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1. INTRODUCTION

In this article, based on a recent work [8], we consider a free boundary problem
for a reaction‐diffusion equation given by:

(FBP) \{
 u_{t}=du_{xx}+f(u)  ,  t>0,0<x<h(t) ,
 u(t, 0)=0,  u(t, h(t))=0,  t>0,

 h'(t)=-\mu u_{x}(t, h(t)) ,  t>0,

 h(0)=h_{0}  ,  u(0, x)=u_{0}(x)  ,  0\leq x\leq h_{0},

where  d,  \mu and  h_{0} are positive constants and  x=h(t) represents a free boundary.
In (FBP),  f\in C^{1}([0, \infty)) satisfies the following properties:

 f(u)=0 has solutions  u=0,  u_{1}^{*},  u_{2}^{*},  u_{3}^{*}(0<u_{1}^{*}<u_{2}^{*}<u_{3}^{*}) ,

(PB)  f'(0)>0,  f'(u_{1}^{*})<0,  f'(u_{2}^{*})>0,  f'(u_{3}^{*})<0,   \int_{u_{1}^{*}}^{u_{3}^{*}}f(u)du>0
and  f(u)\neq 0 for  u\not\in\{0, u_{1}^{*}, u_{2}^{*}, u_{3}^{*}\}.

We say that  f is a function of positive bistable type when  f satisfies (PB). Initial
function  u_{0} satisfies

(1.1)  u_{0}\in C^{2}([0, h_{0}]),  u_{0}(0)=u_{0}(h_{0})=0 and  u_{0}(x)>0 for  0<x<h_{0}.

A free boundary problem like (FBP) was first proposed by Du and Lin [3] as a
model of the invasion of a new species by putting homogeneous Neumann condition
at  x=0 in place of Dirichlet condition. We denote such a free boundary problem by
(FBP‐N). Function  u(t, x) represents the population density of the species over one‐
dimensional habitat  (0, h(t)) . The free boundary  x=h(t) stands for the expanding
front of the habitat and its dynamics is determined by the Stefan condition of the
form  h'(t)=-\mu u_{x}(t, h(t)) . For the ecological meaning of this condition, see [2].

Du and Lin studied (FBP‐N) with logistic nonlinearity  f(u)=u(a-bu),  a,  b>0,
and established various interesting results such as spreading‐vanishing dichotomy
and asymptotic behaviors of solutions as   tarrow\infty as well as the existence and unique‐
ness of global solutions. In particular, it was shown that any solution  (u, h) of
(FBP‐N) satisfies either vanishing or spreading: vanishing means the case where
  \lim_{tarrow\infty}h(t)\leq\pi/2\sqrt{d}/a and   \lim_{tarrow\infty}\Vert u(t)\Vert_{C([0,h(t)])}=0 , while spreading means
the case where   \lim_{tarrow\infty}h(t)=\infty and   \lim_{tarrow\infty}u(t, x)=a/b locally uniformly for
 x\in[0, \infty) . Recently, a lot of people have investigated related free boundary prob‐
lems. In particular, we should refer to the work of Du and Lou [4], who have
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discussed a similar problem to (FBP‐N) (or (FBP)) by putting free boundary con‐
ditions at both ends of the interval. As one of the most important results, it was
shown that the analysis of large‐time behaviors of spreading solutions is closely
related to the following semi‐wave problem

(SWP)  \{
 dq_{zz}-cq_{z}+f(q)=0,  q(z)>0,  z>0,

 q(0)=0,   \mu q_{z}(0)=c,\lim_{zarrow\infty}q(z)=u^{*},
where  u^{*} is a stable equilibrium point of  f such that  f(u^{*})=0 . When  f is monos‐
table, bistable or combustion type of nonlinearity satisfying  f(0)=f(1)=0 and
 f(u)<0 for  u>1 , it was proved in [4] that (SWP) with  u^{*}=1 admits a unique
solution  (c, q)=(c^{*}, q^{*}) . Their results show that  (c^{*}, q^{*}) is available to study as‐
ymptotic behavior of any spreading solution. For its sharper asymptotic estimates,
see the paper of Du‐Matsuzawa‐Zhou [7].

When  f satisfies (PB), we recall the work of Kawai and Yamada [13] for (FBP‐
N). They have established the classification of solutions of (FBP‐N) into four types
of asymptotic behaviors: vanishing, small spreading, big spreading and transi‐
tion. In particular, (FBP‐N) with positive bistable nonlinearity  f exhibits two
types of spreading phenomena; one is the small spreading of solution  (u, h) with
  \lim_{tarrow\infty}u(t, \cdot)=u_{1}^{*} locally uniformly in  [0, \infty ) and the other is the big spreading
solution  (u, h) with   \lim_{tarrow\infty}u(t, \cdot)=u_{3}^{*} locally uniformly in  [0, \infty ). Moreover, it was
also proved in [13] that under certain circumstances (SWP) does not have a solution,
which is a big difference from known results for other types of nonlinearity. In this
sense, positive bistable  f provides us interesting and significant properties for (FBP‐
N). Recently, Kaneko‐Matsuzawa‐Yamada [12] have proved that, if (SWP) has no
solutions, the corresponding spreading solution possesses a propagating terrace.

