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On a proof of undecidability of the ring of algebraic
integers

Kenji Fukuzaki
International University of Kagoshima

Abstract Let K be an algebraic extension of the rationals and  A be the ring of
algebraic integers of  K . As to the method of proving undecidability of the ring  A,
it seems that the only one method has been known, which is due to Julia Robinson,
especially for infinite algebraic extensions of the rationals. (See [Vi].) We discuss an
alternative method for the ring of algebraic integers of cyclotomic towers for some
rational primes.

1 Beth’s definability theorem

Let  K=K_{p} be the field obtained by adjoining to  \mathbb{Q} all  p‐power roots of unity where
 p is a rational prime integer, and  A its ring of algebraic integers. Videla ([Vi]) proved
that  \mathbb{Z} is  \mathfrak{L}‐definable in  A using a result of J. Robinson ([Ro]) giving a condition for
undecidability of algebraic integer rings and a result of D. Rohrlich about points on
elliptic curves in cyclotomic towers.

We discuss a method to prove that  \mathbb{N} is definable in  A , using Beth’s definability
theorem.

Let  P and  P' be two new  n‐placed relation symbols, not in the language  \mathfrak{L} . Let
 \Sigma(P) be a set of sentences of the language  \mathfrak{L}\cup\{P\} , and let  \Sigma(P') be the corresponding
set of sentences of  \mathfrak{L}\cup\{P'\} formed by replacing  P everywhere by  P' . We say that
 \Sigma(P) defines  P implicitly iff

 \Sigma(P)\cup\Sigma(P')\models(\forall x_{1}\ldots x_{n})[P(x_{1}\ldots x_{n})
rightarrow P'(x_{1}\ldots x_{n})].

Equivalently, if  (\mathfrak{A}, R) and  (\mathfrak{A}, R') are models of  \Sigma(P) , then  R=R'.  \Sigma(P) is said to
define  P explicitly iff there is a formula  \varphi(x_{1}\ldots x_{n}) of  \mathfrak{L} such that

 \Sigma(P)\models(\forall x_{1}\ldots x_{n})[P(x_{1}\ldots x_{n})
rightarrow\varphi(x_{1}\ldots x_{n})].

Beth’ definability theorem states that if  \Sigma(P) defines  P implicitly iff  \Sigma(P) defines  P

explicitly.
Let  \Sigma(P)=Th_{\mathfrak{L}\cup\{P\}}(A, \mathbb{N}) . We assume  (R, N) and  (R, N') are models of  \Sigma(P) .

We shall prove  N=N'.

Models of  Th_{\mathfrak{L}}(\mathbb{Z}) are called Peano ring. It is known that every Peano ring different
from  \mathbb{Z} has infinite transcendental degree over  \mathbb{Z} ([JL]), Since  \mathbb{N} is definable in  \mathbb{Z} and
 \mathbb{Z} is interpretable in  \mathbb{N} , we get the following.

Lemma 1. In the standard model  (A, \mathbb{N}),  \Sigma(P) defines  \mathbb{N} implicitly.

Thus we may only consider nonstandard models.
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2 Cyclotomic towers

Let  K=K_{p}=\mathbb{Q}  (\{\zeta_{p^{n}} : n\in \mathbb{N}\}) where  p is a rational prime integer and  \zeta_{p^{n}} is a
primitive pn‐th root of unity. Let  A be its ring of algebraic integers.

It is known that rational primes 2 is primitive in  \mathbb{Z}/p^{n} for every  n>0 if 2 is a
primitive in  \mathbb{Z}/p and  2^{p-1}=1+kp with  (k,p)=1 . It follows that 2 remains prime
in every subextension  K_{n}=\mathbb{Q}(\zeta_{p^{n}}) where  \zeta_{p^{n}} is a primitive pn‐th root of unity. (See
[Na], p. 182. ) For example,  p=3,5,11,13 , are such primes. Let  p be such a
prime and consider  K=K_{p} . We see that 2 remains prime in  A . We shall prove  \mathbb{N} is
definable in  A , from which follows that  A is undecidable.

We shall look into  \mathfrak{L}\cup\{P\}‐properties of  A , that is,  \Sigma(P) ‐sentences which hold in
 (A, \mathbb{N}) . We notice that  \mathfrak{L}\cup\{P\} ‐properties of  A hold in  (R, N) which is a nonstandard
model of  \Sigma(P)=Th_{\mathfrak{L}\cup\{P\}}(A, \mathbb{N}) .

Lemma 2. Let  x\in A be a non‐zero element such that every non‐unit factor of  x is
divisible by 2. then  x=2^{m}u for some  m\in \mathbb{N} and some unit  u of  A.

Since 2 is a prime element of  A the above lemma is obviously true. Noting that
 2^{n} is  \mathfrak{L}\cup\{P\}‐definable in  A for  n\in P , we see that this is an  \mathfrak{L}\cup\{P\}‐property of  A.

