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Spreading and vanishing in a free boundary problem for nonlinear
diffusion equations with a given forced moving boundary

Hiroshi Matsuzawa
National Institute of Technology, Numazu College

1 Introduction and Main Results

In this article, based on a recent work [16] with Kaneko, we consider the following free
boundary problem of the nonlinear diffusion equation:

Up = Ugy + f(u), t>0, ct <z <h(t),
u(t, ct) = u(t, h(t)) =0, t>0, (11)
W (t) = —pug(t, h(t)), t>0, '
h(0) = ho, u(0,2) = ug(x), 0 <z < ho,
where f satisfies
f€C", f(0)=0 and there exists K > 0 such that f(u) <0 for u > K. (1.2)

¢, i and hg are given positive constants, so x = ct is a given forced moving boundary with its
speed ¢. Moving boundary = = h(t) is to be determined together with u(¢,z). For any given
ho > 0 and uy € Z (ho), we say a pair (u(t,z),h(t)) a classical solution of (1.1) on time a
time interval [0, T] for some T > 0 if it satisfies uw € CY*(Gr) and h € C1([0,7]) and all the
identities in (1.1) are satisfied pointwise, where

Gr:={(t,z): t€(0,T], = € [ct, h(t)]}.
and

. 2 _ 9(0) = ¢(ho) =0,
2 (ho) = {¢ € 0 hal = iy <0, 6(x) > 0/im (0, ho) }

We study the dynamical behavior of solutions for (1.1) with three types of nonlinear term

f(w):
(fm) monostable case, (fg) bistable case, (fc) combustion case.
In the monostable case (fy), we assume that f is C' and it satisfies
fO)=f(1)=0, f/(0)>0, f/(1) <0, (1 —u)f(u)>0foru>0,u#1.

A typical example of f which satisfies (fy) is f(u) = u(l — u).
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In the bistable case (fg), we assume that f is C! and it satisfies

F0)=£(0) = f(1) =
f(u) <01in (0,0), f(u

for some 6 € (0,1), f/(0) <0, f/(1) < 0and fo s)ds > 0. The function f(u) = u(u—0)(1—u)
with 0 € (07 %) is a typical example of f which satlsﬁes (fB)-
In the combustion case (fc), we assume that f is C! and it satisfies

fw)=0in[0,0], f(u)>0in (0,1), f/(1) <0, f(u) <0in [1,00)

for some 0 € (0,1), and there exists a small dp > 0 such that

0,
)>0in (0,1), f(u) <0in (1,00)

f(u) is nondecreasing in (0,6 + dy).

This model may be used to describe the spreading of a new or invasive species with
population density u(t, x) over one dimensional habitat (ct, h(t)). The free boundary z = h(t)
represents the spreading front. The behavior of the free boundary is determined by the Stefan-
like condition which implies that the population pressure at the free boundary is driving force
of the spreading front. In this model, we impose zero Dirichlet boundary condition at left
moving boundary x = ct. This means that the left boundary of the habitat is a very hostile
environment for the species and that the habitat is eroded away by the left moving boundary
at constant speed c.

Recently, problem (1.1) with ¢ = 0 was studied in pioneer paper [6](in which Neumann
boundary condition is imposed at left fixed boundary « = 0), [14] and [15]. The authors
showed that (1.1) has a unique solution which is defined for all £ > 0 and one of the following
situation happens:

o (vanishing) lim;_,o h(t) = heo < 00 and limy_,o |lu(t, -)||cpon@) = 0

o (spreading) lim;, h(t) = 0o as t — oo and

lim u(t, z) =

1 N iti 3 .
] { eumann condition case locally uniformly on [0, o)
—00

v(x) Dirichlet condition case

where v(z) is a unique positive solution of

{v”—i—f(v):O, z >0,
v(0) = 0,v(c0) = 1.

(except for a non-generic transition case when f is bistable or of combustion type). See also
[7] for the double fronts free boundary problem with monostable, bistable or combustion
type nonlinearity. Moreover, in the case of spreading, it is shown in [6, 7] that there exists
¢ = ¢*(p) > 0 such that lim; ,o(h(t)/t) = ¢*. In this sense, ¢* is called the asymptotic



spreading speed of corresponding free boundary problems. In [7], the authors showed that c*
is determined by the unique solution pair (¢, q) = (c¢*, ¢*) of the following problem

{ q"+cqg+ f(q) =0, z€ (—,0),

4(0) = 0, g(=00) = 1, ¢(0) = /i, 4(2) >0 2 € (~09,0). (13)

Using a simple variation of the techniques in [6], we can see that for any hy > 0 and
up € Z (ho), (1.1) has a unique solution defined on some maximal time interval (0, Tipax)
with maximal existence time T € (0,00] (see (2.1)). The main purpose of this paper is
to study the behavior of solutions to (1.1). When T},,, = 0o, the solution is global and so
we can study its asymptotic behavior. On the other hand, in this problem, T,.x may be a
finite number for the reason that h(t) —ct — 0 ast ,* Thnax, that is the habitat of the species
may shrink to a single point. Such a phenomenon is observed first in free boundary problems
considered by [4, 5]. We concern with the following questions:

(Q1) When the situation that Tr.x < 00 and h(t) — ct — 0 as ¢, Tinax occur?
(Q2) Can the situation that Tyax = 0o and h(t) — ¢t — 0 as t — oo occur?

