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Singular limit problem for the Navier‐Stokes equations
in a curved thin domain
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1 Introduction

Let \Gamma be a closed (i.e. compact and without boundary), connected, oriented, and
smooth surface in  \mathbb{R}^{3} with unit outward normal vector field  n . Also, let  g_{0} and  g_{1}

be smooth functions on  \Gamma satisfying  g  :=g_{1}-g_{0}\geq c on  \Gamma with some constant  c>0.

For a sufficiently small  \varepsilon\in(0,1) we define a curved thin domain  \Omega_{\varepsilon} in  \mathbb{R}^{3} by

 \Omega_{\varepsilon}:=\{y+rn(y)|y\in\Gamma, r\in(\varepsilon g_{0}(y), 
\varepsilon g_{1}(y))\} (1.1)

and consider the Navier‐Stokes equations with Navier’s slip boundary conditions

 \begin{array}{ll}
\partial_{t}u^{\varepsilon}+(u^{\varepsilon}\cdot\nabla)u^{\varepsilon}-
\nu\triangle u^{\varepsilon}+\nabla p^{\varepsilon}=f^{\varepsilon}   in \Omega_
{\varepsilon}\cross(0, \infty) ,
divu^{\varepsilon}=0   in \Omega_{\varepsilon}\cross(0, \infty) ,
u^{\varepsilon}\cdot n_{\varepsilon}=0   on \Gamma_{\varepsilon}\cross(0, 
\infty) ,
2\nu P_{\varepsilon}D(u^{\varepsilon})n_{\varepsilon}+\gamma_{\varepsilon}
u^{\varepsilon}=0   on \Gamma_{\varepsilon}\cross(0, \infty) ,
u^{\varepsilon}|_{t=0}=u_{0}^{\varepsilon}   in \Omega_{\varepsilon}.
\end{array} (1.2)

Here  \Gamma_{\varepsilon} is the boundary of  \Omega_{\varepsilon} that is the union of the inner and outer boundaries
 \Gamma^{0} and  \Gamma_{\varepsilon}^{1} given by  \Gamma_{\varepsilon}^{i}  :=\{y+\varepsilon g_{i}(y)n(y)|y\in\Gamma\} for  i=0,1,  n_{\varepsilon} the unit outward
normal vector field of  \Gamma_{\varepsilon},  \nu>0 the viscosity coefficient independent of  \varepsilon , and
 \gamma_{\varepsilon}\geq 0 the friction coefficient given by  \gamma_{\varepsilon}  :=\gamma_{\varepsilon}^{i} on  \Gamma_{\varepsilon}^{i} for  i=0,1 with  \gamma_{\varepsilon}^{0} and
 \gamma_{\varepsilon}^{1} nonnegative constants. Also,  D(u^{\varepsilon}) and  P_{\varepsilon} are the strain rate tensor and the
orthogonal projection onto the tangent plane of  \Gamma_{\varepsilon} given by

 D(u^{\varepsilon}) := \frac{\nabla u^{\varepsilon}+(\nabla u^{\varepsilon})^{T}
}{2} , P_{\varepsilon}:=I_{3}-n_{\varepsilon}\otimes n_{\varepsilon},
where  I_{3} is the  3\cross 3 identity matrix and  n_{\varepsilon}\otimes n_{\varepsilon} the tensor product of  n_{\varepsilon} with itself.

PDEs in thin domains have been studied for a long time since the pioneering
works [4, 5] by Hale and Raugel on reaction‐diffusion and damped wave equations.
In the study of the Navier‐Stokes equations in a three‐dimensional thin domain we
naturally expect to get the global‐in‐time existence of a strong solution for large
data since a three‐dimensional thin domain with small width can be seen as almost

two‐dimensional. Raugel and Sell [19] first established a global existence of a strong
 *
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solution in the case of a flat product thin domain  \Omega_{\varepsilon}=Q_{2}\cross(0, \varepsilon) with a rectangle
 Q_{2} and a sufficiently small  \varepsilon\in(0,1) under the purely periodic or mixed Dirichlet‐
periodic boundary conditions. Temam and Ziane [22] generalized the results of [19]
to the case of a flat product thin domain  \Omega_{\varepsilon}=\omega\cross(0, \varepsilon) with a bounded domain  \omega in
 \mathbb{R}^{2} and boundary conditions which are combinations of the Dirichlet, periodic, and
Hodge boundary conditions. They also studied in [23] the Navier‐Stokes equations
with Hodge boundary conditions in a thin spherical shell

 \Omega_{\varepsilon}=\{x\in \mathbb{R}^{3}|a<|x|<a+\varepsilon a\}, a>0

to give a mathematical justification of derivation of the primitive equations for the
atmosphere and ocean dynamics [11, 12]. Later, Iftimie, Raugel, and Sell [8] consid‐
ered the Navier‐Stokes equations in a flat thin domain with a nonflat top boundary

 \Omega_{\varepsilon}=\{x=(x', x_{3})\in \mathbb{R}^{3}|x'\in(0,1)^{2}, x_{3}\in
(0, \varepsilon g(x'))\},  g:(0,1)^{2}arrow \mathbb{R}

under the periodic boundary conditions on the lateral boundaries and the slip bound‐
ary conditions on the top and bottom boundaries. Hoang [6] and Hoang and Sell [7]
generalized the results in [8] to the case of nonflat top and bottom boundaries.

In the resent work [14] we considered the curved thin domain  \Omega_{\varepsilon} of the form
(1.1) as a new type of thin domain in the study of the Navier‐Stokes equations
(see [17, 18] for the study of a reaction‐diffusion equation in a curved thin domain
around a lower dimensional manifold). Our thin domain has a nonconstant width in
the thin direction as in the case of flat thin domains in [6, 7, 8]. Moreover, its limit
set  \Gamma is a general closed surface with nonconstant curvatures. Such complicated
shapes of  \Omega_{\varepsilon} and  \Gamma make the analysis of the equations very difficult. In particular,
we need to analyze carefully the behavior of vector fields on the boundary of  \Omega_{\varepsilon} that
satisfy the slip boundary conditions to find out the dependence on  \varepsilon of boundary
integrals of such vector fields. We provided in [14] mathematical tools for analysis
of vector fields in the curved thin domain and established the global existence of a
strong solution to (1.2) for a large data when  \varepsilon is sufficiently small.