The main purpose of this article is to give precise information on asymptotic
behaviors of solutions for (FBP) when  f satisfies (PB). As our first main result
(Theorem 4.1), we will show that any solution  (u, h) of (FBP) satisfies one of the
following properties:

(I) vanishing:  tarrow\infty 1\dot{{\imath}}mh(t)\leq\pi\sqrt{d/f'(0)} and  tarrow\infty 1\dot{{\imath}}m\Vert u(t)\Vert_{C([0,h(t)])}=0 ;

(II) small spreading:   tarrow\infty 1\dot{{\imath}}mh(t)=\infty and   \lim_{tarrow\infty}u(t, \cdot)=v_{1} locally uniformly in

 [0, \infty) ;

(III) big spreading:   tarrow\infty 1\dot{{\imath}}mh(t)=\infty and   \lim_{tarrow\infty}u(t, \cdot)=v_{3} locally uniformly in

 [0, \infty) .

Here  v_{1} and  v_{3} are bounded solutions of the following problem

(SP)  \{\begin{array}{ll}
dv_{xx}+f(v)=0, v(x)>0   for 0\leq x<\infty,
v(0)=0   
\end{array}
with   \lim_{xarrow\infty}v_{1}(x)=u_{1}^{*} and   \lim_{xarrow\infty}v_{3}(x)=u_{3}^{*} , respectively. Note that (SP)
has no bounded solutions other than  v_{1} and  v_{3} (refer to Section 3). In Section 4
we will also give sufficient conditions for each behavior. Moreover, in order to
get better understanding on the above asymptotic behaviors, we will introduce
parameter  \sigma>0 . Let any  (u_{0}, h_{0}) satisfying (1.1) be fixed and consider (FBP)
with  (u_{0}, h_{0}) replaced by  (\sigma u_{0}, h_{0}) . We denote such a free boundary problem by
 (FBP)_{\sigma} . Let  (u(t, x;\sigma), h(t;\sigma)) be the solution of  (FBP)_{\sigma} . Then it is possible to
show the existence of two threshold numbers  \sigma_{1}^{*} and  \sigma_{2}^{*}(\sigma_{1}^{*}<a_{2}) such that the

vanishing of  (u(\sigma), h(\sigma)) occurs for  0\leq\sigma\leq\sigma_{1}^{*} , the small spreading of  (u(\sigma), h(\sigma))
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occurs for  \sigma_{1}^{*}<\sigma\leq\sigma_{2}^{*} and the big spreading of  (u(\sigma), h(\sigma)) occurs for  \sigma_{2}^{*}<\sigma
(Theorems 4.10 and 4.11).

As the second step, in Section 5 we will derive asymptotic estimates for two
types of spreading solutions. Let  (u, h) be any big spreading solution of (FBP) and
let (SWP) with  u^{*}=u_{3}^{*} admit a unique solution  (c_{B}, q_{B}) . (For the existence and
nonexistence of such a solution, see [13]). Then we will give the result that  (u, h)
satisfies

(1.2)   \lim_{tarrow\infty}h'(t)=c_{B} and  tarrow\infty 1\dot{{\imath}}m(h(t)-c_{B}t)=H_{B}
with some  H_{B}\in \mathbb{R} and

(1.3)   \lim \sup |u(t, x)-q_{B}(h(t)-x)|=0
 tarrow\infty_{h(t)/2\leq x\leq h(t)}

(Theorem 5.4). In this sense,  (c_{B}, q_{B}) gives a good approximation of  (u, h) near
the free boundary  x=h(t) for large  t . Moreover, we can also show that for any
 c\in(0, c_{B})

(1.4)   \lim_{tarrow\infty}\sup_{0\leq x\leq ct}|u(t, x)-v_{3}(x)|=0
(Theorem 5.5). For a small spreading solution  (u, h) , it will be seen that analogous
estimates as  (1.2)-(1.4) are valid provided that   \lim\inf_{arrow\infty}\Vert u(t)\Vert_{C[0,h(t)]}<u_{2}^{*} . Here
we should remark that there exists a small spreading solution which does not satisfy
this condition. For example, when we take  (u(t.x;\sigma_{2}^{*}), h(t;a_{2})) which is a borderline
solution between the small spreading and the big spreading for  (FBP)_{\sigma} , this solution
satisfies   \lim_{tarrow\infty}\Vert u(t;\sigma_{2}^{*})\Vert_{C([0,h(t,\sigma_{2}^{*})])}
\geq u_{2}^{*}>u_{1}^{*} . We have not obtained satisfactory
asymptotic estimates for such small spreading solution.

2. PRELIMINARIES

First of all, in this section we will introduce basic properties of the solutions for
(FBP). We begin with the global existence result for (FBP).

