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ON THE THEORY OF M‐FUNCTIONS

KOHJI MATSUMOTO

Dedicated to Professor Yasutaka Ihara
on the occasion of his eightieth birthday

ABSTRACT. We survey the value‐distribution theory of zeta and
 L‐functions, originated by H. Bohr, and developed further by Y.
Ihara and others recently.

Our aim is to discuss the theory of  M‐functions, which are certain
kind of “density functions” which describes the value‐distribution of
 L‐fUnctions.

1. THE THEORY OF BOHR AND JESSEN

The name  M‐fUnctions” is due to Ihara [9]. His original motiva‐
tion is to study the value‐distribution of  (L'/L)(s, \chi) , the logarithmic
derivative of Dirichlet or Hecke  L‐functions (on number fields, and on
function fields). This motivation is a natural extension of his study on
Euler‐Kronecker constants (see [8], [10], [18]).

However, the primitive form of  M‐functions already appeared in the
work of Bohr and his colleagues in  1930s , on the value‐distribution of

the Riemann zeta‐function  \zeta(s) .
First we recall the theory of Bohr and Jessen [4] on the value‐

distribution of the Riemann zeta‐function  \zeta(s) .
 R(\subset \mathbb{C}) : a rectangle with the edges parallel to the axes,
 \sigma>1/2,
 \mu_{d} : the usual  d‐dimensional Lebesgue measure,

 V_{\sigma}(T, R, \zeta)=\mu_{1}(\{t\in[-T, T]|\log\zeta(\sigma+it)\in R\}) .
Then we have

Theorem 1.1. (the Bohr‐Jessen limit theorem)
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(I) When   Tarrow\infty , the limit

 W_{\sigma}(R,  \zeta)=\lim_{Tarrow\infty}\frac{1}{2T}V_{\sigma}(T, R, \zeta)
exists.

(II) There exists a function  \mathcal{F}_{\sigma}(\cdot, \zeta) defined on  \mathbb{C} , which is continuous
and everywhere non‐negative, for which

 W_{\sigma}(R,  \zeta)=1\dot{{\imath}}m\frac{1}{2T}V_{\sigma}(T, R, \zeta)=
Tarrow\infty\int_{R}\mathcal{F}_{\sigma}(w, \zeta)|dw|
 ( where  |dw|=(2\pi)^{-1}dudv for  w=u+iv) holds.

We may say that  W_{\sigma}(R, \zeta) is the probability of how many values
of  \log\zeta(s) on the vertical line  \Re s=\sigma belong to  R , and  \mathcal{F}_{\sigma}(\cdot, \zeta) is the
density function of this probability.

To understand the behavior of  W_{\sigma}(R, \zeta) , it is desirable to obtain

some explicit construction of  \mathcal{F}_{\sigma}(\cdot, \zeta) . Bohr and Jessen themselves
gave a construction, but in a rather complicated way.

The way of the proof of Theorem 1.1 is as follows. First, the Euler
product gives:

  \log\zeta(\sigma+it)=-\sum_{n=1}^{\infty}\log(1-p_{n}^{-\sigma-it}) ,

where  p_{n} denotes the nth prime number. Consider the finite truncation

 f_{N}( \sigma+it)=-\sum_{n=1}^{N}\log(1-p_{n}^{-\sigma-it})=-\sum_{n=1}^{N}\log
(1-p_{n}^{-\sigma}e^{-it\log p_{n}}) .

To analyze the properties of  f_{N}(\sigma+it) , we introduce the associated
mapping  S_{N} :  [0,1)^{N}arrow \mathbb{C} defined by

 S_{N}( \theta_{1}, \ldots, \theta_{N})=-\sum_{n=1}^{N}\log(1-p_{n}^{-\sigma}
e^{2\pi i\theta_{n}}) (0\leq\theta_{n}<1) .

