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概要

abstract Locally o‐minimal structures are some local adaptations of o‐minimality.

These structures were treated in the past, e.g. in [1], [2]. Meanwhile o‐minimal structures
have been studied widely, in particular, there is geometric characterization of them by

independence relation. We try to consider independence relation in locally o‐minimal
structures.

1. Introduction

Locally 0‐minimal structures are some local versions of  0‐minimal structures. We recall

some definitions at first.

Definition 1 A linearly ordered structure  M=(M, <, \cdots) is  0- minimal if every definable

subset of  M^{1} is a finite union of points and open intervals.

A linearly ordered structure  M=(M, <, \cdots) is weakly  0 ‐minimal if every definable subset
of  M^{1} is a finite union of convex sets.

Definition 2 Let  M=(M, <, \cdots) be a densely linearly ordered structure.
 M is locally  0- minimal if for any  a\in M and any definable set  A\subset M^{1} , there is an open

interval  I\ni a such that  I\cap A is a finite union of points and intervals.

 M is strongly locally  0- minimal if for any  a\in M , there is an open interval  I\ni a such that

whenever  A is a definable subset of  M^{1} , then  I\cap A is a finite union of points and intervals.

 M is uniformly locally  0- minimal if for any  \varphi(x,\overline{y})\in L and any  a\in M , there is an open

interval  I\ni a such that  I\cap\varphi(M, \overline{b}) is a finite union of points and intervals for any  \overline{b}\in M^{n}.

Example 3 The following examples are shown in [1] and [2].

 (\mathbb{R}, +, <, \mathbb{Z}) where  \mathbb{Z} is the interpretation of a unary predicate, and  (\mathbb{R}, +, <, \sin) are locally
 0‐minimal structures.

Let  L=\{<\}\cup\{P_{i} : i\in\omega\} where  P_{i} is a unary predicate. Let  M=(\mathbb{Q}, <^{M}, P_{0}^{M}, P_{1}^{M}, \ldots) be
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the structure defined by  P_{i}^{M}=\{a\in M : a<2^{-i}\sqrt{2}\} . Then  M is uniformly locally  0‐minimal,

but it is not strongly locally  0‐minimal.

Theorem 4 [1] Weakly  0‐minimal structures are locally  0‐minimal.

Theorem 5 [1] A structure  \mathcal{M}=(M, <, \ldots) expanding a dense linear order  (M, <) without

endpoints is locally  0‐minimal if and only if for any  a\in M and any definable  X\subset M , there

are  c,  d\in M such that  c<a<d and either  X\cap(c, d) or  (c, d)\backslash X is equal to one of the

following : (1)  \{a\} , (2)  (c, a], (3)  [a, d), or (4) the whole interval  (c, d) .

Corollary 6 [1] Local  0‐minimality is preserved under elementary equivalence. But, strong

local  0‐minimality is not preserved under elementary equivalence.

It is proved that (weakly)  0‐minimal structures have no independence property. And there

are geometric characterizations of  0‐minimal structures by independence relation. We try to

characterize locally  0‐minimal structures by independence relation.

2.  [J‐forking in locally  0‐minimal structures

At first we argue about some kind of forking, thorn‐forking. It is known that this forking

notion is available to  0‐minimal structures, or structures whose theories are NIP unstable.

Definition 7 Let  \mathcal{M} be a sufficiently large saturated model.

A formula  \phi(\overline{x},\overline{a}) strongly divides over  A if  tp(\overline{a}/A) is nonalgebraic and  \{\phi(x,\overline{a}');a'\in \mathcal{M}\}
with  tp(\overline{a}/A)=tp(\overline{a}'/A) is  k‐inconsistent for some  k<\omega.

A formula  \phi(\overline{x},\overline{a})b ‐divides (thorn divides) over  A if for some tuple  \overline{c},  \phi(\overline{x},\overline{a}) strongly
divides over  A\overline{c}.

A formula  \phi(\overline{x},\overline{a})b- forks over  A if it implies a finite disjunction of formulas which トーdivides

over  A.

As the ordinary forking, in [10], they define some local  b‐rank for formulas, and theories

having finite  b‐rank are called rosy.

Theorem 8 [10]

 p‐independence defines an independence relation in any rosy theory. That is,  p‐forking sat‐

isfies such axioms : Existence, Extension, Reflexivity, Monotonicity, Finite character, Sym‐

metry, Transitivity.

Here we recall the next  U’‐rank only.

Definition 9 We define  U’‐rank (  U‐thorn rank) inductively as follows.
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Let  p(\overline{x}) be a type over  A . Then

(1)  U^{1)}(p(\overline{x}))\geq 0 if  p(\overline{x}) is consistent.