(Q3) When Tpax < o0 and h(t) — ¢t — 0 as t 7 Tmax, how about the behavior of u as
t " Tax 18 7

(Q4) When Tp,.x = 00, reveal all possible long-time dynamical behavior of the solutions.

When f(u) = u(l — u), this problem was considered in [17]. In [17], it was shown that
for any initial data (ug, ho) with uy € 2 (ho), exactly one of the three behaviours, called
vanishing, spreading and transition, occurs.

The main purpose of this paper is to investigate the dynamical behavior of solutions to
(1.1) with three basic types of nonlinearity, monostable (fu), bistable (fg) and combustion
type (fc). We remark that some approaches in [17] come from [11] and heavily rely on the
special form of the logistic nonlinearity. For our purpose, we have to take a quite different
approach. In particular, we use approaches employed in [9, 7], which are investigations of
w-limit set of the solution to the problem considered in a moving frame with its speed c.

Now we state our main theorems. First theorem is a trichotomy result for the case
0<e<c.

Theorem A. Suppose that f is (fm), (fs) or (fc), 0 < ¢ < ¢* and let (u,h) be the unique
solution of (1.1) on a time interval [0, Tyax) with mazimal existence time Tay. Then exactly
one of the following happens:

(1) Vanishing: Th.x < 00, limg »q,,. (h(t) — ct) =0 and

lim { max u(t,x)}_o

t/ Tmax | @€lct,h(t)]
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(2) Spreading: Ty, = 00, limy_,o(h(t)/t) = c* and

tlim u(t, ct + z) = ¢%(2) uniformly in any compact subset of [0, 00),
—00

where ¢° is a unique solution to

{ " et + f(0) =0, ¢(2) >0, z € (0,00), (1.4)
?(0) =0, ¢(c0) =1, z € (0,00). '

Moreover for any small € > 0

t—oo | z€[(cte)t,

lim { max lu(t,z) — 1|} =0. (1.5)
c*—e)t
(3) Transition: Tr.x = 00, limyeo(h(t) — ct) = L. and

lim { max |u(t,z) — Va(w — h(t) + LC)\} —0,

t—oo | z€lct,h(t)]
where L. > 0 and V. are determined uniquely by the problem

V'+eV + f(V)=0, V(2) >0 for z€(0,L),
{ V(0)=V(L)=0, —pV'(L) =c.

This theorem means that the classification for the dynamical behavior of solutions to
(1.1) with three basic types of nonlinearity, (fu), (fs) and (fc), can be expressed in a unified
fashion. This result is surprising for us because when ¢ = 0, it was shown in [7] that the
classification of asymptotic behaviors of the solutions strongly depends on the nonlinearity
I

If the initial function ug in (1.1) has the form ug = 0¢ (0 > 0) with some fixed ¢ € 2 (hg),
we can obtain the following sharp threshold result.

Theorem B. Suppose that the initial function ug in (1.1) has the form uy = o¢ with some
fized ¢ € X (ho). Then there exists T € (0, 00] such that vanishing happens when 0 < o < T,
spreading occurs when o > @, and transition occurs when o = &.

When ¢ > ¢*, vanishing always happens.

Theorem C. Assume that ¢* < ¢ and (u, h) is the unique solution of (1.1) on a time interval
[0, Thnax) with mazimal existence time Tyax. Then we have T < 0o and limy g, (h(t) —
ct) = 0 and limy yq,,, maXgeferney u(t, ) = 0.

For the spreading case, the asymptotic profile of the solution over the whole domain will
be obtained in the following theorem.

Theorem D. Assume that f is (fm), (fs) or (fc), 0 < ¢ < ¢* and let (u,h) be the unique
global solution to (1.1). If spreading happens in the sense of Theorem A, then for any ¢ €
(¢, ¢*), the following conclusions hold:
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(1) There exists Hoo € R such that lims o (h(t) — ¢*t) = Hoo;
(2) hnlt—)oo SuPze[ct,Et] |u(t,3:) - @S(l. - Ct)‘ = 07'
(3) Ty o0 SUP e fer ey [u(t, ) — ¢*(x — (1)) = 0;

where ¢° is given in Theorem A, ¢* and c* are determined by the unique solution pair to

(1.3).

2 Basic Results

In this section, I will give some basic results.

2.1 Existence and uniqueness of the solution

Proposition 2.1. Assume that [ satisfies (1.2). For any hg > 0, ug € Z (hy) and a € (0, 1),
there exists T > 0 such that problem (1.1) admit a unique solution (u,h) defined on (0,7
with

we CEH(Dy) N O E (DY), e CE([0,T)),
where Dy := {(t,x) € R? : t € (0,T),x € [ct, h(t)]}. Moreover we have

||U|| Lo + Hh“oH%([o,T]) <C,

1+o¢(D
where C' and T depend only on c, p, ho, o and ||ug||c2jope)-

Proposition 2.2. Assume that f satisfies (1.2) and let (u, h) be any solution of (1.1) defined
on [0, Ty] with some Ty € (0,00). Then the solution satisfies

0<u(t,z) <Cy for 0<t<Tp, ct <z <h(t),
0<h/(t)§/,602 fOT O<t§7—‘07

where Cy and Cy are positive constants independent of Ty. -
Moreover the solution can be extended to some interval [0, T) with T > Tp if infye 0,1 [h (1) —
ct] > 0.