The proof of Bohr and Jessen is based on:
 \bullet A mean value theorem for  \zeta(s) (necessary to show that  f_{N}(\sigma+it)

approximates  \log\zeta(\sigma+it) in a certain mean value sense),
 \bullet The fact that  \{\log p_{n}\}_{n=1}^{\infty} is linearly independent over  \mathbb{Q},
 \bullet The geometry of the auxiliary mapping  S_{N} , that is, each term

 -\log(1-p_{n}^{-\sigma}e^{2\pi i\theta_{n}}) describes a convex curve when  \theta_{n} moves from  0 to

1.

Bohr and Jessen [3] developed a detailed theory on the “sums” of
convex curves, which is essentially used in their proof of Theorem 1.1.

Later Jessen and Wintner [19] published an alternative proof of the
Bohr‐Jessen theorem, which is more Fourier theoretic. In their proof,
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instead of convexity, a certain inequality is used. This inequality, now
called the Jessen‐Wintner inequality, is also connected with geometric
properties of curves. We will explain later what is the Jessen‐Wintner
inequality.

Remark 1.2. The Bohr‐Jessen theorem is for  \log\zeta(s) . An analogous
result for  (\zeta'/\zeta)(s) was shown by Kershner and Wintner [21].

If one tries to generalize Theorem 1.1 to more general zeta or L‐
functions, we encounter the difficulty that the corresponding geometry

becomes more complicated (for example, the convexity is not valid in
general).

But still, Part (I) of the Bohr‐Jessen theorem (the existence of the
limit  W_{\sigma}(R,  \zeta)=\lim_{Tarrow\infty}(2T)^{-1}V_{\sigma}(T, R, \zeta) ) has been extended to the
case of quite general zeta‐fUnctions which have Euler products ( [23]
[24]), by invoking

 \bullet Prokhorov’s theorem (in [23]), or
 \bullet Lévy’s convergence theorem (in [24]).
The proofs are very analytic (or better to say, probabilistic) and do

not use geometric properties (such as the convexity).
However, to prove Part (II), that is the existence of the density

function  \mathcal{F}_{\sigma}(\cdot, \zeta) satisfying

 W_{\sigma}(R,  \zeta)=\lim_{Tarrow\infty}\frac{1}{2T}V_{\sigma}(T, R, \zeta)=
\int_{R}\mathcal{F}_{\sigma}(w, \zeta)|dw|,
it seems that the convexity, or the Jessen‐Wintner inequality, is es‐
sentially necessary. Therefore the analogue of the above formula was
formerly proved only for the case when the attached curve is convex:

 \bullet Dirichlet  L‐fUnctions (Joyner [20]),
 \bullet Dedekind zeta‐fUnctions attached to Galois number fields ( [24]).
But there are some recent developments in the non‐convex case,

which we will report later.

2. IHARA’S WORK AND RELATED RESULTS

So far we discussed the value‐distribution of zeta or  L‐fUnctions when

 t=\Im s varies. But it is also possible to study the value‐distriution from
some different point of view. For example, for Dirichlet or Hecke L‐
functions  L(s, \chi) , we may consider the modulus aspect.
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Ihara [9] studied the behavior of  (L'/L)(s, \chi) from this aspect, and
proved the limit formula

  Avg_{\chi}\Phi(\frac{L'}{L}(s, \chi))=\int_{\mathbb{C}}M_{\sigma}(w)\Phi(w)
|dw|
for a certain average with respect to  \chi , where  \Phi is a test function and

 M_{\sigma}(\cdot) , the  M‐function for  L'/L , is the (explicitly constructed) density
function.

A typical meaning of Ihara’s average  Avg_{\chi} (in the rational number
field case) is:

  Avg_{\chi}\phi(\chi)=\lim_{marrow\infty}\frac{1}{\pi(m)}\sum_{p\leq m}\frac{1}
{p-2}\sum_{\chi(mod p)}^{*}\phi(\chi) ,

where  p runs over prime numbers,  \pi(m) is the number of prime numbers
up to  m , and   \sum_{\chi(mod p)^{*}} means the sum on primitive characters mod

 p . Ihara’s results in [9] are:
 \bullet In number field case, Ihara proved the formula (for any continuous

function  \Phi ) in the region  \sigma>1.

