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1. INTRODUCTION

This article has two aims. Firstly we give a conjectural correspon‐
dence of automorphic forms between different \mathbb{Q} forms of symplectic
groups of rank two with respect to parahoric subgroups, and secondly
we give a precise conjectural images of Ihara lifts (a lift from pairs
of elliptic cusp forms to automorphic forms of a  \mathbb{Q} form of symplec‐
tic group whose archimedean part is compact.) These conjectures are
based on dimensional relations of (global) automorphic forms and a lot
of explicit examples. Since the contents have been already explained
in papers [5], [6], [9], [7], we think there is not much point to repeat it
here. So we will only sketch some outline and skip complicated parts.
The author hopes interested readers check the papers themselves.

Here we consider the symplectic group  Sp(2, \mathbb{R})\subset M_{4}(\mathbb{R}) and its
compact twist  USp(2) . It is expected by the Langlands conjecture
that there should exist a good correspondence between automorphic
forms on  Sp(2, \mathbb{R}) and those on  USp(2) preserving the  L functions.
In case of  SL(2, \mathbb{R}) and  SU(2) , the same sort of correspondence is
now called Jacquet‐Langlands correspondence, but originally such a
description were given first by Eichler for concrete discrete subgroups
in terms of Brandt matrices for  SU(2) . Our aim is to generalize this
classical Eichler’s correspondence to the case of degree two symplectic
groups and we are not aiming a description for the whole automor‐
phic representations. This problem was suggested by Y. Ihara around
in 1963 before Langlands announced his quite general conjectures. In
Ihara’s paper [10], he did two things. One is to give a definition of
automorphic forms on compact twist  USp(2) very concretely and de‐
veloped an analogy of the classical theory of Brandt matrices. (Such
modular forms on algebraic groups such that the archmedean part is
a compact group is now called algebraic modular forms by B. Gross.
See also Hashimoto [4] for a complete description for symplectic case
including Hecke algabras.) The other is to prove that under certain
conditions, there exist a lift from pairs of elliptic cusp forms to the
algebraic modular forms. This can be regarded as a compact version of
Saito‐Kurokawa lift or Yoshida lift and it is interesting that Ihara lift
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was obtained much earlier. But there was no conjectures at all for the
images of these lifts. Here we can propose a conjecture of images as
a by‐product of conjectural global correspondence between symplectic
automorphic forms belonging to parahoric subgroups.

2. QUATERNION HERMITIAN FORMS AND IHARA LIFT

2.1. Definition of automorphic forms. We fix a prime  p . We de‐
note by  D the definite quaternion algebra over  \mathbb{Q} of discriminant  p . We
fix a maximal order  O of  D . For any place  v of  \mathbb{Q} , we put  D_{v}=D\otimes_{\mathbb{Q}}\mathbb{Q}_{v}.
When  v is a finite place, we put  O_{v}=O\otimes_{\mathbb{Z}}\mathbb{Z}_{v} . We define the group  G

of similitudes of the positive definite binary quaternion hermitian form
over  D by

 G=\{g\in M_{2}(D);gg^{*}=n(g)1_{2}, n(g)\in \mathbb{Q}^{\cross}\}.
We have

 G\cross \mathbb{Q}\mathbb{C}\cong GSp(2, \mathbb{C})=\{g\in M_{4}(\mathbb{C});
gJtg=n(g)1_{4}, n(g)\in \mathbb{C}^{\cross}\}.
We denote by  G_{A} the adelization of  G and by  G_{v} the  v‐component of
 G_{A} for any places  v of  \mathbb{Q} . In  D^{2} , there are two genera of quaternion
hermitian maximal lattices in the sense of Shimura. One is the genus
containing  O^{2} and we denote this by  \Lambda_{pr}(p) . We call the other the
non‐principal genus and we denote this by  \Lambda_{npr}(p) . For  v\neq p , the
local representatives of both genera are given by  O_{v}^{2} and the stabilizer
of  O_{v}^{2} in  G_{v} is  GL_{2}(O_{v})\cap G_{v} , where  GL_{2}(O_{v})=M_{2}(O_{v})^{\cross} At  p , there
are two different local representatives and their stabilzers are represen‐
tatives of the maximal compact subgroups of  G_{p} up to conjugation.
We denote by  U_{pr}(p) and  U_{npr}(p) the stabilizers in  G_{A} of fixed repre‐
sentatives  L_{pr}=O^{2}\in\Lambda_{pr} and  L_{npr}\in\Lambda_{npr} respectively. We choose
 L_{npr} so that the components of  U_{pr}(p)\cap U_{npr}(p)=U_{\min}(p) at  p is a
minimal parahoric subgroup of  G_{p} . Let  (\rho, V) be a irreducible finite
dimensional representation of  G_{\infty}^{(1)}=\{g\in G_{\infty};n(g)=1\} . We assume
that  \rho(\pm 1_{2})=id . We define a representation of  G_{A} associated with  \rho