(2) For any ordinal  \alpha,  U^{\beta}(p(\overline{x}))\geq\alpha+1 if there is some tuple  \overline{a} and some type  q(\overline{x},\overline{a}) over
 A\overline{a} such that  q(\overline{x},\overline{a})\supset p(\overline{x}),   U^{b}(q(\overline{x},\overline{a}))\geq\alpha , and  q(\overline{x},\overline{a})1)‐forks over  A.

(3) For any  \lambda limit ordinal,   U^{b}(p(\overline{x}))\geq\lambda if   U^{p}(p(\overline{x}))\geq\beta for all  \beta<\lambda.

Definition 10 A theory  T is superrosy if   U^{1)}(p(\overline{x}))<\infty for any type  p(\overline{x}) .

I introduce a result for  0‐minimal structures by  b‐independence.

Theorem 11 [10]
Let  M be an  0‐minimal structure.

For any definable  A\subset M^{n},  U^{p}(A)=dim(A) ) in the sense of  0‐minimal structure.

There are results about  0‐minimal structures, or expansions of  0‐minimal structures in

relation to rosyness, e.g. in [11].

We can prove the last theorem under the locally  0‐minimal setting. First we recall a

characterization of strongly local  0‐minimality from [2].

Theorem 12 [2]

The following two conditions are equivalent;

1.  M is strongly locally  0 ‐minimal.

2. For any finite subset  \{a_{1}, , a_{n}\} of  M , there are left‐open and right‐closed intervals  I_{i}

with  a_{i}\in(I_{i})^{\circ} such that, by putting  I= \bigcup_{1\leq i\leq n}I_{i},  I_{def} is  0‐minimal  (I^{\circ} is the interior of

 I , and  I_{def} is the induced structure on I by definable subsets of  M ).

Thus we can prove the next proposition.

Proposition 13 Let  M be a strongly locally  0‐minimal structure and let  a\in M^{k}.

Then there is an open box  B\ni a such that for any definable set  A\subset M^{k},  dim(A\cap B)=

 U^{p}(A\cap B) (where dim means the dimension of some  0‐minimal structure  I_{def} ).

3. Forking in locally  0‐minimal structures

There are many geometric characterizations of  0‐minimal structures, especially, those of

definable groups in  0‐minimal structures in stability theoretic context.

We recall some definitions.

Definition 14 A formula  \varphi(\overline{x},\overline{a}) divides over a set  A if there is a sequence  \{\overline{a}_{i} : i\in\omega\} with

 tp(\overline{a}_{i}/A)=tp(\overline{a}/A) such that  \{\varphi(\overline{x},\overline{a}_{i}) : i\in\omega\} is  k‐inconsistent for some  k\in\omega.
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A formula  \phi(\overline{x},\overline{a}) forks over  A if  \phi(\overline{x},\overline{a})\vdash\psi_{i}(\overline{x}, \overline{b}_{i}) and each  \psi_{i}(\overline{x}, \overline{b}_{i}) divides over  A.

There is a fundamental result about forking relation in  0‐minimal structures, first it is

proved in [8], after that, it is modified in [9]. The argument is carried out in sufficiently large
saturated models.

Theorem 15 [9]

Let  \mathcal{M} be a sufficiently large saturated  0 ‐minimal structure and  M_{0}\prec \mathcal{M} . Assume that

 \{X(a) : a\in S\} is an  M_{0} ‐definable family of closed and bounded subsets of  \mathcal{M}^{n} . Let   p(x)\in

 S_{m}(M_{0}) be a type of some  a\in S , and let  P=p(\mathcal{M}) .

Then  \{X(a) : a\in P\} has the finite intersection property if and only if there is  c\in M_{0} such

that  c\in X(a) for every  a\in P.

We can consider the theorem above under locally  0‐minimal setting.

Theorem 16 Let  \mathcal{M} be a sufficiently large saturated strongly locally  0‐minimal structure and

 a\in \mathcal{M}^{k}.

Then there is an open box  B\ni a satisfying that;

For any  M_{0}\prec \mathcal{M} such that  M_{0} contains the endpoints  c of  B , and for  p(x)\in S_{k}(M_{0}) the

type of  a over  M_{0} and  P=p(B) ,

if  \{X(ac) :  a\in P\} is an  M_{0} ‐definable family of closed and bounded subsets of  B,

then  \{X(ac) :  a\in P\} has the finite intersection property if and only if there is  d\in M_{0}

such that  d\in X (ac) for every  a\in P.

4. Small closure in locally  0‐minimal structures

It is well known that algebraic closure satisfies the exchange property in  0‐minimal structures.

Here we consider another kind of closure operator in locally  0‐minimal structures.

We recall some definitions.

Definition 17 Let  M be a structure.