 \bullet In the function field case, he proved the same formula in wider

region (such as  \sigma>1/2 , or  \sigma>3/4 ) for some special choices of  \Phi , by
using the “proved” Riemann Hypothesis.

As another average, it is also possible to consider the character of
the form  \chi_{\tau}(p)=p^{-i\tau} . Then the associated  L‐fUnction is

  \prod_{p}(1-\chi_{\tau}(p)p^{-s})^{-1}=\prod_{p}(1-p^{-s-i\tau})^{-1}=\zeta(s+
i\tau) .

The average associated with this type of character is

  A_{V}g_{x_{Tarrow\infty}^{\phi(\chi_{\tau})=1\dot{{\imath}}m\frac{1}{2T}}}
\int_{-T}^{T}\phi(\chi_{\tau})d\tau.
For this average we can also prove (2.1) and (2.2), which especially
gives a generalization of the result of Bohr and Jessen (their result is
the case when  \Phi is the characteristic function of  R). In particular,
 \mathcal{F}_{\sigma}(w, \zeta) of Bohr‐Jessen is a special case of  M‐functions.

Now let  L(s, \chi) be Dirichlet’s, and recall Ihara’s identity:

(2.1)   Avg_{\chi}\Phi(\frac{L'}{L}(s, \chi))=\int_{\mathbb{C}}M_{\sigma}(w)\Phi(w)
|dw|
and its  log”‐analogue:

(2.2)   Avg_{\chi}\Phi(\log L(s, \chi))=\int_{\mathbb{C}}\mathcal{M}_{\sigma}(w)
\Phi(w)|dw|.
Using certain mean value results, we can go into the region  1/2<\sigma\leq 1.
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Theorem 2.1. (Ihara and Matsumoto [15] [17]) For  1/2<\sigma\leq 1,
both (2.1) and (2.2) hold with (explicitly constructed) density functions
 M_{\sigma}(w) and  \mathcal{M}_{\sigma}(w) , for any  \Phi which is (i) any bounded continuous
function, or (ii) the characteristic function of either a compact subset
of  \mathbb{C} or the complement of such a subset.

How to construct the  M‐function? Here we explain the method in
the  \log case.

Let  P be a finite set of primes, and let  N=|P| . Put

 L_{P}(s,  \chi)=\prod_{p\in P}(1-\chi(p)p^{-s})^{-1}
First we construct the density function  \mathcal{M}_{\sigma,P}(w) for which

  Avg_{\chi}\Phi(\log L_{P}(s, \chi))=\int_{\mathbb{C}}\mathcal{M}_{\sigma,P}(w)
\Phi(w)|dw|
holds for any continuous  \Phi.

Let  T=\{t\in \mathbb{C}||t|=1\} , and define the auxiliary mapping  g_{N} :
 T^{N}arrow \mathbb{C} by

 g_{N}((t_{p})_{p\in P})=- \sum_{p\in P}\log(1-t_{p}p^{-\sigma}) .

(Note: This  g_{N} is essentially the same as the Bohr‐Jessen auxiliary
mapping  S_{N} :  [0,1)^{N}arrow \mathbb{C}. )

Using this  g_{N} , and applying the orthogonality relation of characters,
we find that

  Avg_{\chi}\Phi(\log L_{P}(s, \chi))=\int_{T^{N}}\Phi(g_{N}((t_{p})_{p\in P}))
d^{*}T^{N},
where  d^{*}T^{N} is the normalized Haar measure on  T^{N} . Therefore our aim

is to construct  \mathcal{M}_{\sigma,P}(w) for which

  \int_{T^{N}}\Phi(g_{N}((t_{p})_{p\in P}))d^{*}T^{N}=\int_{\mathbb{C}}
\mathcal{M}_{\sigma,P}(w)\Phi(w)|dw|
holds.