Theorem 2.1 (Existence and uniqueness of bounded global solution). Let  f satisfy
(PB) and let  u_{0} satisfy (1.1). Then (FBP) has a unique solution  (u, h) satisfying

 (u, h)\in\{C^{\frac{1+\alpha}{2},1+\alpha}(\overline{\Omega})\cup C^{1+
\frac{\alpha}{2},2+\alpha}(\Omega)\}\cross C^{1+\frac{\alpha}{2}}([0, \infty)) ,

for any  \alpha\in(0,1) with  \Omega=\{(t, x)\in \mathbb{R}^{2} : t>0,0\leq x\leq h(t)\} . Moreover, it holds
that

 u_{x}(t, x)<0 for  t>0,   \max\{h_{0}, \frac{h(t)}{2}\}\leq x\leq h(t)
and there exist positive constants  C_{1}=C_{1}(\Vert u_{0}\Vert_{C([0,h_{0}])}, h_{0}) and  C_{2}=

 C_{2}(\Vert u_{0}\Vert_{C^{1}([0,h_{0}])}, h_{0}) such that

 0<u(t, x)\leq C_{1}, fort>0,0<x<h(t) ,

 0<h'(t)\leq\mu C_{2} , for  t>0.

Theorem 2.1 has been shown by Du‐Lin [3, Theorems 2.1, 2.3 and Lemma 2.2]
and Kaneko‐Yamada [10, Theorem 2.7] and [11, LemmaA.l]. In particular  h'(t)>0
means the existence of   \lim_{tarrow\infty}h(t)\in(0, \infty].

We define spreading and vanishing of solutions under general situations.
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Definition 2.2. Let  (u, h) be any global solution of (FBP). Then  (u, h) is a van‐
ishing solution if

  \lim_{tarrow\infty}\Vert u(t)\Vert_{C([0,h(t)])}=0,
and  (u, h) is a spreading solution if

  \lim_{tarrow\infty}h(t)=\infty and   \lim_{tarrow}\inf_{\infty}\Vert u(t)\Vert_{C([0,h(t)])}>0.
We next give a comparison theorem for (FBP) proved by Du and Lin [3, Lemma

3.5].

Theorem 2.3 (Comparison theorem). Suppose that  \overline{h}\in C^{1}([0, T]) and  \overline{u}\in C^{1,2}(\overline{\Omega})
with  T>0 and  \Omega=\{(t, x)\in \mathbb{R}^{2}|0<t\leq T, 0\leq x\leq\overline{h}(t)\} satisfy

 \{\begin{array}{ll}
\overline{u}_{t}\geq d\overline{u}_{xx}+f(\overline{u}) ,   (t, x)
\in\overline{\Omega},
\overline{u}(t, 0)\geq 0, \overline{u}(t, \overline{h}(t))=0,   t\in(0, T],
\overline{h}'(t)\geq-p\overline{u}_{x}(t, \overline{h}(t)) ,   t\in(0, T].
\end{array}
If  \overline{h}(0)\geq h_{0},  \overline{u}(0, x)\geq u_{0}(x) in  [0, h_{0}] , then the solution  (u, h) of (FBP) satisfies

 \overline{h}(t)\geq h(t) in  [0, T] and  \overline{u}(t, x)\geq u(t, x) in  (t, x)\in[0, T]\cross[0, h(t)].

The pair  (\overline{u}, \overline{h}) is called an upper solution of (FBP) when it satisfies the assump‐
tions of Theorem 2.3. Similarly a lower solution is defined by reversing all inequality
signs in the assumptions of Theorem 2.3.

3. ANALYSIS OF STATIONARY PROBLEM

We introduce the following stationary problem defined in the finite interval  [0, \ell] :

 (SP-\ell)  \{\begin{array}{ll}
d\phi_{xx}+f(\phi)=0, \phi(x)>0   for 0<x<\ell,
\phi(0)=\phi(\ell)=0   
\end{array}
with positive number  \ell . In this section we will study two stationary problems; (SP)
and  (SP-\ell) for (FBP) with nonlinearity  f satisfying (PB) by making use of the
phase plane analysis (see for instance [15] and Figure 1). We first give the existence
of bounded nonnegative solutions of (SP).

Proposition 3.1 (Existence of bounded solutions of (SP)). Under assumption
(PB), (SP) has three bounded solutions  v\equiv 0,  v_{1}(x) and  v_{3}(x) , where  v_{1}=v_{1}(x)
(resp.  v_{3}=v_{3}(x) ) is an increasing function satisfying   \lim_{xarrow\infty}v_{1}(x)=u_{1}^{*} (resp.
  \lim_{xarrow\infty}v_{3}(x)=u_{3}^{*}) and  v_{1}(x)<v_{3}(x) for  x>0.

In order to find a solution of  (SP-\ell) we consider the following initial value problem

(3.1)  \{\begin{array}{l}
d\phi"+f(\phi)=0,
\phi(0)=0, \phi'(0)=P>0.
\end{array}
Let  \phi=\phi(x;P) be a solution of (3.1) and define  \ell=\ell(P) by

  \ell(P) :=\inf\{x>0 : \phi(x;P)=0\}.
We also define

 F(u):= \int_{0}^{u}f(s)ds.
For  f satisfying (PB), we can choose û  \in  (u_{2}^{*}, u_{3}^{*}) such that

(3.2)  F(\^{u})=F(u_{1}^{*}) .
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FIGURE 1. The phase plane of (SP)

For functions  v_{1} and  v_{3} in Proposition 3.1 set ví(0)  =:\omega_{1} and  v_{3}'(0)=:\omega_{3} , then
 \ell(P) can be represented by

(3.3)   \ell(P)=\sqrt{2d}\int_{0}^{\phi_{P}}\frac{d\phi}{\sqrt{F(\phi_{P})-F(\phi)}} for  P\in(0, \omega_{1})\cup(\omega_{1}, \omega_{3})

where  \phi_{P}=\phi(\ell(P)/2;P) . Note that if one can find  P^{*} satisfying  \ell(P^{*})=\ell , then
 \phi(x;P^{*}) becomes a solution of  (SP-\ell) . The following result gives an elementary
property of  \ell(P) .

