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1. INTRODUCTION

D. Evans, Z. Ghadernezhad, and K. Tent have shown that the automor‐

phisms groups of certain countable structures obtained using the Hrushovski
amalgamation method are simple groups. Among them, there are generic
structure of K_{f} for certain  f with coefficient 1/2 for the predimension func‐
tion. They conjectured that the automorphism group of the generic structure
of  K_{f} is a simple group if the coefficient of the predimension function for
 K_{f} is rational.

In this paper, we show that the automorphism group of Hrushovski’s orig‐
inal pseudoplane associated to a predimension function with coefficient 5/8
is a simple group. Actually, we prove a sufficient condition given by Evans,
Ghadernezhad, and Tent. We are going to treat the general rational cases in
another paper [14].

We essentially use notation and terminology from Baldwin‐Shi [3] and
Wagner [15]. We also use some terminology from graph theory [4].

For a set  X,  [X]^{n} denotes the set of all subsets of  X of size  n , and  |X| the
cardinality of  X.

We recall some of the basic notions in graph theory we use in this paper.
These appear in [4]. Let  G be a graph.  V(G) denotes the set of vertices of
 G and  E(G) the set of edges of G.  E(G) is a subset of  [V(G)]^{2}.  |G| denotes
 |V(G)| . The degree of a vertex  v is the number of edges at  v . A vertex
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of degree 1 is a leaf.  G is a path  x_{0}x_{1}\ldots x_{k} if  V(G)=\{x_{0},x_{1}, ...,x_{k}\} and
 E(G)=\{x_{0}x_{1},x_{1}x_{2}, ...,x_{k-1}x_{k}\} where the  x_{i} are all distinct.  x_{0} and  x_{k} are

ends of  G . The number of edges of a path is its length. A path of length  0 is a
single vertex.  G is a cycle  x_{0}x_{1}\ldots x_{k-1}x_{0} if  k\geq 3,  V(G)=\{x_{0},x_{1}, . . .,x_{k-1}\}
and  E(G)=\{x_{0}x_{1},x_{1}x_{2}, ...,x_{k-2}x_{k-1},x_{k-1}x_{0} \} where the  x_{i} are all distinct.

The number of edges of a cycle is its length. A non‐empty graph  G is
connected if any two of its vertices are linked by a path in G. A connected
component of a graph  G is a maximal connected subgraph of G. Aforest is
a graph not containing any cycles. A tree is a connected forest.

To see a graph  G as a structure in the model theoretic sense, it is a struc‐
ture in language  \{E\} where  E is a binary relation symbol.  V(G) will be the
universe, and  E(G) will be the interpretation of  E . The language  \{E\} will
be called the graph language.

Suppose  A is a graph. If  X\subseteq V(A),  A|X denotes the substructure  B of  A

such that  V(B)=X . If there is no ambiguity,  X denotes  A|X . We usually
follow this convention.  B\subseteq A means that  B is a substructure of  A . A sub‐

structure of a graph is an induced subgraph in graph theory.  A|X is the same
as  A[X] in Diestel’s book [4].

We say that  X is connected in  A if  X is a connected graph in the graph
theoretical sense [4]. A maximal connected substructure  ofA is a connected
component of  A.

Let  A,  B,  C be graphs such that  A\subseteq C and  B\subseteq C. AB denotes   C|(V(A)\cup
 V(B)),  A\cap B denotes  C|(V(A)\cap V(B)) , and  A-B denotes  C|(V(A)-V(B)) .

If  A\cap B=\emptyset,  E(A,B) denotes the set of edges xy such that  x\in A and  y\in B.
We put  e(A,B)=|E(A,B)|.  E(A,B) and  e(A,B) depend on the graph in
which we are working.

Let  D be a graph and  A,  B , and  C substructures of  D . We write  D=B\otimes_{A}C
if  D=BC,  B\cap C=A , and  E(D)=E(B)\cup E(C) .  E(D)=E(B)\cup E(C)
means that there are no edges between  B-A and  C-A.  D is called a free
amalgam of  B and  C overA. If  A is empty, we write  D=B\otimes C , and  D is
also called afree amalgam of  B and  C.

Definition 1.1. Let  \alpha be a real number such that  0<\alpha<1.