When  P=\{p\} , we define

  \mathcal{M}_{\sigma,\{p\}}(w)=\frac{|1-r_{p}e^{\dot{i}}\theta_{p}|^{2}}{r_{p}}
\delta(r_{p}-p^{-\sigma}) ,

where  r_{p},  \theta_{p} are determined by  w=-\log(1-r_{p}e^{i\theta_{p}}) and  \delta(\cdot) denotes
the Dirac delta distribution.

When  |P|\geq 2 and  P=P'\cup\{p\} , we define  \mathcal{M}_{\sigma,P}(w) recursively by
the convolution product

  \mathcal{M}_{\sigma,P}(w)=\int_{\mathbb{C}}\mathcal{M}_{\sigma,P'}(w')\mathcal
{M}_{\sigma,\{p\}}(w-w')|dw'|.
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This is a non‐negative, compactly supported function, which satisfies
the desired property.

Next we have to show the existence of the limit

  \mathcal{M}_{\sigma}(w)=\lim_{|P|arrow\infty}\mathcal{M}_{\sigma,P}(w) .

For this aim, we consider the Fourier transform

  \overline{\mathcal{M}}_{\sigma,P}(z)=\prod_{p\in P}\int_{\mathbb{C}}
\mathcal{M}_{\sigma,\{p\}}(w)\psi_{z}(w)|dw|,
where  \psi_{z}(w)=\exp(i\Re(\overline{z}w)) . Using the Jessen‐Wintner inequality we
can show that the right‐hand side is  O((1+|z|)^{-|P|/2}) , from which we
can prove the existence of the limit

  \overline{\mathcal{M}}_{\sigma}(z)=\lim_{|P|arrow\infty}\overline{\mathcal{M}}
_{\sigma,P}(z) ,

and hence the existence of  \mathcal{M}_{\sigma}(w) .

Remark 2.2. We can show the Dirichlet series expansion

  \overline{\mathcal{M}}_{\sigma}(z)=\sum_{n=1}^{\infty}\lambda_{z}(n)
\lambda_{\overline{z}}(n)n^{-2\sigma} (\sigma>1/2) ,

where  \lambda_{z}(n) is defined by

 L(s,  \chi)^{iz/2}=\sum_{n=1}^{\infty}\lambda_{z}(n)\chi(n)n^{-s}
Ihara [11] [12] studied a more general Dirichlet series

  \overline{\mathcal{M}}_{s}(z_{1}, z_{2})=\sum_{n=1}^{\infty}\lambda_{z_{1}}(n)
\lambda_{z_{2}}(n)n^{-2s} (\Re s>1/2)
in three variables, and proved various interesting properties.

How general the test function  \Phi can be?
In Theorem 2.1, it is bounded continuous, or the characteristic func‐

tion of some compact subset, etc.

Theorem 2.3. (Ihara and Matsumoto [16]) If we assume the Gener‐
alized Riemann Hypothesis, the same type of limit theorem (for a little
different definition of  Avg_{\chi}) holds for any continuous  \Phi of at most
exponential growth (that is,  \Phi(w)=O(e^{a|w|}) with some  a>0).

Remark 2.4. Therefore in the function field case, this theorem holds

unconditionally. In this case a little weaker result was already obtained

in [14].

158



159

Remark 2.5. To prove Theorem 2.3, the generalized form  \overline{\mathcal{M}}_{s}(z_{1}, z_{2})
(mentioned above) is necessary.

Remark 2.6. An announcement of the above results of Ihara and the

author appeared in [13].

We list up some recent developments in the theory of  M‐fUnctions.
 e Mourtada and V. K. Murty [31] considered the average of the

logarithmic derivative  (L'/L)(\sigma, \chi_{D}) , where  \sigma>1/2,  D is a fundamen‐
tal discriminant and  \chi_{D} is the associated real character, as  Darrow\infty,

and proved the same type of limit theorem as in [16]. Akbary and
Hamieh [1] treated the cubic character case, and Gao and Zhao [5]
studied the quartic case.