by
 G_{A}arrow G_{\infty}arrow G_{\infty}/center  \cong G_{\infty}^{(1)}/\{\pm 1_{2}\}arrow GL(V) ,

and denote this also by  \rho . We denote by  G_{A,fin} the finite part of
 G_{A} (i.e.  G_{A} \cap\prod_{v<\infty}G_{v} ). For an open compact subgroup  U_{fin} of
 G_{A,fin} \cap\prod_{v<\infty}G_{v} we define automorphic forms on  G_{A} of weight  \rho with
respect to subgroup  U=G_{\infty}U_{fin}\subset G_{A} by

 \mathfrak{M}_{\rho}(U)= {  f :  G_{A}arrow V;f(uga)=\rho(u)f(g) for any  g\in G_{A},  a\in G,  u\in U}.

This space is isomorphic to the following space. We take the doucle
coset decomposition  G_{A}= \bigcup_{i=1}^{h}Ug_{i}G and put  \Gamma_{i}=G\cap g_{i}^{-1}Ug_{i} . These
are finite groups. We denote by  V^{\Gamma_{i}} the set of elements  v\in V such
that  \rho(\gamma)v=v for all  \gamma\in\Gamma_{i} . Then we have

 \mathfrak{M}_{\rho}(U)\cong\oplus_{i=1}^{h}V^{\Gamma_{i}}.
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(cf. [10], [4], [1].) Here for  \rho=det^{k}Sym(j) , we can give  V more
concretely. Let  \mathbb{H}=\mathbb{R}+\mathbb{R}i+\mathbb{R}j+\mathbb{R}k be the Hamilton quaternion
algebra over  \mathbb{R} . We identify  \mathbb{H} with  \mathbb{R}^{4} by   x=x_{1}+x_{2}i+x_{3}j+x_{3}k\in
 \mathbb{H}arrow(x_{1}, x_{2}, x_{3}, x_{4}) . For  \lambda=(\lambda_{1}, \ldots, \lambda_{4})\in \mathbb{H}\cong \mathbb{R}^{4} and  (x, y)=
 (x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}, y_{4})\in \mathbb{H}^{2}\cong
\mathbb{R}^{8} , we put

  \triangle_{x,y}=\sum_{i=1}^{4}(\frac{\partial^{2}}{\partial x_{i}^{2}}+
\frac{\partial^{2}}{\partial y_{\dot{i}}^{2}}) .

and

  \triangle_{\lambda}=\sum_{\dot{i}=1}^{4}\frac{\partial^{2}}
{\partial\lambda_{i}^{2}}.
For any even integers   2\nu , we denote by  Harm_{2\nu} the space of polyno‐
mials  f(x, y) in  (x, y)\in \mathbb{H}^{2}\cong \mathbb{R}^{8} of 8 variables of degree   2\nu such that
 \triangle_{x,y}f=0 . For any integers  a,  b such that  a\geq b\geq 0 and  a+b=2\nu,
we put