(1) For a finite graph  A , we define a predimension function  \delta by  \delta(A)=
 |A|-\alpha|E(A)|.

(2) Let  A and  B be substructures of a common graph. Put  \delta(A/B)=
 \delta(AB)-\delta(B) .

Definition 1.2. Let  A and  B be graphs with  A\subseteq B , and suppose  A is finite.
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 A\leq B if whenever  A\subseteq X\subseteq B with  X finite then  \delta(A)\leq\delta(X) .

 A<B if whenever  A\subset X\neq-\subseteq B with  X finite then  \delta(A)<\delta(X) .

We say that  A is closed in  B if  A<B.

 A<^{-}B if whenever   A\subset X\subset B\proptoarrow with  X finite then  \delta(A)<\delta(X) .

Let  K_{\alpha} be the class of all finite graphs  A such that  \emptyset<A.

Some facts about  < appear in [3, 15, 16]. Some proofs are given in [12].

Fact 1.3.  IfA<B\subseteq D and  C\subseteq D then  A\cap C<B\cap C.

Fact 1.4. Let  D=B\otimes_{A}C.

(1)  \delta(D/A)=\delta(B/A)+\delta(C/A) .
(2)  IfA<C then  B<D.

(3) If A<B and  A<C then  A<D.

Fact 1.5. (1)  LetA,  B,  C and  D be graphs with  D=B\otimes C and  A\subseteq D.
Then  \delta(D/A)=\delta(B/A\cap B)+\delta(C/A\cap C) .

(2) Let  D be a graph and  A a substructure of D. Let  \{D_{1},D_{2}, ...,D_{k}\}
be the set of all connected components of  D where the  D_{i} are all
distinct. Then

  \delta(D/A)=\sum_{i=1}^{k}\delta(D_{i}/A\cap D_{i}) .

Let  B,  C be graphs and  g:Barrow C a graph embedding.  g is a closed
embedding of  B into  C if  g(B)<C . Let  A be a graph with  A\subseteq B and  A\subseteq C.

 g is a closed embedding overA if  g is a closed embedding and  g(x)=x for
any  x\in A.

In the rest of the paper,  K denotes a class of finite graphs closed under
isomorphisms.

Definition 1.6. Let  K be a subclass of  K_{\alpha}.  (K, <) has the amalgama‐
tion property if for any finite graphs  A,B,C\in K , whenever  g_{1} :  Aarrow B and
 g_{2} :  Aarrow C are closed embeddings then there is a graph  D\in K and closed
embeddings  h_{1} :  Barrow D and  g_{2}:Carrow D such that  h_{1}\circ g_{1}=h_{2}\circ g_{2}.

 K has the hereditary property if for any finite graphs  A,B , whenever   A\subseteq
 B\in K then  A\in K.

 K is an amalgamation class if  \emptyset\in K and  K has the hereditary property
and the amalgamation property.

A countable graph  M is a generic structure of  (K, <) if the following
conditions are satisfied:
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(1) If  A\subseteq M and  A is finite then there exists a finite graph  B\subseteq M such
that  A\subseteq B<M.

(2) If  A\subseteq M then  A\in K.

(3) For any  A,  B\in K , if  A<M and  A<B then there is a closed embed‐
ding of  B into  M over  A.

Let  A be a finite structure of  M . There is a smallest  B satisfying  A\subseteq B<
 M , written  c1(A) . The set  c1(A) is called the closure of  A in  M.

Fact 1.7 ([3, 15, 16]). Let  (K, <) be an amalgamation class. Then there is
a generic structure of  (K, <) . Let  M be a generic structure of  (K, <) . Then
any isomorphism between finite closed substructures of  M can be extended
to an automorphism of  M.

Definition 1.8. Let  K be a subclass of  K_{\alpha}.  (K, <) has the free amalgama‐
tion property if whenever  D=B\otimes_{A}C with  B,C\in K,  A<B and  A<C then
 D\in K.

By Fact 1.4 (2), we have the following.

Fact 1.9. Let  K be a subclass of  K_{\alpha} . If  (K, <) has the free amalgamation
property then it has the amalgamation property.