In the study of PDEs in a thin domain we are also concerned with the behavior
of a solution as the width of the thin domain tends to zero. When the thin domain

shrinks to a lower dimensional set, it is important to derive limit equations on the
limit set and compare solutions to the bulk and limit equations in order to study
the effects of the limit set and the thin direction on the bulk equations in the thin
domain. Such a problem for the Navier‐Stokes equations was first studied by Temam
and Ziane [22, 23] in the cases of a flat product thin domain and a thin spherical
shell. They proved the convergence of the average in the thin direction of a solution
to the bulk equations and derived limit equations by characterizing the limit as a
solution to the limit equations. Iftimie, Raugel, and Sell [8] also compared a solution
of the Navier‐Stokes equations in a flat thin domain with a nonflat top boundary
and that of limit equations which contains a function describing the top boundary of
the thin domain. In [15] the present author formally derived limit equations of the
Navier‐Stokes equations in a tubular neighborhood of an evolving surface. They are
basically the same as incompressible viscous fluid equations on an evolving surface
derived by Jankuhn, Olshanskii, and Reusken [9] and Koba, Liu, and Giga [10]. In
this paper we present the result in [14] that gives a rigorous derivation of the surface
Navier‐Stokes type equations by the thin width limit of the bulk Navier‐Stokes
equations (1.2) in the stationary curved thin domain of the form (1.1).
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2 Notations

To state our result we fix notations on a closed surface and a curved thin domain. Un‐

less otherwise stated we assume that all functions given here are sufficiently smooth.
Also, we denote by  I_{3} the identity matrix of size three and by

 a\otimes b:=(\begin{array}{lll}
a_{1}b_{1}   a_{1}b_{2}   a_{1}b_{3}
a_{2}b_{1}   a_{2}b_{2}   a_{2}b_{3}
a_{3}b_{1}   a_{3}b_{2}   a_{3}b_{3}
\end{array}) , \nabla u:=(\begin{array}{lll}
\partial_{l}u_{1}   \partial_{1}u_{2}   \partial_{1}u_{3}
\partial_{2}u_{1}   \partial_{2}u_{2}   \partial_{2}u_{3}
\partial_{3}u_{1}   \partial_{3}u_{2}   \partial_{3}u_{3}
\end{array})
the tensor product of  a=(a_{1}, a_{2}, a_{3}) and  b=(b_{1}, b_{2}, b_{3}) in  \mathbb{R}^{3} and a vector field
 u=(u_{1}, u_{2}, u_{3}) on an open set in  \mathbb{R}^{3}.

2.1 Closed surface

Let  \Gamma be a two‐dimensional closed (i.e. compact and without boundary), connected,
oriented, and smooth surface in  \mathbb{R}^{3} with unit outward normal vector field  n . We
define the tangential gradient and tangential derivatives of a function  \eta on  \Gamma by

 \nabla_{\Gamma}\eta  :=P\nabla\tilde{\eta},  \underline{D}_{\dot{i}}\eta  := \sum_{j=1}^{3}P_{ij}\partial_{j}\tilde{\eta} on  \Gamma,  i=1,2,3

so that  \nabla_{\Gamma}\eta=(\underline{D}_{1}\eta, \underline{D}_{2}\eta, 
\underline{D}_{3}\eta) . Here  \tilde{\eta} is an extension of  \eta to an open neighborhood
of  \Gamma and  P=(P_{ij})_{i,j}  :=I_{3}-n\otimes n the orthogonal projection onto the tangent plane
of  \Gamma . Note that the values of  \nabla_{\Gamma}\eta are independent of a choice of  \tilde{\eta} (see e.g. [3,
Section 16.1]). For  a (not necessarily tangential) vector field  v=(v_{1}, v_{2}, v_{3}) on  \Gamma we
define the tangential gradient matrix of  v and the surface strain rate tensor by

  \nabla_{\Gamma}v:=(\begin{array}{lll}
\underline{D}_{1}v_{1}   \underline{D}_{1}v_{2}   \underline{D}_{l}v_{3}
\underline{D}_{2}v_{1}   \underline{D}_{2}v_{2}   \underline{D}_{2}v_{3}
\underline{D}_{3}v_{1}   \underline{D}_{3}v_{2}   \underline{D}_{3}v_{3}
\end{array}) , D_{\Gamma}(v):=P( \frac{\nabla_{\Gamma}v+(\nabla_{\Gamma}v)^{T}}
{2})P
on  \Gamma and the surface divergence of  v by  div_{F}v  :=tr[\nabla_{\Gamma}v] on  \Gamma . Moreover, for a
matrix‐valued function  A:\Gammaarrow \mathbb{R}^{3\cross 3} and  j=1,2,3 we set

 [ div_{\Gamma}A]_{j}:=\sum_{i=1}^{3}\underline{D}_{i}A_{ij} on  \Gamma,  A=(\begin{array}{lll}
A_{11}   A_{12}   A_{13}
A_{21}   A_{22}   A_{23}
A_{31}   A_{32}   A_{33}
\end{array})
and define  div_{F}A  :=([div_{\Gamma}A]_{1}, [div_{\Gamma}A]_{2}, [div_{\Gamma}A]_{3}) on  \Gamma.

Next we define function spaces on  \Gamma . For  \eta,  \xi\in C^{1}(\Gamma) we have an integration by
parts formula (see e.g. [3, Lemma 16.1])

  \int_{\Gamma}(\eta\underline{D}_{i}\xi+\xi\underline{D}_{i}\eta)d\mathcal{H}
^{2}=-\int_{\Gamma}\eta\xi Hn_{i}d\mathcal{H}^{2}, i=1,2,3,
where  \mathcal{H}^{2} is the two‐dimensional Hausdorff measure and  H  :=-div_{\Gamma}n is (twice) the
mean curvature of  \Gamma . Based on this formula, for  i=1,2,3 we say that  \eta\in L^{2}(\Gamma)
has the weak tangential derivative  \eta_{i} in  L^{2}(\Gamma) if

 (\eta_{i}, \xi)_{L^{2}(\Gamma)}=-(\eta, \underline{D}_{i}\xi+\xi Hn_{i})_{L^{2}
(\Gamma)} for all  \xi\in C^{1}(\Gamma) .
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In this case we write  \underline{D}_{i}\eta=\eta_{i} and define the Sobolev space

 H^{1}(\Gamma)  := {  \eta\in L^{2}(\Gamma)|\underline{D}_{i}\eta\in L^{2}(\Gamma) for all  i=1,2,3}.

Also, for  \mathcal{X}=L^{2},  H^{1} and the function  g on  \Gamma given in (2.1) below we set

 \mathcal{X}(\Gamma, T\Gamma)  := {  v\in \mathcal{X}(\Gamma)^{3}|v\cdot n=0 on  \Gamma },

 \mathcal{X}_{g\sigma}(\Gamma, T\Gamma)  := {  v\in \mathcal{X}(\Gamma, T\Gamma)|div_{F}(gv)=0 on  \Gamma }

and denote by  H^{-1}(\Gamma, T\Gamma) the dual of  H^{1}(\Gamma, T\Gamma) (via the  L^{2}(\Gamma) ‐inner product).