 \bullet Suzuki [34] discovered that the  M‐fUnction also appears in the
study of the vertical distribution of the zeros of certain functions related
with  \zeta(s) . Let   \xi(s)=\frac{1}{2}s(s-1)\pi^{-s/2}\Gamma(s/2)\zeta(s),  \omega>0 , and define

 A_{\omega}(s)= \frac{1}{2}(\xi(s+\omega)+\xi(s-\omega)),  B_{\omega}(s)= \frac{1}{2}i(\xi(s+\omega)-\xi(s-\omega)) .

Arrange the zeros of  A_{\omega}(s) (or  B_{\omega}(s) ) as  \rho_{n}=\beta_{n}+i\gamma_{n},  \gamma_{n+1}\geq\gamma_{n}>0.
Then it is known that the normalized imaginary part

  \gamma_{n}^{(1)}=\frac{\gamma_{n}}{2\pi}\log\frac{\gamma_{n}}{2\pi e}
is well‐spaced. Suzuki doscovered that the “second order” normaliza‐
tion

  \gamma_{n}^{(2)}=(\frac{\gamma_{n}}{2\pi}\log\frac{\gamma_{n}}{2\pi e}-n)\rho_
{\omega}^{-1/2}\frac{1}{2\pi}\log\frac{\gamma_{n}}{2\pi e},
where   \rho_{\omega}=(2\pi^{2})^{-1}\sum_{n=1}^{\infty}\lambda(n)^{2}n^{-1-2\omega} , is also well‐distributed, and its

law can be written by an integral involving the  M‐fUnction.
 \bullet Mine [28] studied the  M‐fUnction for Dedekind zeta‐functions  \zeta_{F}(s)

(  F : number field). If  F is Galois, then, as mentioned before, the
original argument of Bohr‐Jessen can be applied ( [24]). But in the
non‐Galois case, the situation is more difficult. Mine noticed that the

idea of Guo [6] [7] (for the distribution of  (\zeta'/\zeta)(s) ) can be applied,
and obtained the construction of  M‐function for  (\zeta_{F}'/\zeta_{F})(s) , for any

number field  F . Further generalization was done by Mine [29].
 \bullet Recently Mine [30] studied the  M‐fUnction for zeta‐fUnctions of

Hurwitz type (that is, without Euler product).
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3. THE VALUE‐DISTRIBUTION OF AUTOMORPHIC  L‐FUNCTIONS

How can we construct the theory of  M‐functions in the case of auto‐
morphic  L‐functions? In this case, the attached curves are not always
convex.

Let  f be a primitive form (i.e. normalized Hecke‐eigen new cusp
form) of weight  k and level  N , whose Fourier expansion is

 f(z)= \sum_{n\geq 1}\lambda_{f}(n)n^{(k-1)/2}e^{2\pi inz}
The corresponding  L‐fUnction  L_{f}(s)= \sum_{n\geq 1}\lambda_{f}(n)n^{-s} has the Euler
product expansion

 L_{f}(s)= \prod_{p|N}(1-\lambda_{f}(p)p^{-s})^{-1}\prod_{p(N}(1-\lambda_{f}(p)
p^{-s}+p^{-2s})^{-1}
 = \prod_{p|N}(1-\lambda_{f}(p)p^{-s})^{-1}\prod_{p(N}(1-\alpha_{f}(p)p^{-s})^{-
1}(1-\beta_{f}(p)p^{-s})^{-1}

First consider the  t‐aspect. Let

 V_{\sigma}(T, R, L_{f})=\mu_{1}(\{t\in[-T, T]|\log L_{f}(\sigma+it)\in R\}) .

Theorem 3.1. (Matsumoto and Umegaki [26]) For any  \sigma>1/2 , the
limit

 W_{\sigma}(R, L_{f})= \lim_{Tarrow\infty}(2T)^{-1}V_{\sigma}(T, R, L_{f})
exists, and it can be written as

 W_{\sigma}(R, L_{f})= \int_{R}\mathcal{F}_{\sigma}(w, L_{f})|dw|,
where  \mathcal{F}_{\sigma}(\cdot, L_{f}) is a continuous, non‐negative function (explicitly con‐
structed) on  \mathbb{C}.