 V_{a,b}=\{f(x, y)\in Harm_{2\nu};f(\lambda x, \lambda y)=n(\lambda)^{b}\phi(x, 
y, \lambda), \triangle_{\lambda}(\phi)=0\},

where  n(\lambda) is the reduced norm of  \lambda , Then we have

 Harm_{2\nu}=\oplus_{a\geq b\geq 0,a+b=2v}V_{a,b}

For a non‐negative integer  l , we denote by  \tau\iota the symmetric tensor
representation of  SU(2)\cong \mathbb{H}^{1}=\{x\in \mathbb{H};n(x)=1\} . We denote by  \tau_{a,b}

the irreducible representation of  G_{\infty}^{1} corresponding to the dominant
integral weight  (a, b) . Here we can define the action of  \mathbb{H}^{1}\cross G_{\infty}^{1} on  V_{a,b}
by  ((h, g)f)(x, y)=f((\overline{h}x, \overline{h}y)g) for any  h\in \mathbb{H}^{1} and  g\in G_{\infty}^{1} and we
can show that this gives the irreducible representation  \tau_{a-b}\otimes\tau_{a,b} . So
actually  V_{a,b} does not give an irreducible representation of  G_{\infty}^{1} unless
 a=b since there is a multiplicity which is equal to  \dim\tau_{-b}=1+a-b.
Of course we can choose an irreducible subspace of  V_{a,b} of  G_{\infty}^{1} if we like,
but this would not be very natural.

2.2. Ihara lift. Roughly speaking, Ihara lift is a lift from pairs of
elliptic cusp forms to automorphic forms in  \mathfrak{M}_{k+j-3,k-3}(U) for some  U.

For an automorphic form  f(x, y)\in \mathfrak{M}_{k+j-3,k-3}(U) , we can construct
an elliptic modular form by using quaternon hermitian forms and the
harmonic polynomial  f(x, y) . On the other hand, we can make  SU(2)
act on  f(x, y) , so by Eichler this also gives an elliptic modular form of
different weight. When these construction do not vanish, we can relate
the  L function of  f with  L functions of elliptic modular forms. By
Löschel [12], this lift is explained by Howe’s dual reductive pair coming
from the anti‐hermitian form of degree two and  G_{\infty} . But we follow
here Ihara’s original formulation. We assume  U=U_{pr}(p) or  U_{npr}(p)
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and  \Lambda=\Lambda_{pr}(p) or  \Lambda_{npr}(p) . For each pr or npr, we write

 U= \bigcup_{\kappa=1}^{h(U)}Ug_{i}G.
We denote by  L=L_{1} , . . .  L_{h(U)} the representatives of  \Lambda/G . We
may write  L_{\kappa}=L_{1}g_{\kappa}:= \bigcap_{v<\infty}(L_{1}g_{\kappa,v}\cap D^{2}) . We also define  O_{A}^{\cross}=
 D_{\infty} \prod_{v<\infty}O_{v}^{\cross} and

 D_{A}^{\cross}= \bigcup_{i=1}^{h_{0}}O_{A}^{\cross}b_{i}D^{\cross}
We put  O_{i}=b_{\dot{i}}^{-1}O_{A}^{\cross}b_{i}\cap D^{\cross} For  (i, \kappa) with  1\leq i\leq h_{0} and   1\leq\kappa\leq

 h(U) , we define  L_{i\kappa}=\overline{b_{i}}Lg_{i}=\overline{b_{i}}L_{\kappa} . We define

 V_{a,b}^{(i,\kappa)}= {  f\in V_{a,b};f(\overline{u}(x, y)\gamma)=f(x, y) for all  (u, \gamma)\in O_{\dot{i}}^{\cross}\cross\Gamma. }.

Then the space  \oplus_{i,\kappa,a\geq b\geq 0}V_{a,b}^{(i,\kappa)} can be regarded as  \mathfrak{M}_{a-b}(O_{A}^{\cross})\cross \mathfrak{M}_{a,b}(U) ,
where  \mathfrak{M}_{a-b}(O_{A}^{\cross}) is the space of automorphic forms on  D_{A}^{\cross} with respect
to  O_{A}^{×} of weight  \tau_{a-b} . By Eichler, this corresponds to elliptic new forms

of weight  a-b+2 . For  F=(F_{\dot{i}\kappa})\in\oplus_{i,\kappa}V_{a,b}^{(i,\kappa)} , we define theta series
on  \tau\in H_{1} as follows.