2.2 Curved thin domain

Let  g_{0} and  g_{1} be functions on  \Gamma such that

 g:=g_{1}-g_{0}\geq c on  \Gamma (2.1)

with some constant  c>0 . For a sufficiently small  \varepsilon\in(0,1) we define a curved thin
domain  \Omega_{\varepsilon} and its inner and outer boundaries  \Gamma_{\varepsilon}^{0} and  \Gamma_{\varepsilon}^{1} by

 \Omega_{\varepsilon}:=\{y+rn(y)|y\in\Gamma, r\in(\varepsilon g_{0}(y), 
\varepsilon g_{1}(y))\}\subset \mathbb{R}^{3},
 \Gamma_{\varepsilon}^{i}:=\{y+\varepsilon g_{i}(y)n(y)|y\in\Gamma\}, i=0,1

and denote by  \Gamma_{\varepsilon}  :=\Gamma_{\varepsilon}^{0}\cup\Gamma_{\varepsilon}^{1} the boundary of  \Omega_{\varepsilon} with unit outward normal  n_{\varepsilon} . Let

 L_{\sigma}^{2}(\Omega_{\varepsilon})= {  u\in L^{2}(\Omega_{\varepsilon})^{3}|divu=0 in  \Omega_{\varepsilon},  u\cdot n_{\varepsilon}=0 on  \Gamma_{\varepsilon} }

be the standard  L^{2} ‐solenoidal space on  \Omega_{\varepsilon} and  \mathcal{V}_{\varepsilon}  :=L_{\sigma}^{2}(\Omega_{\varepsilon})\cap H^{1}(\Omega_{\varepsilon})^{3} . We denote
by A. the Stokes operator on  L_{\sigma}^{2}(\Omega_{\varepsilon}) associated with slip boundary conditions and
by  D(A_{\varepsilon}) its domain. They are of the form

 A_{\varepsilon}u=-\nu \mathbb{P}_{\varepsilon}\triangle u, u\in 
D(A_{\varepsilon}) ,

 D(A_{\varepsilon})= {  u\in L_{\sigma}^{2}(\Omega_{\varepsilon})\cap H^{2}(\Omega_{\varepsilon})^{3}|2
\nu P_{\varepsilon}D(u)n_{\varepsilon}+\gamma_{\varepsilon}u=0 on  \Gamma_{\varepsilon} }

with Helmholtz‐Leray projection  \mathbb{P}_{\varepsilon} from  L^{2}(\Omega_{\varepsilon})^{3} onto  L_{\sigma}^{2}(\Omega_{\varepsilon}) .
By the definition of  \Omega_{\varepsilon} we have a change of variables formula

  \int_{\Omega_{\varepsilon}}\varphi(x)dx=\int_{\Gamma}\int_{\varepsilon go(y)}^
{\varepsilon g_{1}(y)}\varphi(y+rn(y))J(y, r)drd\mathcal{H}^{2}(y) (2.2)

for a function  \varphi on  \Omega_{\varepsilon} . Here  J(y, r) is the Jacobian that satisfies

 |J(y, r)-1|\leq c\varepsilon, y\in\Gamma, r\in(\varepsilon g_{0}(y), 
\varepsilon g_{1}(y))

with a constant  c>0 independent of  \varepsilon (see [14, Section 2.2] for details). Based on
(2.2) we define the average in the thin direction of a function  \varphi on  \Omega_{\varepsilon} by

  M \varphi(y):=\frac{1}{\varepsilon g(y)}\int_{\varepsilon go(y)}^{\varepsilon 
g_{1}(y)}\varphi(y+rn(y))dr, y\in\Gamma (2.3)

and write  M_{\tau}u  :=PMu for the averaged tangential component of  u:\Omega_{\varepsilon}arrow \mathbb{R}^{3}.
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3 Main result

We make the following assumptions on the friction coefficient  \gamma_{\varepsilon} appearing in the
slip boundary conditions. Recall that  \gamma_{\varepsilon} can take different values  \gamma_{\varepsilon}^{0} and  \gamma_{\varepsilon}^{1} on the
inner and outer boundaries  \Gamma^{0} and  \Gamma_{\varepsilon}^{1} , where  \gamma_{\varepsilon}^{0} and  \gamma_{\varepsilon}^{1} are nonnegative constants.

Assumption 3.1. There exists a constant  c>0 such that

 \gamma_{\varepsilon}^{0}\leq c\varepsilon,  \gamma_{\varepsilon}^{1}\leq c\varepsilon for all  \varepsilon\in(0,1) .

Assumption 3.2. There exists a constant  c>0 such that

 \gamma_{\varepsilon}^{0}\geq c\varepsilon for all  \varepsilon\in(0,1) or  \gamma_{\varepsilon}^{1}\geq c\varepsilon for all  \varepsilon\in(0,1) .

There assumptions are used to show the uniform equivalence of the norms

 c^{-1}\Vert u\Vert_{H^{k}(\Omega_{\varepsilon})}\leq\Vert A_{\varepsilon}^{k/2}
u\Vert_{L^{2}(\Omega_{\varepsilon})}\leq c\Vert u\Vert_{H^{k}
(\Omega_{\varepsilon})} u\in D(A_{\varepsilon}^{k/2}) , k=1,2
for the Stokes operator  A_{\varepsilon} with a constant  c>0 independent of  \varepsilon (see [14]).

Remark 3.3. By Assumption 3.2 we exclude the perfect slip boundary conditions

 u\cdot n_{\varepsilon}=0,  P_{\varepsilon}D(u)n_{\varepsilon}=0 on  \Gamma_{\varepsilon}.

In [14] we also consider these boundary conditions under other assumptions on  \Gamma.

Now we present our main result of [14] in a slightly modified form.

Theorem 3.4 ([14, Theorem 1.6]). Under Assumptions 3.1 and 3.2, let

 u_{0}^{\varepsilon}\in \mathcal{V}_{\varepsilon}, f^{\varepsilon}\in L^{\infty}
(0, \infty;L_{\sigma}^{2}(\Omega_{\varepsilon})) , \varepsilon\in(0,1) .

Suppose that the following conditions are satisfied:

(a) There exist constants  c>0,  \varepsilon_{1}\in(0,1) , and  \alpha\in(0,1) such that

 \Vert u_{0}^{\varepsilon}\Vert_{H^{1}(\Omega_{\varepsilon})}^{2}+\Vert 
f^{\varepsilon}\Vert_{L^{\infty}(0,\infty,L^{2}(\Omega_{\varepsilon}))}^{2}\leq 
c\varepsilon^{-1+\alpha} for all  \varepsilon\in(0, \varepsilon_{1}) .

(b) There exist  v_{0}\in L^{2}(\Gamma, T\Gamma) and  f\in L^{\infty}(0, \infty;H^{-1}(\Gamma, T\Gamma)) such that

  \lim_{\varepsilonarrow 0}M_{\tau}u_{0}^{\varepsilon}=v_{0} weakly in  L^{2}(\Gamma, T\Gamma) ,

  \lim_{\varepsilonarrow 0}M_{\tau}f^{\varepsilon}=f  weakly-*  in  L^{\infty}(0, \infty;H^{-1}(\Gamma, T\Gamma)) .

(c) For  i=0,1 there exists  \gamma^{i}\geq 0 such that   \lim_{\varepsilonarrow 0}\varepsilon^{-1}\gamma_{\varepsilon}^{i}=\gamma^{i}.