Lemma 3.2. Define  \ell(P) by (3.3). Then  \ell(P) is a continuous function of   P\in

 (0, \omega_{1})\cup(\omega_{1}, \omega_{3}) and satisfies

  \lim_{Parrow 0}\ell(P)=\pi\sqrt{\frac{d}{f'(0)}}, Parrow\omega_{1}-0  \lim \ell(P)=1\dot{{\imath}}m\ell(P)=1\dot{{\imath}}m\ell(P)=\infty 
Parrow\omega_{1}+0Parrow\omega_{3}.
For the proof of this lemma, see [14].
We are led to the existence of a minimum of  \ell(P) in  (\omega_{1}, \omega_{3}) by virtue of

Lemma 3.2, namely

(3.4)  \ell^{*}:=m\dot{{\imath}}n\ell(P)\omega_{1}<P<\omega_{3}.
Lemma 3.2 ensures the following result on the structure of solutions of  (SP-\ell) .

Proposition 3.3 (The structure of solutions for  (SP-\ell) ). Assume (PB) and define
 \ell* by (3.4). Then the following properties hold true:

(i) For each  \ell\in(\pi\sqrt{d}/f'(0), \infty),  (SP-\ell) has a positive solution  \phi_{1}=\phi_{1}(x;\ell)
satisfying  \Vert\phi_{1}\Vert_{C([0,\ell])}<u_{1}^{*} . Moreover,   \lim_{\ellarrow\pi\sqrt{d/f'(0)}}\Vert\phi_{1}\Vert_{C([0,\ell])}=0 and

  \lim_{\ellarrow\infty}\Vert\phi_{1}\Vert_{C([0,\ell])}=u_{1}^{*}.
(ii) For each  \ell\in[\ell^{*}, \infty ),  (SP-\ell) has two positive solutions  \phi_{2}=\phi_{2}(x;\ell) and

 \phi_{3}=\phi_{3}(x;\ell) satisfying

û  <  \Vert\phi_{2}\Vert_{C([0,\ell])}\leq\Vert\phi_{3}\Vert_{C([0,\ell])}<u_{3}^{*},

  \lim_{\ellarrow\infty}\Vert\phi_{2}\Vert_{C([0,\ell])}=\^{u} and   \lim_{\ellarrow\infty}\Vert\phi_{3}\Vert_{C([0,\ell])}=u_{3}^{*}.
Here û  \in(u_{2}^{*}, u_{3}^{*}) is a constant defined in (3.2). Moreover,  \phi_{1}(x;\ell)<
 \phi_{2}(x;\ell)<\phi_{3}(x;\ell) for   0<x<\ell when they exist.
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4. ASYMPTOTIC BEHAVIORS OF SOLUTIONS

In this section, we will study asymptotic behaviors of solutions of (FBP).

4.1. Classification of asymptotic behaviors. We first show the first main result
about the classification of solutions of (FBP) in terms of their asymptotic behaviors.

Theorem 4.1. Assume (PB). Then any solution  (u, h) of (FBP) satisfies one of
the following properties:

(I) Vanishing:   \lim_{tarrow\infty}h(t)\leq\pi\sqrt{d}/f'(0) and   \lim_{tarrow\infty}\Vert u(t)\Vert_{C([0,h(t)])}=0 ;
(II) Small spreading:   \lim_{tarrow\infty}h(t)=\infty and   \lim_{tarrow\infty}u(t, x)=v_{1}(x) uniformly

in  x\in[0, R] for any  R>0 ;
(III) Big spreading:   \lim_{tarrow\infty}h(t)=\infty and   \lim_{tarrow\infty}u(t, x)=v_{3}(x) uniformly in

 x\in[0, R] for any  R>0,

where  v_{1} and  v_{3} are bounded increasing functions in Proposition 3.1.