  \vartheta_{F}^{(i,\kappa)}(\tau)=\sum_{m=0}^{\infty}\sum_{x\in L_{i\kappa},
n_{i\kappa}(x,y)=m}F_{ik}(x, y)e^{2\pi im\tau}
where we put  n_{i\kappa}(x, y)=(n(x)+n(y))/n(L_{i\kappa}) , where  n(L_{i\kappa}) is the
fractional  \mathbb{Z} ideal spanned by all  n(x)+n(y) for  (x, y)\in L_{i\kappa} . Then we
have  \theta_{F}^{(i,\kappa)}(\tau)\in A_{a+b+4}(\Gamma_{0}(p)) if  U=U_{pr}(p) and  \in A_{a+b+4}(SL_{2}(\mathbb{Z})) if

 U=U_{npr}(p) . We put

  \vartheta_{F}(\tau)=\sum_{i=1}^{h_{0}}\sum_{\kappa=1}^{h}\frac{1}{|O_{i}
^{\cross}||\Gamma_{\kappa}|}\vartheta_{F}^{i\kappa}(\tau) .

This is a cusp form unless  a=b=0.

Theorem 2.1 ([10],[8]). Assume that  F is a Hecke eigen form in
 \mathfrak{M}_{a-b}(O_{Z}^{\cross})\cross \mathfrak{M}_{a,b}(U) and given by  F_{1}\cross F_{2}(F_{1}\in M_{a-b}(O_{A}^{\cross}),   F_{2}\in

 \mathfrak{M}_{a,b}(U) . Assume also thet  \vartheta_{F}\neq 0 . Then  \vartheta_{F} is also a Hecke eigen‐
form and we have

 L(s, F_{2})=L(s-b-1, F_{1})L(s, \vartheta_{F}) .

If  a\neq b , then this gives a lift from  S_{a-b+2}^{new}(\Gamma_{0}(p))\cross S_{a+b+4}(\Gamma_{0}(p)) to
 \mathfrak{M}_{a,b}(U_{pr}(p)) and from  S_{a-b+2}^{new}(\Gamma_{0}(p))\cross S_{a+b+4}(SL_{2}(\mathbb{Z})) to  \mathfrak{M}_{a,b}(U_{npr}(p)) .

This is a compact version of the Yoshida lift in [14]. If  a=b , then we
must add an Eisenstein series to  S_{2}^{new}(\Gamma_{0}(p)) and this case is the com‐

pact version of Saito‐Kurokawa lift. (Note that in both cases, Ihara’s
work was done much earlier.) There was no theory on images of this
Ihara lift. We propose a conjectural image later.
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3. SIEGEL MODULAR FORMS AND PARAHORIC SUBGROUPS

Let  \mathfrak{H}_{2} be the Siegel upper half space of degree two. For any ir‐

reducible polynomial representation  \rho of  GL(2, \mathbb{C}),  g=  (\begin{array}{ll}
A   B
C   D
\end{array})  \in

 Sp(2, \mathbb{R}) and a function  f(Z) on  \mathfrak{H}_{2} , we write

 (f|_{\rho}[g])(Z)=\rho(CZ+D)^{-1}f(gZ) .

For a discrete subgroup  \Gamma of  Sp(2, \mathbb{Q}) with  Vol(\Gamma\backslash Sp(2, \mathbb{R}))<\infty , we
denote by  S_{\rho}(\Gamma) the space of holomorphic Siegel cusp forms of weight
 \rho with respect to  \Gamma . Or more precisely, a holomorphic function  f(Z)
on  \mathfrak{H}_{2} belongs to  S_{\rho}(\Gamma) if

 f(\gamma Z)=\rho(CZ+D)f(Z) for all  \gamma=(\begin{array}{ll}
A   B
C   D
\end{array})  \in\Gamma

and  \Phi(f|_{\rho}[g])=0 for all  g\in Sp(2, \mathbb{Q}) , where  \Phi is the Siegel  \Phi operator.
Any irreducible representations  \rho of  GL(2, \mathbb{C}) can be written as  \rho_{k,j}=

 \det^{k}Sym(j) for some  k and  j , where  Sym(j) is the symmetric tensor
representation of degree  j , so for  \rho=\rho_{k,j} , we also write

 S_{\rho}(\Gamma)=S_{k,j}(\Gamma) .