Then there exists a constant  \varepsilon_{2}\in(0,1) such that the problem (1.2) admits a global‐
in‐time strong solution

 u^{\varepsilon}\in C([0, \infty);\mathcal{V}_{\varepsilon})\cap L_{loc}^{2}([0,
\infty);D(A_{\varepsilon}))\cap H_{loc}^{1}([0, \infty);L_{\sigma}^{2}
(\Omega_{\varepsilon}))

for each  \varepsilon\in(0, \varepsilon_{2}) and

  \lim_{\varepsilonarrow 0}Mu^{\varepsilon}\cdot n=0 strongly in  C([0, \infty);L^{2}(\Gamma)) .
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Moreover, there exists a vector field

 v\in C([0, \infty);L_{g\sigma}^{2}(\Gamma, T\Gamma))\cap L_{loc}^{2}([0, 
\infty);\mathcal{V}_{g})\cap H_{loc}^{1}([0, \infty);H^{-1}(\Gamma, T\Gamma))
such that

 \varepsilonarrow 01\dot{{\imath}}mM_{\tau}u^{\varepsilon}=v weakly in  L^{2}(0, T;H^{1}(\Gamma, T\Gamma)) ,

  \lim_{\varepsilonarrow 0}\partial_{t}M_{\tau}u^{\varepsilon}=\partial_{t}v weakly in  L^{2}(0, T;H^{-1}(\Gamma, T\Gamma))

for each  T>0 and  v is a unique weak solution to

 \{\begin{array}{ll}
g(\partial_{t}v+\overline{\nabla}_{v}v)-2\nu\{Pdiv_{\Gamma}[gD_{\Gamma}(v)]-
\frac{1}{g}(\nabla_{\Gamma}g\otimes\nabla_{\Gamma}g)v\}   
+(\gamma^{0}+\gamma^{1})v+g\nabla_{\Gamma}q=gf   on \Gamma\cross(0, \infty) ,
div_{\Gamma}(gv)=0   on \Gamma\cross(0, \infty) ,
v|_{t=0}=v_{0}   on \Gamma
\end{array}
(3.1)

with an associated pressure  q.

Here  \mathcal{V}_{g}  :=H_{g\sigma}^{1}(\Gamma, T\Gamma) and  \overline{\nabla}_{v}v  :=P(v\cdot\nabla_{\Gamma})v is the covariant derivative of the

tangential vector field  v on  \Gamma along itself. We also define a weak solution to (3.1) as
follows: for  v_{1},  v_{2},  v_{3}\in H^{1}(\Gamma, T\Gamma) let

 a_{g}(v_{1}, v_{2})  :=2\nu\{(gD_{\Gamma}(v_{1}), D_{\Gamma}(v_{2}))_{L^{2}(\Gamma)}+(g^{-1}(v_{1} .
\nabla_{\Gamma}g), v_{2} . \nabla_{\Gamma}g)_{L^{2}(\Gamma)}\}
 +(\gamma^{0}+\gamma^{1})(v_{1}, v_{2})_{L^{2}(\Gamma)}

be a bilinear form corresponding to the viscous and friction terms and

 b_{g}(v_{1}, v_{2}, v_{3}) :=-(g(v_{1}\otimes v_{2}), \nabla_{\Gamma}v_{3})_{L^
{2}(\Gamma)}

a trilinear form corresponding to the convection term. For each  T>0 we say that a
vector field  v\in L^{\infty}(0, T;L_{g\sigma}^{2}(\Gamma, T\Gamma))\cap L^{2}(0, T;
\mathcal{V}_{g}) with  \partial_{t}v\in L^{2}(0, T;H^{-1}(\Gamma, T\Gamma))
is a weak solution to (3.1) on  [0, T ) if it satisfies  v|_{t=0}=v_{0} in  H^{-1}(\Gamma, T\Gamma) and

  \int_{0}^{T}\{[g\partial_{t}v, \eta]_{T\Gamma}+a_{g}(v, \eta)+b_{g}(v, v, 
\eta)\}dt=\int_{0}^{T}[gf, \eta]_{T\Gamma}dt (3.2)

for all  \eta\in L^{2}(0, T;\mathcal{V}_{g}) , where  [\cdot,  \cdot]_{T\Gamma} denotes the duality product between  H^{-1}(\Gamma, T\Gamma)
and  H^{1}(\Gamma, T\Gamma) . Moreover, we call  v a weak solution to (3.1) on  [0, \infty ) if it is a weak
solution to (3.1) on  [0, T) for all  T>0.

Theorem 3.4 provides only a weak convergence result, but in [14] we also derived
estimates for the difference between  M_{\tau}u^{\varepsilon} and  v and established a strong convergence
result. See [14, Section 10.6] for details.

Remark 3.5. Formally, if  g\equiv 1 and  \gamma^{0}=\gamma^{1}=0 in (3.1), then we have

 \partial_{t}v+\overline{\nabla}_{v}v-2\nu Pdiv_{\Gamma}[D_{\Gamma}(v)]+\nabla_{
\Gamma}q=f,  div_{\Gamma}v=0 on  \Gamma\cross(0, \infty) . (3.3)
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It is shown in [15, Lemma 2.5] that  2Pdiv_{\Gamma}[D_{\Gamma}(v)]=\triangle_{B}v+Kv on  \Gamma for a tangential
and surface divergence‐free vector field  v on  \Gamma , where  \triangle_{B} and  K are the Bochner
Laplacian on  \Gamma and the Gaussian curvature of  \Gamma . Also, since  \Gamma is two‐dimensional,
 K agrees with the Ricci curvature  Ric of  \Gamma , i.e.  Kw=Ric(w) for a tangential vector
field  w on  \Gamma (see e.g. [21, Appendix  C] ). Hence the equations (3.3) read

 \partial_{t}v+\overline{\nabla}_{v}v-\nu\{\triangle_{B}v+Ric(v)\}+
\nabla_{\Gamma}q=f,  div_{\Gamma}v=0 on  \Gamma\cross(0, \infty) . (3.4)

Note that the equations (3.4) are described only in terms of the intrinsic quantities of
the Riemannian manifold  \Gamma . They were called the “correct” Navier‐Stokes equations
on a manifold in [2, 20] and studied by Mitrea and Taylor [13], Nagasawa [16], and
Taylor [20]. Hence our limit equations (3.1) can be seen as the damped and weighted
Navier‐Stokes equations on a manifold.

4 Outline of the proof

In this section we explain the outline of the proof of Theorem 3.4. For details of the
proof and construction of an associated pressure in (3.1), see [14, Section 10].

