbounded. It is easy to check pu is o-additive and C
has finite VC-dimension. However, every finite @ € X cannot %—approximate
since there is C' € C with aN C = (). In this case, C is not well-behaved.

Now we introduce model theoretic setting. Let T" be an L-theory and let
M =T. Let ¢(x,y) be an L-formula with |z| = |y| = 1. (Here we assume x
and y are singleton, but it is easy generalizing them to tuples. )

Definition 2. 1. A Keisler measure 1 on M is a finitely additive proba-
bility measure on the set Def; (M) of M-definable subsets of M.

2. Let p be a Keisler measure on M. We say p is e-approximated by a € M
with respect to ¢ over B C M if |Av(p(M,b),a) — u(p(M,b))| < € for
all b e B.

Remark 3. Let p be a {0, 1}-valued Keisler measure on M. Then p,(z) =
{p(x,a) | p(e(x,a)) = 1} is a complete type over M. Conversely, if p(x) €
S1(M) then by defining u,(p(x,a)) = 1 if ¢(z,a) € p we can see p, is a
Keisler measure on M. Hence, Keisler measures on M can be considered as
a generalization of types.

2 Approximating Keisler measures by types

Let (X, B, ) be a probability space. For A € B, let gay : X* — [0,1] be
defined by gax(a) = |Av(A,a) — u(A)| and let hyy : X2 — [0, 1] be defined
by hax(a,b) = |Av(A,a) — Av(A,b)|.

Definition 4. A class C C B is said to be well-behaved if supccg4 5 and
Sup gechak are p-measurable.



By the definition, if C is countable then it is well-behaved.

Example 5. Consider C in Example 1. Then C is not well-behaved. Indeed,
if supccgak and sup gechay are pi-measurable, then so is D = {(a,b) € w? |
a < b}. However, for all a« € w1 D, = {b € w | (a,b) € D} has measure 1,
so by Fubini’s theorem p(D) must be 1. On the other hand, for all b € w;
Dy ={a € wy | (a,b) € D} has measure 0. Again, by Fubini’s theorem, p(D)
must be 0. This is a contradiction.

In the VC-inequality, we have to assume C C B is well-behaved. However,
if we consider Keisler measures in a saturated structure, then the assumption
is not needed. In fact, we can prove the following.

Fact 6. [2, Lemma 4.8] Let M* = M be an |M|-saturated elementary ex-
tension of M. Take a dependent L-formula p(z,y) and put C = {@(M*,a) |
a € M}. Suppose that u is a Keisler measure on M* and let ¢, > 0. Then
there is k € w and p-measurable B C (M*)* with u(B) > 1 — § such that
every b = (bg,...,by_1) € B e-approximates p on C.

On the other hands, every Keisler measure on M can be naturally ex-
tended to a o-additive probability measure on M* (see [3] for example).
Therefore we conclude that:

Corollary 7. Let M be an L-structure and ¢(z,y) be a dependent L-
formula. Let C = {¢(M,a) | a € M}. Then for any Keisler measure
pwon M and ¢ > 0 there are types po(z),...,pr_1(z) € S(M) such that
11(C) = (ppo (C) + oo 4 pip, ,(C)) /K| < € for all C' € C.

Hence we can say that every Keisler measure can be approximated by
{0, 1}-valued Keisler measures.

3 Approximating {0, 1}-valued Keisler mea-
sures by Morley sequences

In this section we fix a model M = T, a stable L-formula ¢(z,y) and a
complete type p(x) in S,(M). Here S, (X) is the class of sets p(x) of formulas
of the form ¢(z,a) or ~¢(x,a) with a € M such that p(z) is consistent and
maximal. It is not essential but for simplicity we assume M is countable. If
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we consider p(xz) € S(M) instead of S,(M), it may be necessary that M is
w-saturated.

In what follows we construct an infinite sequence J which approximates
1 with respect to ¢ over M. In addition, we can construct J as a Morley
sequence (with respect to ¢), though we don’t show it, however one can
easily notice how to do that from the proof. The idea of this construction is
essentially in [4, Lemma 2.2].

Let Ay Can A1 Can -+ C M be an increasing sequence of finite sets with
U,, An = M. Let ¢,, € M be any realization of p|A,, and put I = {¢,, | n € w}.
(Since p|A,, is finite, M contains such solutions.)

Proposition 8. For any infinite subsequence I’ C [ there is an infinite
subsequence J C I’ such that for any ¢ > 0 there is m € w such that for any
subsequence ¢ of J with |¢| = m e-approximates fi,, for ¢ over M.

Proof. 1t is easy I’ satisfies the same condition assumed for /. Hence without
loss of generality we assume I’ = I. We first define the subsequence J =
{di | k € w} C I'. Take ¢* in a big model M* such that ¢* = p(x) and put
d_y = c*. Let dy = ¢y and suppose that d; = ¢,, is defined for all i < k.
Let nj be the minimum natural number n such that for all b € M there are
a,a’ € A, such that M* = ¢(d;,b) <> p(d;,a) for all —1 < i < k. Since the
number of p-types over d_; - --dj_1 is finite, we can find such A,. Then put
ng =n and d = ¢y, .

Now we prove J satisfies the required condition. Since ¢(x,y) is stable,
there is | € w such that there is no a;,b; (i,7 < [) such that p(a;,b;) if and
only if i < j for all 4,5 < [. Let m > l/c and d C J with |d| = m. Since
the general cases are similar, we assume that d = dy...d,,—1. We show that

|Av(p(M,a),d) — u(p(M,a))| < € for all a € M. First we prove that:
Claim A. If [{i <m | d; € o(M,a)}| > 1 then M* = p(c*,a).

Let diy,...,d;, € {i < m | d; € p(M,a)} and suppose M* |= —p(c*,a).
Then for each I’ < [ there is ay € A;, such that ¢(d;,, a,) if and only if s < ¢
for all s,t < [, by the definition of J. This contradicts to the assumption of
stability of .

Similarly, we can prove:

Claim B. If |[{i <m | d; € =p(M,a)}| > [ then M* = —p(c*, a).

By using the above claims, we know that:
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1. If o(x,a) € p(x) then Av(p(M,a),d) >1—1/m.

2. If (z,a) & p(z) then Av(p(M,a),d) <1/m.

Since m > /¢, we conclude that [/m < c. O
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