Now for any hg > 0 and ug € 2 (hg), we can define the maximal existence time Tyax €
(0, 00] of solution to (1.1) in the following way:

Tnax := sup{T > 0: (u, h) is the solution to (1.1) on [0,T]}. (2.1)
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2.2 Comparison Principle

In the proof the main theorems, we will frequently construct suitable upper and lower solu-
tions.

Lemma 2.3. Let &, h € C'([0,T]) and w € C(Dy) N C"*(Dy) with Dy = {(t,z) € R?: 0 <
t<T, &(t) <z < h(t)} for T € (0,00) satisfy

U — gy — f(@) >0, 0<t<T, £(t) <a < h(t)
u(t,h(t)) =0, 0<t<T,
R(t) > —pag(t, h(t)), 0<t<T.

For a solution (u,h) to (1.1), if
ot < &), ult,£() <t &) for 0<t<T,
ho < 10), uo(z) <u(0,2) for £(0) <& < ho,
then

h(t) < h(t) for 0<t<T,
u(t,z) <a(t,z) for 0<t <T, &(t) <z < h(t).

Proof. We can prove this lemma by using a few modifications of the proof of [6, Lemma 3.5].
See the proof of [17, Lemma 2.5]. O

The function % or the pair (%, h) in Lemma 2.3 is usually called an upper solution of problem
(1.1). We can define a lower solution by reversing all the inequalities in suitable places.
2.3 Zero number arguments

Our arguments in the present paper rely on the zero number argument that was originally
developed by Angenent [1]. For later use, we give some basic results of the zero number
argument, which is a variant of Theorem C and D in [1]. See also [§].

Lemma 2.4. Let u: [0,T] x [0,1] = R be a bounded classical solution of
ur = alt, ) Uy + 0(t, x)uy + c(t, x)u, (2.2)
with boundary conditions
u(t,0) = lo(t), u(t,1) = h(?),

where ly, I, € CY0,T), and ly and l; satisfies

Li(t)=0 for t€[0,T] or l;(t) #0 for any t € [0,T]
for each i =0,1. Assume that

a,l/a,at, gy, Gy, b,b,0,,c € L) a >0, and u(0,-) Z0 when lo=1; =0.

Let z(t) = Z(u(t,-)) denote the number of zeros of u(t,-) in [0,1]. Then
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(a) for eacht € (0,1, z(t) is finite,
(b) z(t) is nonincreasing in t,
(c) if for some s € (0,T) the function u(s,-) has a degenerate zero xo € [0, 1], that is,
(s, o) = ugz(s, o) =0
holds, then z(ty) > z(ta) for all t; < s < to.
The following variant of zero number result is useful for our problem.

Lemma 2.5. Let &(t) and &(t) be continuous functions of t € (to,t1) and assume that
&(t) < &(t) fort € (to,t1) and that functions a, b and ¢ satisfy same conditions in Lemma
2.4. Suppose that u(t,x) is a continuous function of t € (to,t1) and x € [&1(t),&2(¢)], and
satisfies (2.2) in the classical sense fort € (to,t1) and x € (&(t), & (t)) with

u(t,&(1) £ 0, u(t,&(1) £0 for t € (to. tr).
Let Z(t) = Z(u(t,-)) denote the number of zeros of u(t,-) in [€(t), &2(£)]. Then
(a) for each t € (to,t1), Z(t) is finite,

(b) Z(t) is nonincreasing in t,

(c) if for some s € (to,t1) the function u(s,-) has a degenerate zero xo € (£1(s),&2(s)), that
18,

u(s, ) = ug(s, o) =0,
holds, then Z(s1) > Z(s2) for all s1, sy satisfying to < s1 < s < 83 < t1.
We can find the proof of Lemma 2.5 in [5] and [8].

Remark 1. From the proof of Lemma 2.5(see [8, Lemma 2.2]), it is easily seen that Lemma
2.5 holds for the case where

fl(t) =0 and 52(1‘) >0 for te (to,tl),
§ t):0 for te(to,tl),
76 )#0 te(t()vtl)

We recall basic properties of Z, number of zeros, from [9]. If w,(z) = w(z) as n — oo
pointwisely, then we have

w=0 or Z(w) < liminf Z(w,).

n—oo
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Moreover, if I is a compact interval (e.g. I = [a,b]) and if

w, — w in C*(I) as n — oo,
every zero of w in [ is simple,
w # 0 on the boundary of I or w,(a) = w(a) =0, w'(a) #0, w(b) #0

then

Zi(w) = lim Z(w,), (2.3)

n—o0

where Z; denotes the number of zeros of a function in I.
By a simple modification of the proof of [9, Lemma 2.6], we can show the following lemma.

Lemma 2.6. Let I = [0,1) and let {w,(t,z)} be a sequence of functions and w be a function
defined on (t1,t2) x I which satisfy

o w,(t,x) = w(t,x) ast — oo in C((t1,t2) x I),

o w,(t,0) =0 and w,(t, -) has only simple zero in I,

o w(t,0) =0 and w satisfies (2.2) on (t1,t2) X int1.
If for every t € (t1,t2), w(t,z) # 0 on I and the number of zeros of w on I is finite, then
w(t, - ) has only simple zeros on I.

2.4 Properties of vanishing solutions

In this subsection, we give some properties of the solutions for which vanishing happen. We
assume that f satisfies (1.2) and let (u, h) be a unique solution to (1.1) defined on [0, Tyax)
with maximal existence time Ty, € (0, 00]. Following proof in section 3 of [17] we can obtain
the following proposition.