4.1 Average of the weak formulation

First we take the average in the thin direction of the weak formulation for the bulk
equations (1.2) satisfied by a strong solution. Under the assumptions in Theorem 3.4
we can show the global‐in‐time existence of a strong solution

 u^{\varepsilon}\in C([0, \infty);\mathcal{V}_{\varepsilon})\cap L_{loc}^{2}([0,
\infty);D(A_{\varepsilon}))\cap H_{loc}^{1}([0, \infty);\mathcal{H}
_{\varepsilon})

to (1.2) for a sufficiently small  \varepsilon\in(0,1) and uniform estimates

  \Vert u^{\varepsilon}(t)\Vert_{L^{2}(\Omega_{\varepsilon})}^{2}\leq 
c\varepsilon, \int_{0}^{t}\Vert u^{\varepsilon}(s)\Vert_{H^{1}
(\Omega_{\varepsilon})}^{2}ds\leq c\varepsilon(1+t) ,

  \Vert u^{\varepsilon}(t)\Vert_{H^{1}(\Omega_{\varepsilon})}^{2}\leq 
c\varepsilon^{-1+\alpha}, \int_{0}^{t}\Vert u^{\varepsilon}(s)\Vert_{H^{2}
(\Omega_{\varepsilon})}^{2}ds\leq c\varepsilon^{-1+\alpha}(1+t) , (4.1)

  \int_{0}^{t}\Vert\partial_{t}u^{\varepsilon}(s)\Vert_{L^{2}
(\Omega_{\varepsilon})}^{2}ds\leq c\varepsilon^{-1+\alpha}(1+t)
for all  t\geq 0 with a constant  c>0 independent of  \varepsilon and  t (see [14, Theorem 8.4]).
The strong solution  u^{\varepsilon} to (1.2) satisfies

  \int_{0}^{T}\{(\partial_{t}u^{\varepsilon}, \varphi)_{L^{2}
(\Omega_{\varepsilon})}+a_{\varepsilon}(u^{\varepsilon}, \varphi)+
b_{\varepsilon}(u', u^{\varepsilon}, \varphi)\}dt=\int_{0}^{T}(f^{\varepsilon}, 
\varphi)_{L^{2}(\Omega_{\varepsilon})}dt (4.2)

for all  T>0 and  \varphi\in L^{2}(0, T;\mathcal{V}_{\varepsilon}) , and  u^{\varepsilon}|_{t=0}=u_{0}^{\varepsilon} in  \mathcal{V}_{\varepsilon} , where

 a_{\varepsilon}(u_{1}, u_{2})  :=2\nu(D(u_{1}), D(u_{2}))_{L^{2}(\Omega_{\varepsilon})}+\gamma_{\varepsilon}
^{0}(u_{1}, u_{2})_{L^{2}(\Gamma_{\varepsilon}^{0})}+\gamma_{\varepsilon}^{1}(u_
{1}, u_{2})_{L^{2}(\Gamma_{\varepsilon}^{1})}
is a bilinear form for  u_{1},  u_{2}\in H^{1}(\Omega_{\varepsilon})^{3} corresponding to the Stokes problem in  \Omega_{\varepsilon}
with slip boundary conditions and

 b_{\varepsilon}(u_{1}, u_{2}, u_{3}) :=-(u_{1}\otimes u_{2}, \nabla u_{3})
_{L^{2}(\Omega_{\varepsilon})}
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is a trilinear form for  u_{1},  u_{2},  u_{3}\in H^{1}(\Omega_{\varepsilon})^{3}.
Let  M_{\tau}u^{\varepsilon} be the averaged tangential component of the strong solution  u^{\varepsilon} . By

the space‐time regularity of  u^{\varepsilon} we have

 M_{\tau}u^{\varepsilon}\in C([0, \infty);H^{1}(\Gamma, T\Gamma))\cap H_{loc}
^{1}([0, \infty);L^{2}(\Gamma, T\Gamma)) .

We transform (4.2) into a weak formulation for  M_{\tau}u^{\varepsilon} . To this end, we construct
an appropriate test function for (4.2) from a test function  \eta\in L^{2}(0, T;\mathcal{V}_{g}) for the
weak formulation (3.2) of the limit equations. We extend  \eta to a vector field on  \Omega_{\varepsilon}
that satisfies the impermeable boundary condition, i.e. the first boundary condition
of (1.2) and then apply the Helmholtz‐Leray projection from  L^{2}(\Omega_{\varepsilon})^{3} onto  L_{\sigma}^{2}(\Omega_{\varepsilon}) .
Then we get a test function  \eta_{\varepsilon}\in L^{2}(0, T;\mathcal{V}_{\varepsilon}) for (4.2) that satisfies (we suppress t)

 \Vert\eta_{\varepsilon}-\overline{\eta}\Vert_{L^{2}(\Omega_{\varepsilon})}+
\Vert\nabla\eta_{\varepsilon}-\overline{F(\eta)}\Vert_{L^{2}
(\Omega_{\varepsilon})}\leq c\varepsilon^{3/2}\Vert\eta\Vert_{H^{1}(\Gamma)}, (4.3)
 \Vert\eta_{\varepsilon}-\overline{\eta}\Vert_{L^{2}(\Gamma_{\varepsilon})}\leq 
c\varepsilon\Vert\eta\Vert_{H^{1}(\Gamma)}

with a constant  c>0 independent of  \varepsilon , where  \overline{\eta} is the constant extension of  \eta in the
normal direction of  \Gamma and  F(\eta)  :=\nabla_{\Gamma}\eta+g^{-1}(\eta\cdot\nabla_{\Gamma}g)n\otimes n on  \Gamma . Substituting  \eta_{\varepsilon} for
 \varphi in (4.2) and using the estimates (4.1) and (4.3), the change of variables formula
(2.2), and the average operator (2.3) we derive a weak formulation for  M_{\tau}u^{\varepsilon} :

  \int_{0}^{T}\{(g\partial_{t}M_{\tau}u^{\varepsilon}, \eta)_{L^{2}(\Gamma)}+
a_{g}(M_{\tau}u^{\varepsilon}, \eta)+b_{g}(M_{\tau}u^{\varepsilon}, M_{\tau}
u^{\varepsilon}, \eta)\}dt
 = \int_{0}^{T}(gM_{\tau}f^{\varepsilon}, \eta)_{L^{2}(\Gamma)}dt+
R_{\varepsilon}^{1}(\eta) (4.4)

for all  \eta\in L^{2}(0, T;\mathcal{V}_{g}) with a residual term  R_{\varepsilon}^{1}(\eta) satisfying

 |R_{\varepsilon}^{1}( \eta)|\leq c(\varepsilon^{\alpha/4}+\sum_{i=0,1}
|\varepsilon^{-1}\gamma_{\varepsilon}^{i}-\gamma^{i}|)(1+T)^{1/2}\Vert\eta\Vert_
{L^{2}(0,T;H^{1}(\Gamma))} , (4.5)

where  c>0 is a constant independent of  \varepsilon . Note that to prove (4.5) we require the
uniform estimates (4.1) for the strong solution  u^{\varepsilon} to (1.2), especially its  H^{2} ‐estimate.
This is due to the fact that the limit equations (3.1) are essentially described only
in terms of the intrinsic quantities of  \Gamma , while the bulk equations (1.2) contain the
extrinsic quantities of  \Gamma . In other words, the  H^{2}‐regularity of the strong solution to
(1.2) supplements a lack of the extrinsic information of  \Gamma in (3.1).