When  j=0 , we also write  S_{k}(\Gamma)=S_{k,0}(\Gamma) . Now we explain discrete
subgroups  \Gamma that we will consider later.

The group  Sp(2, \mathbb{Q}_{p}) has seven proper standard parahoric subgoups
and corresponding to those, we may define seven discrete subgroups of
 Sp(2, \mathbb{R}) . We define them as follows. We put

 B(p)=(\begin{array}{llll}
\mathbb{Z}   \mathbb{Z}   \mathbb{Z}   \mathbb{Z}
p\mathbb{Z}   \mathbb{Z}   \mathbb{Z}   \mathbb{Z}
p\mathbb{Z}   p\mathbb{Z}   \mathbb{Z}   p\mathbb{Z}
p\mathbb{Z}   p\mathbb{Z}   \mathbb{Z}   \mathbb{Z}
\end{array})  \cap Sp(2, \mathbb{Q}) ,

 \Gamma_{0}(p)=(\begin{array}{llll}
\mathbb{Z}   \mathbb{Z}   \mathbb{Z}   \mathbb{Z}
\mathbb{Z}   \mathbb{Z}   \mathbb{Z}   \mathbb{Z}
p\mathbb{Z}   p\mathbb{Z}   \mathbb{Z}   \mathbb{Z}
p\mathbb{Z}   p\mathbb{Z}   \mathbb{Z}   \mathbb{Z}
\end{array})  \cap Sp(2, \mathbb{Q}) .

 \Gamma_{0}'(p)=(\begin{array}{llll}
\mathbb{Z}   \mathbb{Z}   \mathbb{Z}   \mathbb{Z}
p\mathbb{Z}   \mathbb{Z}   \mathbb{Z}   \mathbb{Z}
p\mathbb{Z}   p\mathbb{Z}   \mathbb{Z}   p\mathbb{Z}
p\mathbb{Z}   \mathbb{Z}   \mathbb{Z}   \mathbb{Z}
\end{array})  \cap Sp(2, \mathbb{Q}) .

 \Gamma_{0}"(p)=(\begin{array}{llll}
\mathbb{Z}   \mathbb{Z}   p^{-1}\mathbb{Z}   \mathbb{Z}
p\mathbb{Z}   \mathbb{Z}   \mathbb{Z}   \mathbb{Z}
p\mathbb{Z}   p\mathbb{Z}   \mathbb{Z}   p\mathbb{Z}
p\mathbb{Z}   p\mathbb{Z}   \mathbb{Z}   \mathbb{Z}
\end{array})  \cap Sp(2, \mathbb{Q}) .
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 K(p)=(\begin{array}{llll}
\mathbb{Z}   \mathbb{Z}   p^{-1}\mathbb{Z}   \mathbb{Z}
p\mathbb{Z}   \mathbb{Z}   \mathbb{Z}   \mathbb{Z}
p\mathbb{Z}   p\mathbb{Z}   \mathbb{Z}   p\mathbb{Z}
p\mathbb{Z}   \mathbb{Z}   \mathbb{Z}   \mathbb{Z}
\end{array})  \cap Sp(2, \mathbb{Q}) .  Sp(2, \mathbb{Z})=M_{4}(\mathbb{Z})\cap Sp(2, \mathbb{Q})

 Sp^{*}(2, \mathbb{Z})=(\begin{array}{llll}
\mathbb{Z}   \mathbb{Z}   p^{-1}\mathbb{Z}   p^{-1}\mathbb{Z}
\mathbb{Z}   \mathbb{Z}   p^{-1}\mathbb{Z}   p^{-1}\mathbb{Z}
p\mathbb{Z}   p\mathbb{Z}   \mathbb{Z}   \mathbb{Z}
p\mathbb{Z}   p\mathbb{Z}   \mathbb{Z}   \mathbb{Z}
\end{array})  \cap Sp(2, \mathbb{Q}) .