In order to prove Theorem 4.1, we will make use of the zero number arguments
developed by Angenent [1]. Denote by  \mathcal{Z}_{I}(w) the number of zero points of a contin‐
uous function  w in an interval  I\subset \mathbb{R} . Du‐Lou‐Zhou [5, Lemma 2.2] and Du‐Matano
[6, Lemma 2.6] have extended Angenent’s result as follows:

Lemma 4.2. Let  \xi(t)\geq 0 be a continuous function for  t\in(t_{1}, t_{2}) and set  I(t)  :=

 [-\xi(t), \xi(t)] . Assume that  w(t, x) is a continuous function defined in  (t_{1}, t_{2})\cross I(t)
and that it satisfies

(4.1)  w_{t}=dw_{xx}+c(t, x)w, (t, x)\in(t_{1}, t_{2})\cross(-\xi(t), \xi(t)) ,

where  c is bounded in  [t_{1}, t_{2}]\cross I(t) . If  w(t, -\xi(t))\neq 0 and  w(t, \xi(t))\neq 0 for
 t\in(t_{1}, t_{2}) , then the following properties hold true:

(i)  \mathcal{Z}_{I(t)}(w(t))<\infty for any  t\in(t_{1}, t_{2}) and it is non‐increasing in  t ;
(ii) If  w(s, x) has a degenerate zero  x_{0}\in(-\xi(s), \xi(s)) at some  s\in(t_{1}, t_{2}) , then

 \mathcal{Z}_{I(s_{1})}(w(s_{1}))>\mathcal{Z}_{I(s_{2})}(w(s_{2})) for any  s_{1}\in(t_{1}, s) and  s_{2}\in(s, t_{2}) .

Lemma 4.3. Let  I\subset \mathbb{R} be an open interval and let  \{w_{n}(t, x)\}_{n=1}^{\infty} be a sequence
of functions which converges to  w(t, x) in  C^{1}((t_{1}, t_{2})\cross I) . Assume that for every
 t\in(t_{1}, t_{2}) and  n\in \mathbb{N} , the function  x\mapsto w_{n}(t, x) has only simple zeros in I and
that  w(t, x) satisfies an equation of the form (4.1) in  (t_{1}, t_{2})\cross I . Then for every
 t\in(t_{1}, t_{2}) , either  w(t, x)\equiv 0 in  I , or  w(t, x) has only simple zeros in  I.

We will prove the following convergence property of the solutions of (FBP) by
using Lemmas 4.2, 4.3 and the elementary properties of the structure of  \omega‐limit set.

Proposition 4.4. Let  (u, h) be the solution of (FBP). If   \lim_{tarrow\infty}h(t)=\infty , then

  \lim_{tarrow\infty}u(t, \cdot)=v^{*} uniformly in  [0, R] for any  R>0,

where  v^{*} is a bounded positive solution of (SP).

Sketch of Proof of Proposition 4.4. Let  \omega(u) be an  \omega‐limit set of  u(t, \cdot) in the topol‐
ogy of  L_{loc}^{\infty}([0, \infty)) , that is, for every  w\in\omega(u) there exists a sequence  0<t_{1}<
 t_{2}<  <t_{n}<t_{n+1}<  arrow\infty such that

(4.2)   \lim_{narrow\infty}u(t_{n}, x)=w(x) uniformly in  x\in[0, R] for any  R>0.

By local parabolic regularity estimates, we can replace the topology of  L_{loc}^{\infty}([0, \infty))
by that of  C_{loc}^{2}([0, \infty)) . Since  \omega(u) is a compact, connected and invariant set, for
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any  w\in\omega(u) there exists an entire orbit  \{W(t, x)\}_{t\in \mathbb{R}} with  W(0, x)=w(x) . This
fact implies that for every  w\in\omega(u) there exists  W(t, x) satisfying

 \{\begin{array}{ll}
W_{t}=dW_{xx}+f(W) ,   t\in \mathbb{R}, x>0,
W(t, 0)=0,   t\in \mathbb{R},
W(0, x)=w(x)\in\omega(u) ,   x>0,
\end{array}
and

(4.3)   \lim_{narrow\infty}u(t+t_{n}, x)=W(t, x) in  L_{loc}^{\infty}(\mathbb{R}\cross[0, \infty)) .

This convergence can be also replaced by the topology of  C_{loc}^{1,2}(\mathbb{R}\cross[0, \infty)) on account
of parabolic regularity.

Let  v=v(x) be a unique solution of

 \{\begin{array}{ll}
dv"+f(v)=0,   x>0,
v(0)=0,   
v'(0)=w'(0) .   
\end{array}
We will investigate intersection points between  W(t, x) and  v(x) . Let  v_{1} and  v_{3} be
functions given in Proposition 3.1; then

(4.4)  v_{1}(x)\leq w(x)\leq v_{3}(x) for  x\geq 0.

Since  v_{1}(0)=w(0)=v_{3}(0)\equiv 0 , we have  0< ví(0)  \leq w'(0)=v'(0)\leq v_{3}'(0) .
Therefore, by the phase plane analysis (see Figure 1), it is seen that either

(i)  v(x)>0 for  x>0 , or
(ii) there exists a positive number  R such that  v(R)=0 and  v(x)>0 for

 x\in(0, R) .

We first consider the case (i). Let û  (t, x),\hat{W}(t, x) and  \hat{v}(x) be odd extensions of
 u(t, x),  W(t, x) and  v(x) , respectively. It follows from Lemmas 4.2 and 4.3 that, for
every  t\in \mathbb{R} , either  \hat{W}(t, x)-\hat{v}(x)\equiv 0 in  \mathbb{R} , or  \hat{W}(t, x)-\hat{v}(x) has only simple zeros
in  \mathbb{R} . However we see that the latter case never occurs because  \hat{W}(t, 0)-v(0)=
 \hat{W}_{x}(t, 0)-\hat{v}_{x}(0)=0 at  t=0 . Therefore,  \hat{W}(t, x)\equiv\hat{v}(x) in  \mathbb{R} , that is,

 W(t, x)\equiv W(0, x)=w(x)\equiv v(x) for  x\geq 0.