4.2 Energy estimate for the average of a solution

Next we derive the energy estimate for  M_{\tau}u^{\varepsilon} . In derivation of the energy estimate
for an approximate solution to the Navier‐Stokes equations we usually substitute the
approximate solution itself for its weak formulation. However, we cannot take  M_{\tau}u^{\varepsilon}

as a test function for its weak formulation (4.4) since it is not in  \mathcal{V}_{g} , i.e.  div_{\Gamma}(gM_{\tau}u^{\varepsilon})
does not vanish on  \Gamma in general. To overcome this difficulty we establish the weighted
Helmholtz‐Leray decomposition of a surface tangential vector field

 v=v_{g}+g\nabla_{\Gamma}q in  L^{2}(\Gamma, T\Gamma) ,  v_{g}\in L_{g\sigma}^{2}(\Gamma, T\Gamma),  g\nabla_{\Gamma}q\in L_{g\sigma}^{2}(\Gamma, T\Gamma)^{\perp}
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Using this we get the weighted solenoidal part

 v^{\varepsilon}\in C([0, \infty);\mathcal{V}_{g})\cap H_{loc}^{1}([0, \infty);
L_{g\sigma}^{2}(\Gamma, T\Gamma))

of  M_{\tau}u^{\varepsilon} satisfying

  \max\Vert M_{\tau}u^{\varepsilon}(t)-v^{\varepsilon}(t)\Vert_{L^{2}(\Gamma)}
^{2}\leq c\varepsilon^{2}, t\in[0,T]

  \int_{0}^{T}\Vert M_{\tau}u^{\varepsilon}(t)-v^{\varepsilon}(t)\Vert_{H^{1}
(\Gamma)}^{2}dt\leq c\varepsilon^{2}(1+T) , (4.6)

  \int_{0}^{T}\Vert\partial_{t}M_{\tau}u^{\varepsilon}(t)-\partial_{t}
v^{\varepsilon}(t)\Vert_{L^{2}(\Gamma)}^{2}dt\leq c\varepsilon^{\alpha}(1+T)
for all  T>0 and transform (4.4) into a weak formulation for  v^{\varepsilon} of the form

  \int_{0}^{T}\{(g\partial_{t}v^{\varepsilon}, \eta)_{L^{2}(\Gamma)}+a_{g}
(v^{\varepsilon}, \eta)+b_{g}(v^{\varepsilon}, v^{\varepsilon}, \eta)\}dt
 = \int_{0}^{T}(gM_{\tau}f^{\varepsilon}, \eta)_{L^{2}(\Gamma)}dt+
R_{\varepsilon}^{1}(\eta)+R_{\varepsilon}^{2}(\eta) (4.7)

for all  T>0 and  \eta\in L^{2}(0, T;\mathcal{V}_{g}) , where  R_{\varepsilon}^{2}(\eta) satisfies

 |R_{\varepsilon}^{2}(\eta)|\leq c\varepsilon^{\alpha/2}(1+T)^{1/2}
\Vert\eta\Vert_{L^{2}(0,T;H^{1}(\Gamma))}
with a constant  c>0 independent of  \varepsilon . Since  v^{\varepsilon}\in L^{2}(0, T;\mathcal{V}_{g}) we can substitute it
for (4.7) to derive the energy estimate

 t \in[0,T]\max\Vert v^{\varepsilon}(t)\Vert_{L^{2}(\Gamma)}^{2}+\int_{0}^{T}
\Vert\nabla_{\Gamma}v^{\varepsilon}(t)\Vert_{L^{2}(\Gamma)}^{2}dt\leq c_{T} (4.8)

for all  T>0 with a constant  c_{T}>0 depending only on  T . Then we combine (4.6)
and (4.8) to obtain the energy estimate

  \max_{t\in[0,T]}\Vert M_{\tau}u^{\varepsilon}(t)\Vert_{L^{2}(\Gamma)}^{2}+
\int_{0}^{T}\Vert\nabla_{\Gamma}M_{\tau}u^{\varepsilon}(t)\Vert_{L^{2}(\Gamma)}^
{2}dt\leq c_{T} (4.9)

for the original averaged tangential component  M_{\tau}u^{\varepsilon}.

4.3 Estimate for the time derivative of the average

By the energy estimate (4.9) we see that (a subsequence of)  M_{\tau}u^{\varepsilon} converges weakly
in appropriate function spaces on  \Gamma as  \varepsilonarrow 0 . However, we also require the strong
convergence of  M_{\tau}u^{\varepsilon} to show the convergence of the trilinear term in (4.4). We use
the Lions‐Aubin lemma to get the strong convergence. For this purpose, we derive
a uniform estimate for the time derivative of  M_{\tau}u^{\varepsilon}.

First we estimate the time derivative of the weighted solenoidal part  v^{\varepsilon} of  M_{\tau}u^{\varepsilon}
in  H^{-1}(\Gamma, T\Gamma) . To this end, we take  w\in L^{2}(0, T;H^{1}(\Gamma, T\Gamma)) and construct a test
function  \eta\in L^{2}(0, T;\mathcal{V}_{g}) for (4.7) and  q\in L^{2}(0, T;H^{2}(\Gamma)) such that

 w=g\eta+g\nabla_{\Gamma}q on  \Gamma,  \Vert\eta\Vert_{H^{1}(\Gamma)}\leq c\Vert w\Vert_{H^{1}(\Gamma)}.
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Then we substitute  \eta for (4.7) and use the above relations and

  \int_{0}^{T}(g\partial_{t}v^{\varepsilon}, \eta)_{L^{2}(\Gamma)}dt=\int_{0}
^{T}(\partial_{t}v^{\varepsilon}, g\eta)_{L^{2}(\Gamma)}dt=\int_{0}^{T}
(\partial_{t}v^{\varepsilon}, w)_{L^{2}(\Gamma)}dt
by  \partial_{t}v^{\varepsilon}\in L_{g\sigma}^{2}(\Gamma, T\Gamma) and  g\nabla_{\Gamma}q\in L_{g\sigma}^{2}(\Gamma, T\Gamma)^{\perp} to obtain

 | \int_{0}^{T}(\partial_{t^{V^{\varepsilon}}}, w)_{L^{2}(\Gamma)}dt|\leq c_{T}
\Vert w\Vert_{L^{2}(0,T;H^{1}(\Gamma))}
for all  w\in L^{2}(0, T;H^{1}(\Gamma, T\Gamma)) , which yields

 \Vert\partial_{t}v^{\varepsilon}\Vert_{L^{2}(0,T;H^{-1}(\Gamma,T\Gamma))}\leq 
c_{T}

with a constant  c_{T}>0 depending only on  T . By this estimate and the last inequality
of (4.6) with  \Vert v\Vert_{H^{-1}(\Gamma,T\Gamma)}\leq 1v\Vert_{L^{2}(\Gamma)} for  v\in L^{2}(\Gamma, T\Gamma) we obtain

 \Vert\partial_{t}M_{\tau}u'\Vert_{L^{2}(0,T,H^{-1}(\Gamma,T\Gamma))}\leq c_{T} . (4.10)