Proposition 2.7 ([17)). If there exists T € (0,00] such that lim, xp[h(t) — ct] = 0, then
T < co. Moreover u satisfies Hm, ag [lut, -)lleqeaey = 0-

Now we give a sufficient condition for vanishing.

Proposition 2.8 ([17]). There exists a positive number C = C'(ho, ¢) such that if || uol|c(jo,ne]) <
C, then Tyax < 00 and limg ~,,.. (h(t) — ct) = 0.

Finally, by Lemma 2.2, the proof of Proposition 2.7 and Proposition 2.8, we can show the
following proposition(see [17]).

Proposition 2.9 ([17]). Tyax < 0o if and only if limy sz, (h(t) — ct) = 0.



2.5 Stationary solutions

Define v(t, z) := u(t, z + ct) and H.(t) := h(t) — ct. It is clear that (v, H.) satisfies

vy = Uy, + cv, + f(v), t>0, 0<z< H.Lt),
’U(t7 0) = ’U(t, Hc(t)) = 07 t> 07 (2 4)
Hé(t) = 7,U/UZ(t7 HC(t)) ) > 07 .
H:(0) = ho,v(0,2) = up(z), 0<z< hy.
The stationary problem corresponding to (2.4) is the following problem
Ver +cv,+ f(0) =0, 2>0,
v(0) = 0.
We recall the phase plane analysis in [13, 12] for the following equation:
¢"(2) +v4'(2) + f(g) =0, z>0. (2.5)
The above equation is equivalent to the following first order differential system:
q(z)=p
2.6
{ P'(z) = - - fa) (26)

A solution (g(z),p(z)) of the above system generates the trajectory in the ¢g—p phase plane.
Such a trajectory has a slope

d_ 1)
dq P
at any point where p # 0.

For (fm), (fs) and (fc), we are only interested in the case v € (0, cp), where ¢g is the
minimal speed of the traveling wave when f is (fy) or it is the unique speed of the traveling
wave when f is (fg) or (fc)-

When f is (fu), (0,0) and (1,0) are two singular points on the phase plane. For such a
v € (0,¢p), the eigenvalues of the corresponding linearizations at the singular points are

A0
= /2 1'(0) at (0,0),

AP
2
Since f’(0) > 0 and f'(1) < 0, (1,0) is a saddle point, (0,0) is a center when v = 0, or a
focus when 0 < v < ¢p. By phase plane analysis (see [2, 3, 7, 13]), one can easily obtain all
kinds of bounded, nonnegative solution of (2.5).
Consider the following initial value problem for v € (0, ¢g) and « > 0:

"+ + f(6) =0, >0,
{¢m)107dm)—a. (2.7)

By phase plane analysis by [13], we can obtain all kinds of solution ¢ to (2.7).

A, = at (1,0),
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Proposition 2.10. Suppose that f is (fu) and v € (0,c), then there exists ., € (0,00)
such that the solutions ¢ to (2.7) can be classified as follows:

(i) Whena =0, ¢ =} (z) =0 for 2> 0.

(i) For o € (0, ) there exists a unique l(a)) > 0, ¢ is a solution with compact support
(0,1()) (we call such ¢ type $}1), that is

1(0) =0, ¢)'(I(e)) =0, ¢7'(2) > 0 for = € (0,I(a)).

iii en a =y, ¢ is a strictly increasing solution (we call such ¢ type ¢3' ), that is
i) Wh s G trictly j luti Il such ¢ type ¢31), that
2'(0) =0, 93'(c0) = 1 3'(2) > 0, (93)'(2) > 0 for = > 0.
(iv) For a > a., there exists zo > 0 which depends on « such that ¢(zp) > 1 (we call such
¢ as ¢y').

When f is (fg), (0,0), (6,0) and (1,0) are three singular points on the phase plane. The
eigenvalues of the corresponding linearizations at singular point (6,0) is

Since f'(0) <0, f'(d) > 0 and f'(1) <0, (0,0) and (1,0) are saddle points, (,0) is a center
when v = 0, or a focus when 0 < v < 24/f'(6), or node v > 2,/ f(9). It is easily seen that
co < 24/ f'(0). So for ¢ € (0, cp), singular point (6,0) is always focus. Hence one can obtain
all kinds of bounded, nonnegative solution of (2.5).

Consider initial value problem (2.7) for v € (0,¢) and o > 0. By phase plane analysis
by [12], we can obtain all kinds of solution ¢ to (2.7).

Proposition 2.11. Suppose that f is (fg) and v € (0,¢), then there exist a.,, 5, € (0,00)
with B, < a., such that the solutions ¢ to (2.7) can be classified as follows:

(i) When a=0, ¢ = ¢5(2) =0 for z > 0.
(ii) For o € (0,,) ¢ is a solution with 6-tail (we call such ¢ type ¢} ), that is
9P(0) =0, ¢¥(c0) =6, ¢7(2) >0 for 2 >0
(iil) When o = f3,, ¢ is a positive solution on the half-line (we call such ¢ type ¢8), that is

#B(0) =0, ¢B(00) =0, ¢B(2) > 0 for z > 0.

(iv) For o € (B, ), there exists (o) > 0 such that, ¢ is a solution with compact support
(0,1(a)) (we call such ¢ as %), that is

95(0) = @5 (U(a)) = 0, ¢5(2) > 0 for z € (0, 1(a)).