Thus any  w\in\omega(u) is equal to  v which is a bounded positive solution of (SP).
Similarly we can prove that the case (ii) never occurs, so the proof is compete.  \square 

Proposition 4.4 enables us to prove Theorem 4.1. For the proof, see [8] in more
detail.

4.2. Sufficient conditions for asymptotic behavior. In this subsection we will
give some sufficient conditions for  (I)-(III) of Theorem 4.1. We first introduce a
sufficient condition for the vanishing which can be proved in the same way as [9,
Theorem 2.2].

Theorem 4.5. Assume  h_{0}<\pi\sqrt{d}/f'(0) . Then there exists a positive function  V^{*}

such that, if  u_{0}(x)\leq V^{*}(x) in  [0, h_{0}] , then the solution  (u, h) of (FBP) satisfies the
vanishing.

The following result gives a sufficient condition for the spreading when  h_{0}<

 \pi\sqrt{d}/f'(0) :
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Theorem 4.6. Assume  h_{0}<\pi\sqrt{d}/f'(0) . If

  \int_{0}^{h_{0}}xu_{0}(x)dx>\frac{d}{2\mu}(\pi^{2}\frac{d}{f'(0)}-h_{0}^{2})
\max\{1, \frac{\Vert u_{0}\Vert_{C([0,h_{0}])}}{u_{1}}*\},
then the solution of (FBP) satisfies the spreading.

The following two results are sufficient conditions for the small and big spreading
of solutions.

Theorem 4.7. If  h_{0}\geq\pi\sqrt{d}/f'(0) and  \Vert u_{0}\Vert_{C([0,h_{0}])}<u_{2}^{*} , then the solution of
(FBP) satisfies (II) of Theorem 4.1.

Theorem 4.8. Let  \ell* be a positive number defined by (3.4) and assume  h_{0}\geq\ell* If
there exists a positive constant  \ell\in[\ell^{*}, h_{0}] such that  u_{0}(x)\geq\phi_{2}(x;\ell) in  [0, \ell] , then
the solution of (FBP) satisfies (III) of Theorem 4.1, where  \phi_{2}(x;\ell) is the solution
of  (SP-\ell) given in Proposition 3.3.

We can prove Theorem 4.7 in the same way as the proof of [Proposition 4.8] [10].
One can prove Theorem 4.8 in a similar way to [13, Theorem 3.6].

4.3. Sharp threshold numbers. In this subsection we give a more detailed de‐
scription on the asymptotic behavior of the solution of (FBP). We introduce a
parameter  \sigma\geq 0 and consider  (FBP)_{\sigma} with initial data  (u_{0}, h_{0})=(\sigma\phi, h_{0}) for any
fixed  (\phi, h_{0}) satisfying (1.1). Denote by  (u(t, x;\sigma), h(t;\sigma)) the solution of  (FBP)_{\sigma}
with initial data  (\sigma\phi, h_{0}) . It is clear from Theorems 2.1 and 2.3 that, if  \sigma_{1}>\sigma_{2},
then

(4.5)  h(t;\sigma_{1})>h(t;\sigma_{2}) and  u(t, x;\sigma_{1})>u(t, x;\sigma_{2}) for  t\geq 0,  x\in(0, h(t;\sigma_{2}) ].

We define two numbers  \sigma_{1}^{*} and  \sigma_{2}^{*} by

(4.6)  \sigma_{1}^{*}  := \sup {  \sigma ; the vanishing occurs for  (u(t, x;\sigma),  h(t;\sigma)) }

and

(4.7)  \sigma_{2}^{*}  := \inf{  \sigma ; the big spreading occurs for  (u(t, x;\sigma),  h(t;\sigma)) }.

Note that  \sigma_{1}^{*}\leq\sigma_{2}^{*} by the comparison theorem. We begin with the following
lemma which gives a condition for  \sigma_{1}^{*}<\infty :

Lemma 4.9. Assume that  (\phi, h_{0}) satisfies (1.1) and

(4.8)   \pi^{2}\frac{d}{f'(0)}-\frac{2\mu u_{1}^{*}\int_{0}^{h_{0}}x\phi(x)dx}
{d\Vert\phi||_{C([0,h_{0}])}}\leq h_{0}^{2}<\pi^{2}\frac{d}{f'(0)}.
Then there exists a positive number 5 such that  (u(t, x;\sigma), h(t;\sigma)) satisfies the
spreading for every  \sigma\geq\overline{\sigma}.