Definition 1.10. Let  \mathbb{R}^{+} be the set of non‐negative real numbers. Sup‐
pose  f :  \mathbb{R}^{+}arrow \mathbb{R}^{+} is a strictly increasing concave (convex upward) un‐
bounded function. Assume that  f(0)=0 , and  f(1)\leq 1 . We assume that  f
is piecewise smooth.  f_{+}'(x) denotes the right‐hand derivative at  x . We have
 f(x+h)\leq f(x)+f_{+}'(x)h for  h>0 . Define  K_{f} as follows:

 K_{f}=\{A\in K_{\alpha}|B\subseteq A\Rightarrow\delta(B)\geq f(|B|)\}.
Note that if  K_{f} is an amalgamation class then the generic structure of
 (K_{f}, <) has a countably categorical theory [16].

A graph  X is normal to  f if  \delta(X)\geq f(|X|) . A graph  A belongs to  K_{f} if
and only if  U is normal to  f for any substructure  U of  A.

2. THEOREMS BY EVANS, GHADERNEZHAD, AND TENT

In this section, we fix a generic structure  M of  K_{f} . Many of the following
definitions and facts are by Evans, Ghadernezhad, and Tent[5].

Definition 2.1. Let  A\subseteq M.  Aut(M/A) denotes the set of automorphisms of
 M fixing  A pointwise. Let  b\in M.  orb(b/A) denotes the  Aut(M/A) ‐orbit of
 b . So, orb  (b/A)=\{\sigma(b)|\sigma\in Aut(M/A)\}.
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Definition 2.2. Let  A\subseteq M be finite. The dimension  d(A) of  A is defined by
 d(A)=\delta(c1(A)) . Let  B\subseteq M be also finite. The relative dimension  d(A/B)
is defined by  d(A/B)=d(AB)-d(B) .

Definition 2.3. Suppose  b\in M and  A<M with  A finite. We say that  b is
basic over  A if  b\not\in A and whenever  A\subseteq C<M and  d(b/C)<d(b/A) then

 b\in C . In this case, orb  (b/A) is called a basic orbit over  A.

Definition 2.4. We say that  M is monodimensional if for every finite  A<M

and basic orbit  D over  A there is a finite  B<M with  M=c1(BD) and  A\subseteq B.

Definition 2.5. Suppose  A<M and  b\in M a single element.  b\perp A if
 c1(bA)=bA and  d(b/A)=d(b) .

Fact 2.6. Suppose  A<M and  b_{1},b_{2}\in M be single elements. If  b_{1}\perp A and
 b_{2}\perp A then  b_{1} and  b_{2} are conjugate overA in  M.

Proof. Suppose  b_{1}\perp A and  b_{2}\perp A . We have  c1(b_{1}A)=b_{1}A by the defini‐
tion. So,  \delta(b_{1}/A)=\delta(b_{1})=1 . This means that there are no edges between
 b_{1} and  A . By the same argument, there are no edges between  b_{2} and  A.

Hence,  b_{1}A and  b_{2}A are isomorphic over  A and also  b_{1}A<M and  b_{2}A<M.
Therefore, the partial isomorphism between  b_{1}A and  b_{2}A over  A can be
extended to an automorphism of  M by Fact 1.7.  \square 

Fact 2.7. If  M=c1(AD) for some finite  A<M and a basic orbit  D over A
then  M is monodimensional.

Fact 2.8. If  M is monodimensional then the automorphism group of  M is a
simple group.

3. HRUSHOVSKI’S BOUNDARY FUNCTIONS

Definition 3.1 ([7]). Let  \alpha be a positive real number. We define  x_{n},  e_{n},  k_{n},
 d_{n} for integers  n\geq 1 by induction as follows: Put  x_{1}=2 and  e_{1}=1 . Assume
that  x_{n} and  e_{n} are defined. Let  r_{n} be a smallest rational number  r such that

  r=k/d>\alpha with  d\leq e_{n} where  k and  d are positive integers. Let  k_{n} and
 d_{n} be coprime positive integers with  k_{n}/d_{n}=r_{n} . Finally, let  x_{n+1}=x_{n}+k_{n},
and  e_{n+1}=e_{n}+d_{n}.