If we write

 \rho=(\begin{array}{llll}
0   0   0   -1
0   0   -1   0
0   p   0   0
p   0   0   0
\end{array})
then we have   Sp^{*}(2, \mathbb{Z})=\rho^{-1}Sp(2, \mathbb{Z})\rho and  \Gamma_{0'}'(p)=\rho\Gamma_{0}'(p)\rho^{-1} So

obviously we have  S_{k,j}(Sp^{*}(2, \mathbb{Z}))\cong S_{k,j}(Sp(2, \mathbb{Z})) and Sk,j(  \Gamma Ó(p))  \cong

 S_{k,j}(\Gamma_{0'}'(p)) . We also note that since  -1_{4}\in\Gamma for any of the above seven
groups, we have  S_{k,j}=0 if  j is odd since  f(Z)=(f|_{k,j}[-1_{4}])(Z)=
 (-1)^{j}f(Z) . Here we note that  K(p) is the so‐called paramodular group
of level  p , which is an important group for the paradular conjecture on
abelian surfaces and also for a theory of new forms.

4. THREE DIMENSIONAL RELATIONS

We assume that  k,  j are non‐negative integers such that  k\geq 3 and
 j is even. By technical reason, we need some more conditions besides:
When  j=0 , we do not need any more conditions. If  j>0 we assume
that  k\geq 5 and  p\neq 2 or 3. (We believe that the following theorem
holds without such technical conditions.)

Theorem 4.1 ([5], [3], [6], [7]). Under the conditions explained above,
we have the following relations of dimensions.

(1)
 \dim S_{k,j}(B(p))-\dim S_{k,j}(\Gamma_{0}(p))-\dim S_{k,j}(\Gamma_{0}'(p))-
\dim S_{k,j}(\Gamma_{0}"(p))

 +2S_{k,j} (Sp(2,  \mathbb{Z}) )  +K(p)=\dim \mathfrak{M}_{k+j-3,k-3}(U_{\min}(p))
‐  \dim \mathfrak{M}_{k+j-3,k-3}(U_{pr}(p))-\dim \mathfrak{M}_{k+j-3,k-3}(U_{npr}
(p))+\delta_{k3}\delta_{j0}.

(2)
 \dim S_{k,j}(K(p))-2S_{k,j}(Sp(2, \mathbb{Z}))+\delta_{k3}\delta_{j0}=\dim 
\mathfrak{M}_{k+j-3,k-3}(U_{npr}(p))

 -(\dim S_{j+2}^{new}(\Gamma_{0}(p))+\delta_{j0})\cross\dim S_{2k+j-2}(SL_{2}
(\mathbb{Z})) .

(3)
 \dim S_{k,j}(\Gamma_{0}'(p))+\dim S_{k,j}(\Gamma_{0}"(p))-\dim S_{k,j}
(\Gamma_{0}(p))-2\dim S_{k,j}(K(p))
 =\dim \mathfrak{M}_{k+j-3,k-3}(U_{pr}(p))-\delta_{j0}\delta_{k3}
‐  (\dim S_{j+2}^{new}(\Gamma_{0}^{(1)}(p))+\delta_{j0})\cross(\dim S_{2k+j-2}
^{new}(\Gamma_{0}^{(1)}(p))+\dim S_{2k+j-2}(SL_{2}(\mathbb{Z}))) .
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Here  \Gamma_{0}^{(1)}(p)=\{ (\begin{array}{ll}
a   b
c   d
\end{array})\in SL_{2}(\mathbb{Z});c\equiv 0mod p\} and  S_{*}^{new} denotes

the space of new forms.

5. CONJECTURES ON IHARA LIFTS

The meaning of the dimensional relations in the previous section is
almost clear for the first and the second one. The first one means

that the “ new” form belonging to the minimal parahoric should cor‐
respond one to one as stated in [2] as a conjecture. For the second
relation, we proposed a conjecture in [5], and the space of new forms
in  S_{k,j}(K(p)) are defined there. This is essentially the same as the
level  p case in [13]. Although the groups  Sp(2, \mathbb{Z}) and  K(p) have no
inclusion relation inbetween, still we can define forms in  S_{k,j}(K(p))
which come from  S_{k,j}(Sp(2, \mathbb{Z})) . One way to explain this is to say that
those forms in  S_{k,j}(K(p)) obtained by taking the trace of elements
of  S_{k,j}(Sp(2, \mathbb{Z}))+S_{k,j}(Sp^{*}(2, \mathbb{Z})) through intersection of discrete sub‐
groups are old forms. Or in the adelic setting, those automorphic
representations which have vectors fixed by  Sp(2, \mathbb{Z}) or  Sp^{*}(2, \mathbb{Z}) are
old forms. The LHS of the second relation is roughly speaking the di‐
mension of new forms in this sense. But there is a small exception. If  k