Using Theorem 4.5, Lemma 4.9 and (4.5), one can see that  \sigma_{1}^{*} given in (4.6) is
the threshold number which separates the vanishing and the spreading:

Theorem 4.10. Let  (u(t, x;\sigma), h(t;\sigma)) be the solution of  (FBP)_{\sigma} with initial data
 (\sigma\phi, h_{0}) for  \sigma>0 . Then  (u(t, x;\sigma), h(t;\sigma)) satisfies the vanishing for every  \sigma\leq a_{1}
and the spreading for every  \sigma>\sigma_{1}^{*} . Moreover,  \sigma_{1}^{*}\in(0, \infty] if  h_{0}<\pi\sqrt{d}/f'(0) ,

 \sigma_{1}^{*}=0 if  h_{0}\geq\pi\sqrt{d}/f'(0) , and  \sigma_{1}^{*}\in(0, \infty) if  (\phi, h_{0}) satisfies (4.8).
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It is possible to prove Theorem 4.10 in a similar manner to [4, Theorem 5.2] or
[13, Theorem 3.7].

Next we will show that  \sigma_{2}^{*} defined as (4.7) is another threshold number which
separates the small spreading and the big spreading:

Theorem 4.11. Let  (u(t, x;\sigma), h(t;\sigma)) be the solution of  (FBP)_{\sigma} with initial data
 (\sigma\phi, h_{0}) for  \sigma>0 . Then  (u(t, x;\sigma), h(t;\sigma)) satisfies the small spreading for every
 \sigma\in(\sigma_{1}^{*}, \sigma_{2}^{*}] and the big spreading for every  \sigma\in(\sigma_{2}^{*}, \infty) . Moreover,  \sigma_{2}^{*}\in(\sigma_{1}^{*}, \infty)
if  h_{0}>\ell* , where  \ell* is a positive constant given in Proposition 3.3.

The proof of this theorem is similar to that of [13, Theorem 3.8].

Remark 1. If we consider (FBP‐N), then the solution satisfies the transition at
 \sigma=\sigma_{2} when  \sigma_{1}^{*} and  \sigma_{2}^{*} are defined by (4.6) and (4.7) (see, [13, Theorem 3.8]). This
fact implies that the transition is a borderline behavior between the small spreading
and big spreading in the case of zero Neumann boundary condition at  x=0.

We next state the result concerned with the small spreading for  \sigma\in(\sigma_{1}^{*}, \sigma_{2}^{*} ].

Theorem 4.12. Let  (u, h;\sigma)=(u(t, x;\sigma), h(t;\sigma)) be the solution of  (FBP)_{\sigma} with
initial data  (\sigma\phi, h_{0}) for  \sigma>0 . Then there exists a positive number  \sigma_{1,2}^{*}\in(\sigma_{1}^{*}, \sigma_{2}^{*} ]
such that  (u, h;\sigma) satisfies the small spreading and   \lim\inf_{tarrow\infty}\Vert u(t;\sigma)\Vert_{C([0,h(t,\sigma)])}<
 u_{2}^{*} for every  \sigma\in(\sigma_{1}^{*}, \sigma_{1,2}^{*}) , while  (u, h;\sigma) satisfies the small spreading and

  \lim\inf_{arrow\infty}\Vert u(t;\sigma)\Vert_{C([0,h(t,\sigma)])}\geq u_{2}
^{*} for every  \sigma\in[\sigma_{1,2}^{*}, \sigma_{2}^{*}].
Remark 2. The notion of small spreading in Theorem 4.1 is defined by   \lim_{tarrow\infty}h(t)
 =\infty and   \lim_{tarrow\infty}u(t, x)=v_{1}(x) in  [0, R] for any  R>0 . It may be classified into
two sub‐cases; (i)   \lim\inf_{tarrow\infty}\Vert u(t)\Vert_{C([0,h(t)])}<u_{2}^{*} , (ii)   \lim\inf_{tarrow\infty}\Vert u(t)\Vert_{C([0,h(t)])}\geq
 u_{2}^{*} . In particular, case (ii) implies that  u(t, x) has a peak at  x=x^{*}(t) satisfying
 u(t, x^{*}(t))\geq u_{2}^{*} for sufficiently large  t . This is an interesting phenomenon, but we
have no further information on this kind of small spreading. The phenomenon of
case (ii) may correspond to the “transition”, which is a borderline solution between
small spreading and big spreading for solutions of (FBP‐N).

5. SPREADING SPEED AND PROFILES OF SOLUTIONS

In this section we will discuss an asymptotic spreading speed of the free boundary
and an asymptotic profile of any spreading solution of (FBP). It was shown by Du
and Lou [4] that the analysis of asymptotic spreading speed and profile of the
solution for (FBP) is closely related with the semi‐wave problem:

(SWP)  \{
 dq_{zz}-cq_{z}+f(q)=0,  q(z)>0,  z>0,

 q(0)=0,   \mu q_{z}(0)=c,\lim_{zarrow\infty}q(z)=u^{*}
with  u^{*}=u_{1}^{*} (resp.  u^{*}=u_{3}^{*} ). We first recall the following existence and uniqueness
of the solution of (SWP) for  f satisfying (PB) which was proved by Kawai and
Yamada [13] by applying the phase plane method (see [13, Theorem 4.1]).

Theorem 5.1. The following properties hold true.