Let  a_{0}=(0,0) , and  a_{n}=(x_{n},x_{n}-e_{n}\alpha) for  n\geq 1 . Let  f be a function

from  \mathbb{R}^{+} to  \mathbb{R}^{+} whose graph on interval  [x_{n},x_{n+1}] with  n\geq 0 is a line seg‐
ment connecting  a_{n} and  a_{n+1} . We call  f a Hrushovski ’s boundary function
associated to  \alpha.
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Fact 3.2 ([7]). Let  D=B\otimes_{A} C. Suppose  B is normal to  f,  x_{n}\leq|B|<x_{n+1}
and  \delta(C/A)=x-e\alpha>0 with positive integers  x,  e.  Ifx/e\geq k_{n}/d_{n} then  D

is normal to  f.

Fact 3.3 ([7]). Let  D=B\otimes_{A} C. If  \delta(A)<\delta(B),  \delta(A)<\delta(C), andA,  B,  C

are normal to  f then  D is normal to  f.

Fact 3.4 ([7]). Let  f be a Hrushovski  s boundary function associated to
 a . Then  f is strictly increasing and concave, and  (K_{f}, <) has the free
amalgamation property. Therefore, there is a generic structure of  (K_{f}, <) .
Any one point structure is closed in any structure in  K_{f} . If  \alpha is rational
then  f is unbounded.

In the rest of the paper, we fix  \alpha=5/8.
Note that 2  \cdot 8−3  \cdot  5=1 . Therefore,  2-3\alpha=1/8.

Proposition 3.5. (1) Let  k\geq 0 be an integer. Whenever  0<x<3+

 8(k+1) and  y/x>5/8 then  y/x\geq(2+5k)/(3+8k) .

(2) We refer to Definition 3.1. Suppose  e_{n}\geq 3 . Let  l be a largest integer
 l' with  3+8l'\leq e_{n} . Then  k_{n}=2+5l and  d_{n}=3+8l.

Proof. (2) follows from (1). So, we show (1).
First, note that for any integers  u,  v,  8v-5u=1 if and only if  u=3+8k

and  v=2+5k with an integer  k . Also,  (2+5k)/(3+8k) is decreasing on
 k.

By inspection, whenever  0<x<3+8=11 and  y/x>5/8 then   y/x\geq
 2/3.

Suppose  u=3+8k and  v=2+5k with  k\geq 1 . We have

  \frac{v}{u}-\frac{5}{8}=\frac{1}{8u}.
Assume  u<x<u+8 and  y/x>5/8 . Note that  x<2u because  8<u . We

have

  \frac{y}{x}-\frac{5}{8}=\frac{8y-5x}{8x}\geq\frac{2}{8x}>\frac{1}{8u}.
Therefore,

  \frac{y}{x}>\frac{v}{u}.
We have (1).  \square 

By this proposition, we have a following chart:
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Also, for  n\geq 3 , we have

 f(x_{n+1})=f(x_{n})+ \frac{1}{8}.
The following are easy.

Lemma 3.6. (1) Let  C=A\otimes_{p}B where  p is a single vertex and   A,B\in

 K_{f} . Then  C\in K_{f}.
(2) Any finite forest belongs to  K_{f}.
(3) Any cycle of length 6 or more belongs to  K_{f}.

Lemma 3.7. Let  B=A\otimes_{\{x,y\}}P where  P=x\cdots y is a path of length 3 or
more. If the distance of  x and  y is 3 or more in A  andA\in K_{f} then  B\in K_{f}.

Lemma 3.8. Let  B=A\otimes_{\{x,y,z\}}P where

 V(P)=\{x,y,z,x',y',z',w\} and  E(P)=  \{xx\prime,x'w,yy',y'w,zz',z'w\}.

If the pairwise distances among  x,  y,  z in  A are 2 or more  andA\in K_{f} then
 B\in K_{f}.