We call a function cl from  \mathcal{P}(M) to  \mathcal{P}(M) a closure operator if for any  A,  B\subset M , the

following hold ; (where  \mathcal{P}(M) is the power set of  M )

(1)  A\subset cl (A) ,

(2)  A\subset B implies  cl(A)\subset cl(B) ,

(3) cl(cl (A))  =cl(A) .

A closure operator cl satisfies the exchange property if for any  a,  b\in M and  C\subset M , if

 a\in cl(bC) and  a\not\in cl(C) , then  b\in cl(aC) .
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Definition 18 Let  M be a structure and  C\subset M.

The algebraic dosure of  C,  acl(C)=\{a :  M\models\phi(a, c)\wedge\exists_{\leq n}\phi(x, c) for some  \phi(x, c)a

formula over  C}.

It is easily checked that acl is a closure operator. The next fact is well known.

Theorem 19 [5]

Let  M be an  0‐minimal structure. Then acl satisfies the exchange property in  M.

acl also has the exchange property in some locally  0‐minimal structures.

Definition 20 [1] Let  M be a locally  0‐minimal structure.

We call  M has  \emptyset- definable strong local  0 —minimality, we denote  M has DSLOM if for

any  a\in M , there is  b,  c\in acl(\emptyset) such that  b<a<c and the interval  (b, c) intersects every

definable subset  X of  M in finitely many isolated points and intervals.

Proposition 21 [1]

Let  M be a locally  0‐minimal structure satisfing DSLOM. Then ad satisfies the exchange

proprty in  M.

There are such locally  0‐minimal structures, e.g.  (\mathbb{R}, <, +, \sin) . However, as strongly local

 0‐minimality is not preserved under elementary equivalence, the next fact is proved.

Theorem 22 [4]

Let  M be an expansion of a densely linearly ordered structure and let Th(M) be the theory

of M. Suppose that an infinite discrete unary ordered set is definable in M. Then Th(M) can

not satisfy the exchange property with respect to acl (or dcl).

Sometimes for a locally  0‐minimal structure  M , we recognize that there is a definable

infinite discrete unary set in  M to witness non (weakly)  0‐minimality of  M . As we assume

that locally  0‐minimal structures are densely ordered, definable infinite discrete sets are small

in some sense.

Deflnition 23 [11] Let  M=(M, <, \ldots) be an ordered structure.

A definable set  D\subset M^{k} is large if there is some  m , an interval  I\subset M and  a (onto) function

 f:D^{m}arrow I.

A definable set  D is small if it is not large.

The complement of small set is large in group structures.

Theorem 24 [11]

Let  (M, <, +, \ldots) be an expansion of ordered group. And let  I=(a, b)\subset M be a nonempty
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interval and  S\subset M be a small set.

Then  I\backslash S is large.

Proof ;

Let  f :  M^{2}arrow M be defined by  (m_{1}, m_{2})arrow m_{1}+m_{2} . And let  J=(a+b, 2b) . We show

that  f((I\backslash S)^{2})\supset J.
Suppose that  m_{0}\in J\backslash f((I\backslash S)^{2}) . Thus  m_{0} \in\bigcap_{m\not\in S\cup I^{c}}(S\cup I^{c}+m) where  I^{c} means the

complement of I.  So-(S\cup I^{c})+m_{0}\supset I\backslash S.  As-I^{c}+m_{0}=(-\infty, -b+m_{0})\cup(-a+m_{0}, \infty) ,

we see  that-S+m_{0}\supset(-b+m_{0}, b) contradicting the smallness of S.  [

There are characterizations of some structures in which small sets hold the axioms of closure

operator in [11]. This small closure operator, sd has the relation to  P‐independence there. But

although scl works in some structure  M , sd depends on the choice of  M unlike the algebraic

closure in general.

There are some locally  0‐minimal structures  M in which  acl(\emptyset)=scl(\emptyset) , or  acl(A)=scl(A)

for any  A\subset M . And also some locally  0‐minimal structures have a definable infinite discrete

set which is not contained in algebraic closures of finite sets.

Problem 25 Can we characterize locall  0‐minimal structures by small sets, or small closure

operator?

5. Further problems

We can consider the application of independence notions mentioned above to concrete locally

 0‐minimal sturctures, e.g. simple products defined in [2].

And we can try analogous argument following up the advance of  0‐minimal structures, e.g.

definably compactness or fsg property of definable groups, and the argument of generic types,

and so on.

Problem 26 Can we characterize definably compact groups definable in locally  0‐minimal

structures?

In addition, we consider whether the argument of measure and that of measure forking are

available for locally  0‐minimal structures.

Problem 27 Can we characterize definably amenable groups definable in locally  0‐minimal

structures?
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