(v) When o = avy, ¢ is a strictly increasing solution (we call such ¢ type ¢¥ ), that is
62(0) = 0, ¢4(00) =1, 65(2) > 0, (67)'(2) > 0 for z > 0.
(vi) For a > a., there exists zy which depends on o such that ¢(z9) > 1 (we call such ¢ type
5 )-
Next consider problem (2.7) for f satisfying (fc).

Proposition 2.12 (Proposition 2.8 in [16]). Suppose that f is (fc) and v € (0,c), then
there exist oy, B, € (0,00) with B, < o, such that the solutions ¢ to (2.7) can be classified
as follows:

(i) Whena =0, ¢ =0 forz>0.
(ii) For o € (0,70, solution ¢ satisfies
#(0) =0, ¢(c0) € (0,0], ¢(2) >0, ¢'(z) >0 for z>0
We call this type solution type ¢S.
(ili) For o € (70, ), there exists m(a) > 0 such that ¢ satisfies

#(0) =0, ¢(c0) € (0,0), ¢(z) >0 for z>0 and
¢'(2) >0 for z € (0,m()), ¢'(m(a)) =0, ¢'(z) <0 forz € (m(a),o0).

We call this type solution type ¢S.
(iv) When a = B, ¢ satisfies
0, ¢(2) >0 for z > 0.

2
(=}
L
I
e
<
2
8
I

We call this type solution type ¢S.

(v) For a € (By, ) there exists () > 0 such that, ¢ is a solution with compact support
(0,1(cx)), that is

#(0) = ¢(l(a)) =0, ¢(2) >0 for z € (0,1()).
We call such ¢ type ¢5.
(vi) When a = o, ¢ is a strictly increasing solution, that is
#(0) =0, ¢(c0) =1, ¢(2) >0, ¢'(2) >0 for z > 0.
We call such ¢ type ¢S.

(vil) When a > «,, there exists zg > 0 which depends on o such that $(z) > 1. We call
such ¢ type ¢ .
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In what follows, we use notation qzbj(z) (i=M, B, C, j € N) to express one of the type
@; solutions of (2.7).

To obtain (1.5) in Theorem A, we will construct a lower solution. For the construction
of the lower solution we prepare the following lemma which is easily obtained by a simple

phase plane argument.
Lemma 2.13. Suppose that f is (fm), (fs) or (fc) and v € (0,¢p).

(1) When f is (fm), for any @ € (0, 1), there exist a unique o € (0, vy), a unique z(7, Q) > 0
and a solution to (2.7) of type $\' such that

A'(2(1,Q)) = Q, (#))(2(+,Q)) =0

(2) When fis (fs) or (fc), there exists Qo € (0,1) such that the following holds. For each
Q € (Qo,1), there exist o € (B, ), a unique positive number z(,Q) > 0 and the
solution to (2.7) of type ¢8 or type ¢S, respectively, such that

05 (2(7,Q)) = Q. (¢5)'(2(1,Q)) =0 when f is (fp),
05 (2(7,Q)) = Q. (65)'(2(7,Q)) =0 when [ is (fc).

Now we introduce the following notation:

¢5'(2)  (when fis (fu)),
¢°(2) = ¢°(z;7) =< ¢¥(z) (when fis (fz)), (2.8)
¢S(z)  (when fis (fc)),
O'(z)  (when fis (fu)),
q(z;¢,Q) =4 ¢5(z) (when fis (f)), (2.9)
¢$(2)  (when fis (fo))

where oM, ¢85 and ¢ above are functions which are uniquely determined for each Q in Lemma
2.13.

2.6 Traveling waves

To investigate global solutions we introduce semi-wave and compact supported traveling
wave.
First we consider the following problem

q” + '7(]/ + f(q) =0in (—OO, O)a (2 10)

q(0) =0, ¢g(—o0) =1, g(2) > 0 in (—o0,0). ‘
Proposition 2.14 (Proposition 1.8 and Theorem 6.2 of [7]). Suppose that f is (fum), (fB) or
(fc). For any pn > 0 there exists a unique ¢* = ¢*(p) > 0 such that (2.10) with v = ¢* admits
a unique solution ¢* satisfying (¢*)'(0) = —c*/ .



We remark that this function ¢* is shown in [7] to satisfy (¢*)'(z) < 0 for z < 0.
We call ¢* a semi-wave with speed c*, since the function w(t, x) := ¢*(z — ¢*t) satisfies

Wy = Wy + f(w) for t €RY, x < c*t,
w(t, c't) =0, wy(t,ct) = —c*/u, w(t,—oc) =1, t€RL

We give a result for a wave of finite length which is needed to construct a lower solution to
obtain (1.5) in Theorem A. Consider the following problem:

{ 4" +74 + f(g) = 0 for z <0,
9(0) =0, ¢'(0) = —c*/p.

Lemma 2.15 ([7]). Suppose that f is (fu), (fs) or (fc). For any v € (0,¢*) and p > 0,
there exists a unique z*(y) > 0 such that solution q, to (2.11) satisfies

(2.11)

¢, (=2"(7)) =0, ¢'(2) <0 for z € (=2"(7),0].
Moreover limy, s« 2*(7) = 00, limy sex gy (—2*(7)) = 1.
We set
Q= 1 (~" (7). (2.12)

Finally we introduce the compact supported traveling wave. We consider the following
problem:

{ " + ¢ + f(¢) =0, z<0,
#(0) =0, ¢'(0) = —a

By virtue of a phase-plane analysis, for any v € (0, ¢p) there exists P(v) > 0 such that

(2.13)

e For a € (0, P(7)), there exists L,(c) > 0 such that the solution ¢ to (2.13) satisfies
$(~La() = 6(0) = 0, 6() > 0 for = € (~Ly(a),0).
e For o = P(7), the solution ¢ to (2.13) satisfies

d(—o0) =1, ¢(0) =0, ¢(z) >0, ¢'(z) <0 for z € (—0,0).