Remark 4.1. In construction of a weak solution to the Navier‐Stokes equations
we usually estimate the time derivative of an approximate solution in the dual of a
solenoidal space, but here we estimate  \partial_{t}M_{\tau}u^{\varepsilon} in the dual  H^{-1}(\Gamma, T\Gamma) of  H^{1}(\Gamma, T\Gamma) ,
not in the dual  \mathcal{V}_{g}' of  \mathcal{V}_{g}=H_{g\sigma}^{1}(\Gamma, T\Gamma) . This is because we multiply  \partial_{t}M.u^{\varepsilon} by  g in
(4.4). For  f\in \mathcal{V}_{g}' we cannot define gf as an element of  \mathcal{V}_{g}' by gf:  v\mapsto \mathcal{V}_{g}'\langle f,  gv\rangle_{\mathcal{V}_{g}}
for  v\in \mathcal{V}_{g} since gv does not belong to  \mathcal{V}_{g} in general (here  \mathcal{V}_{g}'\langle\cdot,  \cdot\}_{\mathcal{V}_{g}} is the duality
product between  \mathcal{V}_{g}' and  \mathcal{V}_{g} ). On the other hand, for  f\in H^{-1}(\Gamma, T\Gamma) we can define
 gf\in H^{-1}(\Gamma, T\Gamma) by  [gf,  v]_{T\Gamma}  :=[f, gv]_{T\Gamma} for  v\in H^{1}(\Gamma, T\Gamma) since  gv\in H^{1}(\Gamma, T\Gamma)
by the smoothness of  g on  \Gamma . We consider  \partial_{t}M.u’ in  H^{-1}(\Gamma, T\Gamma) to avoid a problem
with multiplication of a function in dual spaces.

4.4 Convergence of the average and characterization of the limit

Now let us prove the convergence of the average of the strong solution  u^{\varepsilon} to (1.2)
and characterize the limit as a unique weak solution to (3.1). First note that, since
 u^{\varepsilon} satisfies  u^{\varepsilon}\cdot n_{\varepsilon}=0 on  \Gamma_{\varepsilon} and (4.1), we can show

  \sup \Vert Mu^{\varepsilon}(t)\cdot n\Vert_{L^{2}(\Gamma)}\leq c\varepsilon^{1
/2} \sup \Vert u^{\varepsilon}(t)\Vert_{H^{1}(\Omega_{\varepsilon})}\leq 
c\varepsilon^{\alpha/2}arrow 0
 t\in[0,\infty) t\in[0,\infty)

as  \varepsilonarrow 0 (see [14, Lemma 6.4] for the first inequality). Hence  \{Mu^{\varepsilon}\cdot n\}_{\varepsilon} converges
strongly to zero in  C([0, \infty);L^{2}(\Gamma)) .

Next we consider the averaged tangential component  M_{\tau}u^{\varepsilon} . For each fixed  T>0

we observe by (4.9) and (4.10) that

 \bullet  \{M_{\tau}u^{\varepsilon}\}_{\varepsilon} is bounded in  L^{\infty}(0, T;L^{2}(\Gamma, T\Gamma))\cap L^{2}(0, T;H^{1}(\Gamma, T\Gamma)) ,

 \bullet  \{\partial_{t}M_{\tau}u^{\varepsilon}\}_{\varepsilon} is bounded in  L^{2}(0, T;H^{-1}(\Gamma, T\Gamma)) .

Thus there exist a vector field

 v\in L^{\infty}(0, T;L^{2}(\Gamma, T\Gamma))\cap L^{2}(0, T;H^{1}(\Gamma, 
T\Gamma))
with  \partial_{t}v\in L^{2}(0, T;H^{-1}(\Gamma, T\Gamma))
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and a sequence  \{\varepsilon_{k}\}_{k=1}^{\infty} of positive numbers convergent to zero such that

  \lim_{karrow\infty}M_{\tau}u^{\varepsilon_{k}}=v  weakly-* in  L^{\infty}(0, T;L^{2}(\Gamma, T\Gamma)) ,

  \lim_{karrow\infty}M_{\tau}u^{\varepsilon_{k}}=v weakly in  L^{2}(0, T;H^{1}(\Gamma, T\Gamma)) , (4.11)

 karrow\infty 1\dot{{\imath}}m\partial_{t}M.u^{\varepsilon_{k}}=\partial_{t}v weakly in  L^{2}(0, T;H^{-1}(\Gamma, T\Gamma)) .

By the Lions‐Aubin lemma (see e.g. [1, Theorem II.5.16]) we also have

  \lim_{karrow\infty}M_{\tau}u^{\varepsilon_{k}}=v strongly in  L^{2}(0, T;L^{2}(\Gamma, T\Gamma)) . (4.12)

Note that we do not a priori know that  v is a weighted solenoidal vector field on  \Gamma.

However, by  u^{\varepsilon}\in L_{\sigma}^{2}(\Omega_{\varepsilon}) , the first inequality of (4.1), and (4.12) we can prove

 v\in L^{\infty}(0, T;L_{g\sigma}^{2}(\Gamma, T\Gamma))\cap L^{2}(0, T;
\mathcal{V}_{g}) .

For details, we refer to [14, Lemma 10.24].
Let us show that  v satisfies the weak formulation (3.2) for the limit equations.

First we take  \eta\in C_{c}(0, T;\mathcal{V}_{g}) and consider the weak formulation (4.4) for  M_{\tau}u^{\varepsilon_{k}} :

  \int_{0}^{T}\{[g\partial_{t}M_{\tau}u^{\varepsilon_{k}}, \eta]_{T\Gamma}+a_{g}
(M_{\tau}u^{\varepsilon_{k}}, \eta)+b_{g}(M_{\tau}u^{\varepsilon_{k}}, M_{\tau}
u^{\varepsilon_{k}}, \eta)\}dt
 = \int_{0}^{T}[gM_{\tau}f^{\varepsilon_{k}}, \eta]_{T\Gamma}dt+
R_{\varepsilon_{k}}^{1}(\eta) . (4.13)

We send   karrow\infty in (4.13). Then, by the assumption (b) of Theorem 3.4 and (4.11),

  \lim_{karrow\infty}\int_{0}^{T}[g\partial_{t}M_{\tau}u^{\varepsilon_{k}}, 
\eta]_{T\Gamma}dt=\int_{0}^{T}[g\partial_{t}v, \eta]_{T\Gamma}dt,
  \lim_{karrow\infty}\int_{0}^{T}a_{g}(M_{\tau}u^{\varepsilon_{k}}, \eta)dt=
\int_{0}^{T}a_{g}(v, \eta)dt , (4.14)

 k arrow\infty 1\dot{{\imath}}m\int_{0}^{T}[gM_{\tau}f^{\varepsilon_{k}} , \eta]
_{T\Gamma}dt=\int_{0}^{T}[gf, \eta]_{T\Gamma}dt.
Also, by (4.5), the assumption (c), and  \alpha>0 we have

 |R_{\varepsilon_{k}}^{1}( \eta)|\leq c(\varepsilon_{k}^{\alpha/4}+\sum_{i=0,1}|
\varepsilon_{k}^{-1}\gamma_{\varepsilon_{k}}^{i}-\gamma^{i}|)(1+T)^{1/2}
\Vert\eta\Vert_{L^{2}(0,T,H^{1}(\Gamma))}arrow 0 (4.15)

as   karrow\infty . To prove the convergence of the trilinear term we set

 J_{1}^{k} := \int_{0}^{T}b_{g}(M_{\tau}u^{\varepsilon_{k}}, M_{\tau}
u^{\varepsilon_{k}}, \eta)dt-\int_{0}^{T}b_{g}(v, M_{\tau}u^{\varepsilon_{k}}, 
\eta)dt,
 J_{2}^{k} := \int_{0}^{T}b_{g}(v, M_{\tau}u^{\varepsilon_{k}}, \eta)dt-\int_{0}
^{T}b_{g}(v, v, \eta)dt.