4. SPECIAL STRUCTURES

Let  B be a graph with  V(B)=\{a_{1},a_{2},b_{1},b_{2}\} and  E(B)=\{a_{1}b_{1},a_{2}b_{2},b_{1}b_{2}\}
and let  A=\{a_{1},a_{2}\} . Then  A<B and  \delta(B/A)=1/8.

 a_{1}  a_{2}

Suppose that  B is a closed subset of  M . Then  b_{1} and  b_{2} are basic over  A

because 1/8 is the smallest positive possible dimension.
Let  W_{1} be the following graph:
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Let  F_{1} be the set of leaves of  W_{1} . Then  F_{1}<^{-}W_{1} and  \delta(W_{1}/F_{1})=0.
Make a free amalgam of 4 copies of  B over  A and attaching  W_{1} to it, we

get:

The point  c belongs to the closure of basic points over  A.

Unfortunately, This structure does not belong to  K_{f} . But it turns out that
any proper substructures belong to  K_{f}.

We can make a “wreath”  W_{3} with 3 copies of  W_{1} :

Let  F be the leaves of  W_{3} . Then  F<^{-}W_{3} and  \delta(W_{3}/F)=0 . A cycle
with length 6 belongs to  K_{f} . Therefore,  W_{3} belong to  K_{f}.

Lemma 4.1. Let

 C_{1}=(B_{1}\otimes_{A}B_{2}\otimes_{A}\cdots\otimes_{A}B_{9})\otimes_{F}W_{3}

where each  B_{i} is isomorphic to  B overA,  F=\{b_{11},b_{12}, ..., b_{19}\} , with   b_{1i}\in
 B_{i} the isomorphic images of  b_{1} , and  F is also the set of leaves of  W_{3} . Then
 C_{1}\in K_{f} . The following is a picture of  C_{1} :
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Proof. Let  S be the cycle of length 6 at the top including  c_{1} in  C_{1} . We can
represent  C_{1} as

 C_{1}=H_{1}\otimes_{AS}H_{2}\otimes_{AS}H_{3}\otimes_{AS}H_{4}\otimes_{AS}H_{5}
\otimes_{AS}H_{6}\otimes_{AS}H_{7}\otimes_{AS}H_{8}\otimes_{AS}H_{9}

where each  H_{i} is  B_{i}p_{i}S,  p_{i} is adjacent to  b_{1i} and to a single vertex in  S . We
have  H_{i}\in K_{f} and  AS<^{-}H_{i} for each  i.

We have to show that if  U\subseteq C_{1} then  U is normal to  f.
Case  U\cap A\neq A . In this case,  U\cap AS<U\cap H_{i} for each  i . Therefore,

 U\in K_{f} by the free amalgamation property.
Case  A\subseteq U.
Subcase 1:  U=B_{I}\otimes_{F_{I}}U' where  I is a subset of  \{1,2, \ldots,9\},  B_{I}=

 \otimes_{A}\{B_{i}\}_{i\in I},  F_{l}=\{b_{1i}\}_{i\in l} , and  U' is a substructure of  W_{3}.
Let  x be the number of points in  U'-F_{I} and  e the number of edges in  U'.

To show that  U is normal to  f , we can assume that  e\leq 3|I| and  x<2|I| by
Lemmas 3.6, 3.7, and 3.8.

Suppose  |I|\leq 4 . Then  |B_{l}|=x_{2+|I|} , and  e\leq 3|I|=e_{2+|I|} . Since  x-e\alpha=

 \delta(U'/F_{I})>0 , we have   x/e>\alpha . Hence,  x/e\geq k_{2+|I|}/d_{2+|I|} . Therefore,  U'

is normal to  f by Fact 3.3.
Suppose  |I|>4 . We have  \delta(B_{I})=2+|I|/8 , and  |B_{l}|=2+2|I|.  |B_{I}| is

12, 14, 16, 18, 20 for  |I|=5,6,7,8,9 , respectively.
We also have  f(10)=2+4/8,  f(17)=2+5/8,  f(29)=2+6/8 , and

 f(51)=2+7/8.
Suppose  |I|=5.  |U|\leq 12+10=22 , and  \delta(U)\geq 2+5/8+1/8=2+

 6/8 . Since  |U|\leq 22<29,  U is normal to  f.
Suppose  |I|=6.  |U|\leq 14+12=28 , and  \delta(U)\geq 2+6/8+1/8=2+

 7/8>f(29) . Since  |U|\leq 28<29,  U is normal to  f.
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Suppose  |I|=7.  |U|\leq 16+14=30 , and  \delta(U)\geq 2+7/8+1/8=2+1.
Since  |U|\leq 30<51 , and  f(51)=2+7/8<\delta(U),  U is normal to  f.