By [7, 13, 12], it was shown that P(y) is a continuous, monotone decreasing function of
~v. We note that ¢* is a unique solution to P(7y) = 7/u. Thus for any ¢ € (0,c¢*) we have
0<c/u< P(c).

So there exists unique solution ¢ to the following problem:

{ ¢ +cd' + f(d) =0, —L(c/pn) <z<0.
O(=Le(c/p)) = 6(0) =0, ¢'(0) = —c/p, ¢(2) >0 for z € (=Le(c/p),0).

Set L. = L.(c¢/p) and V.(z) = ¢(z — L.). Now we obtain the following lemma.
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Lemma 2.16 ([13, 12]). Suppose that f is (fu), (f) or (fc). For any > 0 and ¢ € (0, c*),
there exist a unique constant L, > 0 and a unique V, € C2([0, L.]) such that

Vé, =+ CVé + f(vc) = 07 VC >0 for 2z € (07L0)7
Vc(o) = VC(LC) = O, 7/1,V/(Lc) = C.

Moreover when f is (fg) or (fc), V. satisfies max.cjo, 1) Vo(2) > 6.
If we define function w(t, ) := V.(z — ct), w satisfies

Wy = Wy + f(w) for t€RY ct <z <ct+ L,
w(t,ct) = w(t,ct + L) =0, teR,
—pwg(t,ct + L) =c, t € RL

and w resemble a traveling wave with a compact support moving to the right at constant
speed c.

3 Proof of Theorem A

In this paper we only give a sketch of proof of Theorem A. For the proof of Theorems B, C
and D, please see [16].

Throughout this subsection, we assume that f is (fu), (fs) or (fc), ¢ € (0,¢*) and (u, h)
is a unique solution to (1.1) defined for all ¢ > 0.

We begin with an upper estimate which is easily given by a simple comparison argument.

Lemma 3.1. Suppose that (u, h) be a solution to (1.1) defined for any t > 0. Then for any
§ € (0,—f(1)) there exists My > 0 such that u(t,x) < 1+ Moe % fort >0 and x € [ct, h(t)].

Proof. See the proof of [17, Lemma 2.3] or [7, Lemma 6.5(iii)]. O
We next give an important lemma to show Theorem A.

Lemma 3.2. If h(t) — ct is unbounded function, then lim,_,.(h(t) — ct) = co. Moreover for
any | > 0, there exists T; > 0 such that

ult,x) > Velx —ct —1) for t>T, ct+l<z<ct+1+ L.
where V, is the function determined by Lemma 2.16.
Proof. See [11, Lemma 3.2] or [17, Lemma 4.2]. O
Note that if we define
z=x—ct, v(t,z) =u(t,z+ ct), H.(t) = h(t) — ct.

(v, H.) satisfies (2.4). We first assume that H.(¢) is unbounded. By Lemma 3.2, we have
limy 00 H.(t) = 0.



We will introduce a notion of w-limit set as in [9] and [7]. Denote by w(v) the w-limit set
of v(t, -) in the topology of L2 ([0,00)). Then a function w(z) belongs to w(v) if and only if

loc

there exists a sequence {t,} with 0 <t; <ty <--- <t, <.+ — 00 as n — oo such that

nlgilo V(ty, z) = w(z) locally uniformly in [0, c0). (3.1)
It is easy to see that, when f is of (fum), (f8) or (fc), w(v) is not empty. By local parabolic
estimates, we see that the convergence (3.1) implies that in the CZ ([0, 00)) topology. Thus
the definition of w(v) remains unchanged if the topology of L{® ([0, 00)) is replaced by that
of C2,([0, ).

It is well-known that w(v) is compact and connected, and it is an invariant set. This
means that for any w € w(v), there exists an entire orbit(namely a solution of W, = W, +
W, + f(W) defined for all t € R and z € [0, 00)) passing through w.

Choosing a suitable sequence {t,} with 0 < t; <ty < --- <, < --- — 00, we can find
such an entire solution W (¢, z) as follows:

v(t +tn,2) = W(t,z) as n— oo. (3.2)

Here the convergence is understood in the L (R x [0, 00)) sense, but by parabolic regularity,
it is taken place in C\v?(R x [0, 00)).
By Lemma 3.1 and (3.1), we find that for w € w(v),

0<w(z) <1 for z€]0,00). (3.3)
Moreover, since v > 0 and W satisfies

Wy=W_.,+cW,+ f(W), teR,z>0,
W (t,0) =0, teR,
W (0, z) = w(z), z>0

and W > 0, by the strong maximum principle, we deduce either W (t,z) > 0 for all t € R!
and z € (0,00) or W = 0. In the former case, w > 0 for z € (0,00), while in the latter case
w = 0.

Proposition 3.3. If lim; ., H.(t) = oo, then w(v) = {¢°}, where ¢° is defined in (2.8).