By Ladyzhenskaya’s inequality  \Vert\xi\Vert_{L^{4}(\Gamma)}\leq c\Vert\xi\Vert_{L^{2}(\Gamma)}^{1/2}
\Vert\nabla_{\Gamma}\xi\Vert_{L^{2}(\Gamma)}^{1/2} for  \xi\in H^{1}(\Gamma) (see [14,
Lemma 3.1]) and Hölder’s inequality we have

 |J_{1}^{k}| \leq c\int_{0}^{T}\Vert M_{\tau}u^{\varepsilon_{k}}-v\Vert_{L^{2}
(\Gamma)}^{1/2}\Vert M_{\tau}u^{\varepsilon_{k}}-v\Vert_{H^{1}(\Gamma)}^{1/2}
\Vert M_{\tau}u^{\varepsilon_{k}}\Vert_{H^{1}(\Gamma)}\Vert\eta\Vert_{H^{1}
(\Gamma)}dt.
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Moreover, since  \{M_{\tau}u^{\varepsilon}\}_{\varepsilon} is bounded in  L^{2}(0, T;H^{1}(\Gamma, T\Gamma)) and satisfies (4.12), and
since  \Vert\eta(t)\Vert_{H^{1}(\Gamma)} is bounded on  [0, T] by  \eta\in C_{c}(0, T;\mathcal{V}_{g}) ,

 |J_{1}^{k}|\leq c\Vert M_{\tau}u^{\varepsilon_{k}}-v\Vert_{L^{2}(0,T;L^{2}
(\Gamma))}^{1/2}arrow 0 as  karrow 0 . (4.16)

Also, since the linear functional

  \Phi(\xi) :=\int_{0}^{T}b_{g}(v, \xi, \eta)dt, \xi\in L^{2}(0, T;H^{1}(\Gamma,
T\Gamma))
is bounded on  L^{2}(0, T;H^{1}(\Gamma, T\Gamma)) by  v\in L^{2}(0, T;\mathcal{V}_{g}) and  \eta\in C_{c}(0, T;\mathcal{V}_{g}) , we get

 k arrow\infty 1\dot{{\imath}}mJ_{2}^{k}=\lim_{karrow\infty}\{\Phi(M_{\tau}
u^{\varepsilon_{k}})-\Phi(v)\}=0 (4.17)

by (4.11). Hence it follows from (4.16) and (4.17) that

  \lim_{karrow\infty}\int_{0}^{T}b_{g}(M_{\tau}u^{\varepsilon_{k}}, M_{\tau}
u^{\varepsilon_{k}}, \eta)dt=\int_{0}^{T}b_{g}(v, v, \eta)dt (4.18)

and we see by  (4.13)-(4.15) and (4.18) that  v satisfies (3.2) for all  \eta\in C_{c}(0, T;\mathcal{V}_{g}) .
By the space‐time regularity of  v and the density of  C_{c}(0, T;\mathcal{V}_{g}) in  L^{2}(0, T;\mathcal{V}_{g}) we
can also show that  v\in C([0, T];L_{g\sigma}^{2}(\Gamma, T\Gamma)) and (3.2) is valid for all  \eta\in L^{2}(0, T;\mathcal{V}_{g}) .

To show that  v is a weak solution to (3.1) it is also necessary to verify the initial
condition. Let  \xi\in \mathcal{V}_{g} and  \varphi\in C^{\infty}([0, T]) such that  \varphi(0)=1 and  \varphi(T)=0 . We

substitute  \eta  :=\varphi\xi\in L^{2}(0, T;\mathcal{V}_{g}) for (3.2) and (4.13), carry out integration by parts
for the time derivatives, and send   karrow\infty . Then by  \varphi(0)=1 and  \varphi(T)=0 , the
assumption (b) of Theorem 3.4, (4.12), (4.14), (4.15), and (4.18) we obtain

 (gv(0), \xi)_{L^{2}(\Gamma)}=(gv_{0}, \xi)_{L^{2}(\Gamma)} for all  \xi\in \mathcal{V}_{g}.

Since  \mathcal{V}_{g} is dense in  L_{g\sigma}^{2}(\Gamma, T\Gamma) , the above equality is also valid for all  \xi\in L_{g\sigma}^{2}(\Gamma, T\Gamma)
and we can set  \xi  :=v(0)-v_{0} to get

 (g\{v(0)-v_{0}\}, v(0)-v_{0})_{L^{2}(\Gamma)}=\Vert g^{1/2}\{v(0)-v_{0}\}\Vert_
{L^{2}(\Gamma)}^{2}=0,
which combined with (2.1) implies  v|_{t=0}=v_{0} on  \Gamma . Therefore,  v is a weak solution
to (3.1) on  [0, T) . Moreover, we can show that  v is a unique weak solution to (3.1)
as in the case of the two‐dimensional Navier‐Stokes equations (see e.g. [1]). By the
boundedness of  \{M_{\tau}u^{\varepsilon}\}_{\varepsilon} and  \{\partial_{t}M_{\tau}u^{\varepsilon}\}_{\varepsilon} and the uniqueness of a weak solution to
(3.1) we also have the convergence of the full sequence

  \lim_{\varepsilonarrow 0}M_{\tau}u^{\varepsilon}=v weakly in  L^{2}(0, T;H^{1}(\Gamma, T\Gamma)) ,
(4.19)

 \varepsilonarrow 01\dot{{\imath}}m\partial_{t}M_{\tau}u^{\varepsilon}=\partial_
{t}v weakly in  L^{2}(0, T;H^{-1}(\Gamma, T\Gamma)) .

Since the strong solution  u^{\varepsilon} to (1.2) exists globally in time, by the above arguments
we obtain a unique weak solution

 v_{T}\in C([0, T];L_{g\sigma}^{2}(\Gamma, T\Gamma))\cap L^{2}(0, T;\mathcal{V}_
{g})\cap H^{1}(0, T;H^{-1}(\Gamma, T\Gamma))
to (3.1) on  [0, T) satisfying (4.19) for all  T>0 . Moreover, if  T<T' then  v_{T}=v_{T'}

on  [0, T] by the uniqueness of a weak solution. Therefore, setting  v  :=v_{T} on  [0, T]
for each  T>0 we can define a vector field

 v\in C([0, \infty);L_{g\sigma}^{2}(\Gamma, T\Gamma))\cap L_{loc}^{2}([0, 
\infty);\mathcal{V}_{g})\cap H_{loc}^{1}([0, \infty);H^{-1}(\Gamma, T\Gamma)) ,

which is a unique weak solution to (3.1) on  [0, \infty ) and satisfies (4.19) for all  T>0.
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