Suppose  |I|=8.  |U|\leq 18+16=34 , and  \delta(U)\geq 2+8/8+1/8=2+
 9/8 . Since  |U|\leq 30<51 , and  f(51)=2+7/8<\delta(U),  U is normal to  f.

Finally, suppose  |I|=9.  |U|\leq 20+18=38 , and  \delta(U)\geq 2+9/8 . Since
 |U|\leq 38<51 , and  f(51)=2+7/8<\delta(U),  U is normal to  f.

Now, consider the general case. We can assume that  A\subseteq U , and  U is
smooth over  AS\cap U . Let  I be the set of  i such that  B_{i}\subseteq U\cap H_{i}.

Let  U_{I}=\otimes_{AS\cap U}\{H_{i}\cap U\}_{i\in l} , and  j\not\in I.
Put  U_{j}^{\prime/}=U_{I}\otimes_{AS\cap U}H_{j} . Then  U_{I} and  U_{j}^{\prime/} are normal to  f by Subcase 1.

Put  U_{j}=U_{I}\otimes_{AS\cap U}(H_{j}\cap U) . Then  |U_{j}|<|U_{j}"| and  \delta(U_{j})\geq\delta(U_{j}") because

 \delta(H_{j}\cap U/AS\cap H_{j}\cap U)\geq\delta(H_{j}/AS\cap H_{j}) . Hence,  U_{j} is normal to  f . Also,
we have  U_{I}<U_{j} . Therefore,

 U= \bigotimes_{U_{I}}\{U_{j}\}_{j\not\in I}
is normal to  f by Fact 3.2.  \square 

Lemma 4.2. Let  C_{2}=C_{1}\otimes_{c_{1}}c_{1} pc where  c_{1} pc is a path of length 2. Then
 C_{2}\in K_{f} and  Ac<C_{2}.

Proof.  C_{2}\in K_{f} because  C_{1} and  c_{1} pc belong to  K_{f} and one point is always
closed in any structure.

By inspection, for any  U\subseteq C_{1} with  A\subseteq U and  c_{1}\in U , we have  \delta(U/A)\geq
 1 . Therefore, for any  U\subseteq C_{2} with  A\subseteq U and  c\in U , we have  \delta(U/A)>1.
Therefore,  \delta(U/Ac)=\delta(U/A)-1>0 . Hence,  Ac<C_{2}.  \square 

Lemma 4.3. Let  C_{3}=\otimes_{Ac}\{C_{11}, C_{12},C_{13},C_{14}\} where  C_{1j} are isomorphic to
 C_{1} overAc. Then  C_{3}\in K_{f},  A<C_{3},  Ac<C_{3}.

5. MONODIMENSIONALITY

We can prove the following theorem as in [5].

Theorem 5.1. The generic structure  M of  K_{f} is monodimensional. There‐
fore, the automorphism group of  M is a simple group.

Proof. Consider  C_{3} from 4.3. We can assume  a_{1} and  a_{2} are not connected
and  A=\{a_{1},a_{2}\}<M . So, we can embed  C_{3} as a closed substructure of  M.

We can assume that  C_{3}<M . Isomorphic images of  B over  A in  C_{3} are also
closed in  M . Therefore, isomorphic images of  b_{1} are in a same basic orbit
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over  A , say  D . Hence,  c\in c1(A,D) . Since  cA<C_{3},  cA is closed in  M and
thus  c\perp A.

By Fact 2.6, we have  \{e\in M|e\perp A\}\subseteq c1(A,D) .
Now, let  x\in M-A . Let  X=c1(xA) . Consider the following structure  U :

Then  X<X\otimes_{x}U . Embed this structure over  X as a closed structure of

 M . So, we can assume  XU<M . For each leaf  y of  U,  xy<U . Therefore,

 Ay<M . Hence,  y\perp A . On the other hand, by the structure of  U,  x is in
the closure of the leaves of  U . Thus,  x\in c1(\{e\in M|e\perp A\}) . Therefore,

 x\in c1(A,D) .  \square 
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