Proof. Take any w € w(w). Then there exists a sequence {¢,} with lim, ¢, = oo such
that v(t,, -) = w as n — oo in L2 (R). Consider the following problem

" +cd' + fg) =0, 2> 0,
{ #(0) =0, ¢'(0) = w'(0) > 0. (3.4)

We only give the proof for the case where f is (fy). From (3.3), it is easily seen that
type ¢3! solution of (3.4) does belong to w(v). We also obtain that type ¢}! solution is not
an element of w(v) since w(z) > 0 for z € (0, 00) for any nonzero w € w(v).
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(i) We will prove w'(0) < a.. Otherwise w'(0) > a.. Then, from Proposition 2.10,
solution ¢ of (3.4) is type ¢3. Take [ > 0 satisfying ¢}1(I) > 1 and set I = [0,1). Since

v(t,0) = #31(0) = 0 for t >0,
v(t,1) — 3(1) # 0 for sufficiently large ¢.

We can apply Lemma 2.5 and Remark 1 to obtain
Zr(v(t, -) — ") < oo for sufficiently large ¢.

We may assume that all zeros on I of v(t, - ) — ¢3! are nondegenerate since degenerate zeros
appear at finitely many time moment by Lemma 2.5 in this case, and so

Zi(v(tn, ) — ¢5') < o0
for sufficiently large n and all zeros are nondegenerate. By Lemma 2.6 we can conclude that
w=¢} on I, or w— ¢} has only simple zeros on I.

However w — ¢3! has degenerate zero at z = 0. Therefore w = ¢3!, contradicting ¢3! ¢ w(v).
Thus w'(0) < «..

(ii) We next suppose that 0 < w’(0) < .. Then, from Proposition 2.10, solution ¢ of
(3.4) is type @M defined on [0,1(w’(0))]. Set I = [0,1(w'(0))]. By a similar argument to (i),
we can conclude that

w= 11\{ on [, or w— (;511\/[ has only simple zeros on I.
H M b d ’ = 0. Theref = oM dicti M
owever w— ¢} has a degenerate zero at z = 0. Therefore w = ¢}, contradicting ¢} ¢ w(v).

Thus w'(0) ¢ (0, c).

(iii) We next assume that w'(0) = 0. Then solution of (3.4) is identical with 0. If w # 0,
from the arguments above Proposition 3.3, we have W (t,2) > 0 for t € R!, z € (0, 00). Then
by the Hopf Lemma, we can see that W, (¢,0) > 0 and then w'(0) > 0. This is a contradiction.
Hence w = 0.

(iv) Finally we assume that w'(0) = a.. Then solution ¢ of (3.4) is type ¢3!l Set
I, = [0, H.(t)]. Since

v(t,0) — $31(0) =0 for ¢t > 0,
o(t, Ho(t)) — ¢y (Ho(t)) # 0 fort >0,

we can apply Lemma 2.5 and Remark 1 to obtain that
Zp,(v(t, -) — ¢¥") < oo for sufficiently large ¢.
and all zeros are nondegenerate, and then

25, ((ty, -) — ¢3') < oo for sufficiently large n,

)_ M

all zeros of v(t,, - 5 are nondegenerate.



Since limy_,o, H(t) = oo, for any L > 0, (3.5) is valid if we replace interval I, by I =[0,L).
By Lemma 2.6 we can conclude that

w=¢y on I, or w— ¢3' has only simple zeros on I.

However w — ¢3! has degenerate zero at z = 0. Therefore w = ¢}l

By summarizing arguments in (i)-(iv) we can conclude that w(v) = {¢5'} = {¢°}, or
w(v) = {0} because w(v) must be connected in CZ_ topology. However by Lemma 3.2,
we can show that 0 can not be in w(v) since for any [ > 0 there exists 7; > 0 such that
v(t,z) > V.(z —1) for t > T; and z € [I,] + L.]. Therefore w(v) = {¢3'} = {¢°}. O

Proposition 3.4. If lim; .o He(t) = 00, then lim;ov(t,2) = ¢°(2) uniformly on any
compact subset of [0,00).

Proof. Take any sequence {t,} with lim,,_, t,, = co and define H, ,,(t) = H.(t+t,), v, (L, 2) =
v(t +t,,z). Then v, and H.,, satisfy

v, 0%v, Ov

= +c<‘97n + f(vn), t>—t,, 0<z< H.p(t), (3.6)

ot
Un(t,0) = v, (t, He o (8) =0, ¢ > —t,,.

Since ||vn||z~ are uniformly bounded in n, we can apply standard parabolic LP estimate,
Sobolev embedding and Schauder estimate to (3.6) to find that for any a € (0,1), there
exists a subsequence {f,} of {t,} and a function & € C'*2***(R x [0,00)) such that

%,2+a(

vn—H}asn—>ooinC’11;CL R x [0,0))

along the subsequence. Then v satisfies
O =y + €0, + f(0), t €R, 2z € ]0,00).
In particular,
0, (0, ) = v(ty, -) = (0, -) in CE.([0,00)) asn — oo.

By the definition of w(v), we obtain (0, z) = ¢°(2) for all z € [0, 00).