(A key of the proof) We have to show an analogue of the Jessen‐
Wintner inequality for the automorphic case.

What is the original Jessen‐Wintner inequality? Recall

 S_{N}  ( \theta_{1}, . . . \theta_{N})=\sum_{1\leq n\leq N}z_{n}(\theta_{n})  (z_{n}(\theta_{n})=-\log(1-p_{n}^{-\sigma}e^{2\pi i\theta_{n}})) .

The original Jessen‐Wintner inequality [19] is the estimate

  \int_{0}^{1}e^{i\langle w,z_{n}(\theta)\rangle}d\theta\ll p_{n}^{\sigma/2}|w|^
{-1/2} (w\in \mathbb{C}) ,

where  \{w, z_{n}(\theta)\}=\Re w\Re z_{n}(\theta)+\Im w\Im z_{n}(\theta) .

In the automorphic case, instead of  z_{n}(\theta) , we have to consider

 z_{f,p}(\theta)=-\log(1-\alpha_{f}(p)p^{-\sigma}e^{2\pi i\theta})-\log(1-\beta_
{f}(p)p^{-\sigma}e^{2\pi i\theta}) .
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Lemma 3.2 (Inequality of Jessen‐Wintner type, [26]).

  \int_{0}^{1}e^{i\langle w,z_{f,p}(\theta)\rangle}d\theta\ll_{\varepsilon}
p^{\sigma/2}|w|^{-1/2}+p^{\sigma}|w|^{-1} (w\in \mathbb{C})
holds for any  p\in \mathbb{P}_{f}(\varepsilon) , where

 \mathbb{P}_{f}(\varepsilon)= { p : prime  ||\lambda_{f}(p)|>\sqrt{2}-\varepsilon }.

It is known that  \mathbb{P}_{f}(\varepsilon) is of positive density in the set of all primes

(M. R. Murty [32] in the full modular case, and in the book of V. K.
Murty and M. R. Murty [33] in general case). This is sufficient for our
aim.

Proof of the lemma (sketch). Let  g(\theta)=\langle w,   z_{f,p}(\theta)\rangle . Compute  g'(\theta)
and  g"(\theta) . Using the fact  |\lambda_{f}(p)|>\sqrt{2}-\varepsilon , we can show that  [0,1 ) can
be divided into two subintervals  I_{1} and  I_{2} , such that  |g'(\theta)| is not small

on  I_{1} , while  |g"(\theta)| is not small on  I_{2} . (That is, the geometric behavior
of the curve  z_{f,p}(\theta) is “not so bad”.) We apply the first derivative test
on  I_{1} , and the second derivative test on  I_{2}.  \square 

This lemma is the key of the proof of Theorem 3.1. We omit how to
deduce the theorem from the lemma.

We can also prove an analogous result for the  \gamma‐th symmetric power
 L‐fUnction for any  \gamma\in \mathbb{N} , which is of the form

 L( Sym_{f}^{\gamma}, s)=L_{N}(Sym_{f}^{\gamma}, s)\prod_{p|N} (certain local factor at p)

where

 L_{N}( Sym_{f}^{\gamma}, s)=\prod_{p\uparrow N}\prod_{h=0}^{\gamma}(1-
\alpha_{f}^{\gamma-h}(p)\beta_{f}^{h}(p)p^{-s})^{-1}
Recently, connected with the Sato‐Tate conjecture, there has been a big

progress on the study of symmetric power  L‐fUnctions (Barnet‐Lamb
et al. [2]). Under certain plausible assumptions, using a result of [2] or
its quantitative version due to Thorner [35], we can show an analogue
of Theorem 3.1 (that is, the existence of the associated  M‐function)
for  L(Sym_{f}^{\gamma}, s) (see [27]).