is even, then there exists the Saito‐Kurokawa lift from  S_{2k-2}(SL_{2}(\mathbb{Z}))
to  S_{k}(Sp(2, \mathbb{Z})) . In this case, the dimension of the corresponding old
forms in  S_{k}(K(p)) is one, so  -2\dim S_{k,j}(Sp(2, \mathbb{Z})) is too much. But
from RHS, we have‐  \dim S_{2k-2}(SL_{2}(\mathbb{Z})) . This calcels with the minus
in LHS. On the other hand, if  k is odd, then there is no Saito‐Kurokawa
lift. In this case, ‐  \dim S_{2k-2}(SL_{2}(\mathbb{Z})) in RHS should be absorpted in
the Ihara lift to  \mathfrak{M}_{k-3,k-3}(U_{npr}(p)) and the contributions to both sides

are equally zero. The other minus is also explained in this way. So,
also supported by many concrete examples, we proposed the following
conjectures in [5], [6].

Conjecture 5.1. When  U=U_{npr}(p) , then
(1) We have an injective Ihara lift from  S_{j+2}^{new}(\Gamma_{0}(p))\cross S_{2k+j-2}(SL_{2}(\mathbb{Z}))
to  \mathfrak{M}_{k+j-3,k-3}(U_{npr}) .

(2) When  k is odd, we have an injective Ihara lift. from  S_{2k-2}(SL_{2}(\mathbb{Z}))
to  \mathfrak{M}_{k-3,k-3}(U_{npr}) .

Remark. We are not saying here in this conjecture that a kind
of lifts to  S_{k}(K(p)) or  \mathfrak{M}_{k-3,k-3}(U_{npr}(p)) are all obtained in this way.
There exists another kind of lift (sometimes called Gritsenko lift and not
Ihara lift) to both  S_{k}(K(p)) and  \mathfrak{M}_{k-3,k-3}(U_{npr}) and they correspond
with each other. We cannot see this part from the dimensional relation.

By the way, the images of the Ihara lifts for squarefree level case
of  U_{npr} is more complicated and has been explained in [9], as well as
dimensional relations similar to Theorem 4.1 (2).
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The third relation of Theorem 4.1 is much more complicated, but
we may consider in the same way. To explain this case, we denote
by  S^{new,\pm}(\Gamma_{0}^{(1)}(p)) the eigenspace of the Atkin‐Lehner involution on

 S^{new}(\Gamma_{0}^{(1)}(p)) such that the eigenvalue is  +1 or  -1.

We propose following conjectures.

Conjecture 5.2. (1) When  k is odd, then the Ihara  l_{i}ft from  S_{2k-2}(\Gamma_{0}^{(1)}(p))
to  \mathfrak{M}_{k-3,k-3}(U_{pr}(p)) is injective. When  k is even, there should be no
such Ihara lifts.
(2) There exists an injective Ihara lift from  S_{j+2}^{new,+}(\Gamma_{0}^{(1)}(p))\cross S_{2k+j-2}^{new,-}(\Gamma_{0}^{1}(p)
)
and  S_{j+2}^{new,-}(\Gamma_{0}^{(1)}(p))\cross S_{2k+j-2}^{new,+}(\Gamma_{0}^{(1)}
(p)) to  \mathfrak{M}_{k+j-3,k-3}(U_{pr}(p)) and no lift

from  S_{j+2}^{new,\epsilon}(\Gamma_{0}^{(1)}(p))\cross S_{2k+j-2}^{new,\epsilon}
(\Gamma_{0}^{(1)}(p)) when  \epsilon=1  or-1 at the same
time for both terms.