Now we have shown that for any sequence {t,} with lim, . t, = oo, there exists a
subsequence {t,} of {t,} such that v(Z,, -) = ¢° in C2_([0,0)). Since the limit ¢ does not
depend on the subsequence, we can conclude the desired convergence as in the statement of
the proposition. O

We next investigate the asymptotic spreading speed of h(t) for the global-in-time solu-
tions. By constructing an upper solution of the form
h(t) == ct+ M(e™T — e + H,
a(t,x) = (L + Me™*)q"(z — h(t)),

with suitable M, 0, H and T' > 0 as in [10, Lemma 3.2] we can obtain an upper estimate of

h(t).
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Lemma 3.5. Let (u,h) be a global solution to (1.1). Then there exists Cq > 0 such that
h(t) — c*t < Cy fort > 0.

Lemma 3.6. If H.(t) is unbounded, lim; ,o(h(t)/t) = c¢*.
Proof. By Lemma 3.5, we have

h(t
lim sup Q <c*
t—o0 t
Hence we will show
t
lim inf —) > c*
t—00 t

Take € > 0 so small that ¢ < ¢* —¢ holds. Then by Lemma 2.16, there exists a unique positive
number L._. such that the following problem has a unique positive solution V = V.- _.:

V4 (cr=e)V+f(V)=0, z€ (0, L),
V(0) = V(Le—2) =0,
— V' (Ler—e) = ¢ — €.

Take 6 > 0 small so that

0<d<1l— max Ve_.(2)
2€[0,Lex ]

holds. Then there exists a positive number K. 5 > 0 such that
s
K.5) = Ver_e 0,
¢ (Keg) = max (Verel2) +

¢%(z) > max Ve .(2)+6 for 2> K_;.
2€[0,Lcx_.]

Since limy o, H.(t) = oo, by Proposition 3.4, we can choose T" = T, 5 > 0 such that
MT) > T+ K. 5+ L. and

#°(2) =5 <w(T,2) < ¢°(2) +6 for 2 € [K. 5, K. 5+ Lo ). (3.7)
From (3.7) we have
Ve_e(2) <0(T,2) for z € [K.5,Kes+ Lev—c),
that is,
Ver—e(w — cT) <u(T,z) for z € [K.5+ T, K. 5+ Lo + 1.
Let

Et) =Kes+cT+ (" —e)(t—T),
E(tPT) = VC*,E(I - Ks,é —cT — (C* - 8)(t - T)) = Vc*fe(x - 5(0)7
h(t) =K.+ Leo—e + T+ (¢ =€)t —=T) =&(t) + Ler—e.



It is easy to check that

= Uy, + f(u), t>T, &) <z <h?),
t =0, t>1T,

and

I(T) < h(T),
u(T,z) < u(T,x), &(T) <z < h(T),
ct <&(t), t>T,

u(t,€(t)) =0 < u(t,£(t)), t > T,

that is, (u, h) is a lower solution to (1.1). Hence Lemma 2.3 gives

u(t,z) <wu(t,z), t >T, £(1t) <z < h(t),
h(t) < h(t), t>T.

Therefore we obtain

¢ —¢e=lim @ < liminf@.
t—oo t—s00
Letting ¢ — 0 we have
¢ < liminf @
t—o0 t
The proof has been completed. O

Proposition 3.7. If lim; H.(t) = oo, then for any € > 0, there exists M > 0, § €
(0,=f"(1)) and T > 0 such that

sup lu(t,z) — 1| < Me * for t>T.
z€[(c+e)t,(c* —e)t]

In particular, for e >0,

lim sup lu(t,z) — 1] = 0.

1200 pc((cte)t, (c*—e)t]
Proof. See the proof of Proposition 3.10 in [16]. O

We next consider the case where sup,., H.(t) < oo for global solution (u, k). Following
the proof of Lemma 4.5, Proposition 4.6 and Theorem 4.10 in [17], we can obtain the following
proposition.
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Proposition 3.8. If H.(t) is bounded, then lim; o, H.(t) = L. and

lim { sup |u(t,z) — Vo(x — h(t) + LC)|} =0. (3.8)

t=00 | ze[et,h(t))
Now I will give the proof of Theorem A.

Proof of Theorem A. Suppose that Tp,.x < co. From Proposition 2.9 and Lemma 2.7 we
have
li h(t) —ct) = li t, - . =0.
Jim (h(t) —et) =0, im Jlu(t, )legenon =0
This means that when Ty, < 0o, vanishing happens in Theorem A.

We next suppose that T = 0o, If He(t) := h(t) — ¢t is unbounded function on [0, 00),
then by Propositions 3.4 and 3.6 we have

lim u(t, z + ct) = lim v(t, 2) = ¢%(2) locally uniformly on [0, c0),
t—o0 t—o0

lim @ =c".
t—oo

Moreover by Proposition 3.7 we have for any small € > 0

lim sup lu(t,z) — 1] = 0.
t=00 pe[(cte)t,(c*—e)t]
This means that if Tyyax = 0o and H.(t) is unbounded function, then spreading happens in
Theorem A.
Finally we assume that Tyax = oo and H.(t) is bounded function on [0, 00). By Proposi-
tion 3.8 we have that

lim (h(t) — ct) = lim H(t) = Le,
—00

t—o00
lim sup |u(ta (L’) - Vc(x - h(t) + Lc)| = Oa
t=00 | gelet,h(t))

where L, > 0 and )V, are determined in Lemma 2.16.

This means that if Th,.x = 0o and H,(t) is unbounded function, then transition happens
in Theorem A.

Therefore we have shown that for any initial data (ug, ho) exactly one of the situations,
vanishing, spreading and transition, happens for the unique solution (u, k) to (1.1).

The proof of Theorem A has completed. O
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