(See [Ka], p. 67. )

Lemma 3. Let  \varphi(x,\overline{y}) is an  \mathfrak{L}\cup\{P\} ‐formula which implies  x\in P , where  \overline{y} is a
sequence of free variables of of finite length. Then

 (A, \mathbb{N})\models\forall\overline{y}[\exists x\varphi(x,\overline{y})arrow
\exists z(\varphi(z,\overline{y})\wedge\forall w<z\neg\varphi(w,\overline{y}))].

This is the least number principle for  \mathbb{N} . Thus, we can use the least number
principle for  S in the case of  \mathfrak{L}\cup\{P\} ‐formulas.

3 Toward a proof

We assume  (R, N) and  (R, N') are models of  \Sigma(P) . We note that  \mathbb{N}\subset S and  \mathbb{N}\subset S.

From now on we suppose  N\neq N' by way of contradiction.
We have two exponentiation of base 2 in  R , that is,  2^{N}=\{2^{a} : a\in N\} and

 2^{N'}=\{2^{\alpha}:\alpha\in N'\}.

Lemma 4. We have  2^{N}\neq 2^{N} ’

Proof. Suppose  2^{N}=2^{N'} We may assume that there is an element  \alpha\in N'\backslash N by
symmetry. By Euclidean division applied for  N' , there is  \beta\in N' with  2^{\beta}\leq\alpha<2^{\beta+1},
where  < and  \leq are defined by

 x<y iff  y-x\neq 0\wedge\exists z_{1} ,  z_{2},  z_{3},  z_{4}  (y-x=z_{1}^{2}+ +z_{4}^{2}) ,

 x\leq y iff  x=y\vee x<y.

By assumption there is  b\in N with  2^{b}\leq\alpha<2^{b+1} . We see that  2^{b}<\alpha<2^{b+1} since
 \alpha\not\in N . Consider  \mathfrak{L}\cup\{P\}‐formula

 x\in P\wedge\exists y\not\in P(2^{x}<y<2^{x+1}) .

We see that  b\in N satisfies the above  \mathfrak{L}\cup\{P\}‐formula taking  \alpha for  y in  (R, S) .
By the least number principle applied for  (R, N) , there is the least number  m\in N

such that  2^{m}<z<2^{m+1} for some  z\not\in N.
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On the other hand, we note that  \alpha-2^{m}\in N' and  2^{N}\in N' , therefore for all
 a\in N,  2^{a} and  \alpha-2^{m} are comparable, that is,

 2^{a}<\alpha-2^{m}\vee 2^{a}=\alpha-2^{m}\vee 2^{a}>\alpha-2^{m}.

Further, if  \alpha-2^{m}=2^{a} for some  a\in N then it would be the case that  \alpha\in N . Thus
we have

 2^{a}<\alpha-2^{m}\vee 2^{a}>\alpha-2^{m}

for all  a\in N.

Let  y=\alpha-2^{m} . Then we have  y<2^{m} since   2^{m}-y=2^{m+1}-\alpha . Consider

 \mathfrak{L}\cup\{P\} ‐formula

 x\in P(y<2^{x}) ,

where  y is a parameter. Again by the least number principle applied for  (R, N) , there
is  d\in N with  d\leq m such that  y<2^{d} . and  2^{d-1}<y follows, a contradiction.  \square 

Now let  2^{\alpha}\not\in N . Then, by Lemma 2, we have  2^{\alpha}=2^{n}u for some  n\in N and
for some unit  u\neq 1 . We want to use induction or the least number principle for
 \mathfrak{L}\cup\{P\}‐formulas. If we adopt induction applied for  (R, N') , we must write sufficient
 \mathfrak{L}\cup\{P\}‐properties of  2^{n} to derive a contradiction. We must note that  P expresses
 N' , not  N . We must need more  \mathfrak{L}\cup\{P\}‐properties which hold in  (A, \mathbb{N}) . We hope
that someone would succeed it.

For cyclotomic towers  K_{2}=\mathbb{Q}  (\{\zeta_{2^{n}} : n\in \mathbb{N}\}) , we have the following fact. (see
[Na], p. 382. )

Fact 5. Let  L/\mathbb{Q} is finite algebraic extension and  M be the Galois closure of  L over
 \mathbb{Q} . Let  p be a rational prime integer.

Then  p remains prime in  L iff the Galois group  G(M/\mathbb{Q})is cyclic and generated
by  F_{m/\mathbb{Q}}(p) , where  F_{m/\mathbb{Q}}(p) is the Frobenius automorphism associated with  p.

Thus there is no prime integer which remains prime in  K_{2}=\mathbb{Q}  (\{\zeta_{2^{n}} : n\in \mathbb{N}\}) :
its subextension  \mathbb{Q}(\zeta_{2^{3}}) is not cyclic..
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