These conjectures are supported by a lot of numerical examples and
also by a local and global behaviours of various lifts to Siegel modular
forms studied by Böcherer‐Schulze Pillot and R. Schmidt. For details,
please see the paper [7].

6. IHARA’S INTERESTING EXAMPLE

Non‐lifted part of the relation (3) is complicated. Since any local
admissible representation of  GSp(2, \mathbb{Q}_{p}) which has the Iwahori sub‐
group fixed vector is completely classified by [13], we can explain more
in detail of this case, considering together with a lot of results by R.
Schmidt, but we omit them here, since they are explained in details in
[7] together with numerical examples. Here we only add an interesting
Ihara’s example in [10]. In his paper, for  p=3 , he gave examples of
automorphic forms in  \mathfrak{M}_{\nu,\nu}(U_{pr}(3)) for  \nu\leq 8,  \nu=9 and  \nu=11 . If
 \nu\leq 7 , then all the automorphic forms are lifts. He has shown that

 \dim \mathfrak{M}_{8,8}(U_{pr}(3))=6
and gave all Hecke eigen basis of  \mathfrak{M}_{8,8}(U_{pr}(3)) . Four of them are lifts.
The remaining two are not lifts. Those non‐lifts have the same Euler
2 factors (of Spinor  L functions), explicitly given by

(4)  (1-12(-9+\sqrt{1489})2^{-s}+2^{19-2s})(1-12(-9-\sqrt{1489})2^{-s}+2^{19-s}) .
He suspected that these two forms have the same Euler factors for all
 p\neq 3 . On the other hand, by the third dimensional relation in Theorem
4.1, there should exist corresponding Siegel cusp forms belonging to the
parahoric subgroups. The corresponding weight in this case is det11
The dimensions  S_{11}(\Gamma) is given as follows.

 \Gamma  \Gamma_{0}(3)  \GammaÓ(3)  \Gamma_{0}"(3)  K(3)
 dimS_{11}(\Gamma) 0 2 2 1

(Note here that we mean  \Gamma_{0}(3)\subset Sp(2, \mathbb{Z})\subset M_{4}(\mathbb{Z}) and not a subgroup
of  SL_{2}(\mathbb{Z}).) Here the element of  S_{11}(K(3)) is a lift from the elliptic cusp
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form of weight 20. Since  S_{k}(K(p))\subset S_{k} (  \Gamma Ó(p))  \cong Sk  (\Gamma_{0}"(p)) , one of the
form in  S_{11} (  \Gamma Ó(3)) is a lift. The other one is a non‐lift and by actual
calculation we can show that the Euler two factor is the same as (4).
There is a non‐lift Siegel cusp form in  S_{11}(\Gamma_{0}"(3)) which has the same
 L function as non‐lift og  S_{11} (  \Gamma Ó(3)). Judging from the dimensional
relation (3), these two Siegel cusp forms should correspond to two non‐
lifts in  \mathfrak{M}_{8,8}(U_{pr}(3)) . The non‐lifts in  S_{11} (  \GammaÓ(3)) and  S_{11}(\Gamma_{0}"(3)) of
course belong to the same automorphic representation for  GSp(4) . For
two forms in  \mathfrak{M}_{8,8}(U_{pr}(3)) , we still do not know if they belong to the
same automorphic representation of  G_{A} . If not, this means the counter
example for the multiplicity one. By the way, the example of this sort
seems not so rare, since we can give more concrete examples similar to
this.

We note that there is a case that there is a non‐lift Siegel cusp form
but no corresponding form in  \mathfrak{M}_{k+j-3,k-3}(U_{pr}(p)) . For example, when
 p=2S_{12}(\Gamma_{0}(2)) has two no‐lifts and  S_{12} (  \Gamma Ó(2)) and  S_{12}(\Gamma_{0}"(2)) have
one non‐lift respectively (and no non‐lift in  S_{12}(K(2)) . The Hecke
eigenvalues of these forms are the same at all odd primes, and the
dimensional contribution of this part to LHS of Theorem 4.1 (3) is
zero. As expected, there is no corresponding form in  \mathfrak{M}_{9,9}(U_{pr}(2)) .
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