(i) For  u^{*}=u_{1}^{*} , (SWP) has a unique solution  (c, q)=(c_{S}, q_{S}) for each  \mu>0.
(ii) For  u^{*}=u_{3}^{*} , either Case  A or Case  B holds true;
Case  A : (SWP) has a unique solution  (c, q)=(c_{B}, q_{B}) for each  \mu>0,
Case  B : there exists a positive number  \mu^{*} such that (SWP) has a unique solution

 (c, q)=(c_{B}, q_{B}) for each  \mu\in(0, \mu^{*}) , whereas (SWP) has no solution
for  \mu\geq\mu^{*}
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5.1. Asymptotic spreading speed. In this subsection, we discuss the asymptotic
speed of the free boundary for the spreading solution of (FBP).

Theorem 5.2. Let  (u, h) be the solution of (FBP) and let  c_{S},  c_{B} and  \mu^{*} be positive
constants given in Theorem 5.1.

(i) If  (u, h) is a small spreading solution and   \lim\inf_{tarrow\infty}\Vert u(t)\Vert_{C([0,h(t)])}<u_{2}^{*},
then

  \lim_{tarrow\infty}\frac{h(t)}{t}=c_{S}.
(ii) If  (u, h) is a big spreading solution and (SWP) has a unique solution, then

  \lim_{tarrow\infty}\frac{h(t)}{t}=c_{B},
and, if (SWP) has no solution, then

  \lim_{tarrow\infty}\frac{h(t)}{t}=c_{S}.
We can prove this theorem in the same way as [11, Theorem 2]. See also [13,

Theorem 4.2].

5.2. Asymptotic profiles of solutions. We will show sharp estimates of spread‐
ing speed and profile to each spreading solution for  h(t)/2\leq x\leq h(t) . (See [11,
Theorems 3, 5 and 6].)

Theorem 5.3. Let  (u, h) be any small spreading solution of (FBP) satisfying
  \lim\inf_{tarrow\infty}\Vert u(t)\Vert_{C([0,h(t)])}<u_{2}^{*} . Then there exists a constant  H_{S}\in \mathbb{R} such that

  \lim_{tarrow\infty}(h(t)-c_{S}t)=H_{S} and   \lim_{tarrow\infty}h'(t)=c_{S}.
Moreover, it holds that

  \lim \sup |u(t, x)-q_{S}(h(t)-x)|=0.
 tarrow\infty_{h(t)/2\leq x\leq h(t)}

Here  (c_{S}, q_{S}) is a unique solution of (SWP) with  u^{*}=u_{1}^{*}.

Theorem 5.4. Let  (u, h) be any big spreading solution of (FBP) and assume that
(SWP) with  u^{*}=u_{3}^{*} has a unique solution  (c_{B}, q_{B}) . Then there exists a constant
 H_{B}\in \mathbb{R} such that

  \lim_{tarrow\infty}(h(t)-c_{B}t)=H_{B} and   \lim_{tarrow\infty}h'(t)=c_{B}.
Moreover, it holds that

  \lim \sup |u(t, x)-q_{B}(h(t)-x)|=0.
 tarrow\infty_{h(t)/2\leq x\leq h(t)}

As to an asymptotic estimate in another interval containing  x=0 , we get the
convergence to the stationary solutions.

Theorem 5.5. Let  (u, h) be any small spreading solution of (FBP) satisfying
  \lim\inf_{tarrow\infty}\Vert u(t)\Vert_{C([0,h(t)])}<u_{2}^{*} . Then for any  c\in(0, c_{S}) , it holds that

  \lim_{tarrow\infty}\sup_{0\leq x\leq ct}|u(t, x)-v_{1}(x)|=0,
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where  v_{1} is the solution of (SP) given in Proposition 3.1. Similarly, let  (u, h) be
any big spreading solution of (FBP) and assume that (SWP) with  u^{*}=u_{3}^{*} has a
unique solution  (c_{B}, q_{B}) . Then for any  c\in(0, c_{B}) , it holds that

  \lim_{tarrow\infty}\sup_{0\leq x\leq ct}|u(t, x)-v_{3}(x)|=0,
where  v_{3} is the solution of (SP) given in Proposition 3.1.

Remark 3. Consider any big spreading solution  (u, h) of (FBP) when (SWP) with
 u^{*}=u_{3}^{*} has no solutions. In this case, the result of [12, Proposition 4.2] implies
that

  \lim_{tarrow}\sup_{\infty}\frac{h(t)}{t}\leq c_{S},
where  c_{S} is a semi‐wave speed of solution  (q_{S}, c_{S}) of (SWP) with  u^{*}=u_{1}^{*} . On the
other hand, Theorem 2.3 implies

  \lim\inf\frac{h(t)}{t}tarrow\infty\geq c_{S}.
Therefore, it holds that

  \lim_{tarrow\infty}\frac{h(t)}{t}=c_{S}.
When we discuss a big spreading solution of (FBP‐N) in the case (SWP) with
 u^{*}=u_{3}^{*} has no solutions, we already know from [12] that it possesses a propagat‐
ing terrace. This is composed of a semi‐wave corresponding to a small spreading
solution and a traveling wave connecting  u_{1}^{*} and  u_{3}^{*} . Therefore we infer that any
big spreading solution of (FBP) also has a similar propagating terrace.
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