Secondly, the modulus aspect.
Consider the twisted automorphic  L‐fUnctions  L_{f}(s, \chi) whose local

factor is defined by

 (1-\alpha_{f}(p)\chi(p)p^{-s})^{-1}(1-\beta_{f}(p)\chi(p)p^{-s})^{-1}

Lebacque and Zykin [22] obtained the formulas similar to (2.1) and
(2.2) for certain average of  L_{f}(s, \chi) with respect to characters.
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Thirdly, the level aspect.

So far there are two attempts: Lebacque and Zykin [22], and the
author and Umegaki [25].

In the work of Bohr and Jessen, an essential fact is the linear inde‐

pendence of  \{\log p_{n}\} , and in the case of character‐average we need the
orthogonality property of Dirichlet characters.

In the level‐aspect case for automorphic  L‐fUnctions, the correspond‐
ing tool is Petersson’s formula, which is used in both of the above
articles.

Hereafter we explain the result of the author and Umegaki.
Consider the case  N=q^{m} , where  q is a prime.

Define the  \gamma‐th (partial) symmetric power  L‐fUnction by

 L_{q}( Sym_{f}^{\gamma}, s)=\prod_{p\neq q}\prod_{h=0}^{\gamma}(1-\alpha_{f}
^{\gamma-h}(p)\beta_{f}^{h}(p)p^{-s})^{-1}
Assume: (H1)  L_{q}(Sym_{f}^{\gamma}, s) can be continued holomorphically to  \sigma>

 1/2 , and  L_{q}(Sym_{f}^{\gamma}, s)\ll N(|t|+2) in the strip  1/2<\sigma<2 ; (H2)
There is no zero of  L_{q}(Sym_{f}^{\gamma}, s) in the strip  1/2<\sigma\leq 1.

Denote by  B_{k}(q^{m}) the set of all primitive forms of weight  k and level
 q^{m} , consider certain weighted average on  B_{k}(q^{m}) , and then take the
limit

  Avg_{prime}=\lim_{qarrow\infty} (  m : fixed), or  Avg_{power}=marrow\infty 1\dot{{\imath}}m (  q : fixed).

Theorem 3.3. (Matsumoto and Umegaki [25]) Let  2\leq k\leq 10 or
 k=14,  \mu,  \nu\in \mathbb{N} with  \mu-\nu=2 , and assume (H1), (H2) for the  \mu ‐th
and  \nu ‐th symmetric power  L ‐functions. Then for any  \sigma>1/2 , there
exists an explicitly constructed density function  \mathcal{M}_{\sigma} :  \mathbb{R}arrow \mathbb{R}_{\geq 0} for
which

 Avg_{prime}\Phi(\log L_{q}(Sym_{f}^{\mu}, \sigma)-\log L_{q}(Sym_{f}^{\nu}, 
\sigma))
 =Avg_{power}\Phi(\log L_{q}(Sym_{f}^{\mu}, \sigma)-\log L_{q}(Sym_{f}^{\nu}, 
\sigma))

 = \int_{\mathbb{R}}\mathcal{M}_{\sigma}(u)\Phi(u)\frac{du}{\sqrt{2\pi}}
holds for any  \Phi which is bounded continuous, or the characteristic func‐
tion of either a compact subset  of\mathbb{R} or the complement of such a subset.
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Remark 3.4. We explain the reason why we study the “ difference” of
two  L‐fUnctions. It is possible to show that

 \log L(Sym_{f}^{\mu}, \sigma)-\log L(Sym_{f}^{\nu}, \sigma)

 =- \sum_{p\neq q}(\log(1-a_{f}^{\mu}(p)p^{-\sigma})+\log(1-\beta_{f}^{\mu}(p)p^
{-\sigma})) .

If we can take  \mu=1 , this is exactly  \log L_{f}(\sigma) (without the Euler factor
corresponding to  p=q). Therefore we could arrive at the theorem on
the value‐distribution of  \log L_{f}(\sigma) .

However, so far we cannot treat the case  \mu=1 . To extend our result

to the case  \mu=1 is an important remaining problem.
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