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1. Introduction

This is a brief introduction to the numerical methods for evolving spirals having several
centers by the crystalline eikonal‐curvature flow.

An anisotropic curvature of a curve \Gamma , which is denoted by  H_{\gamma} , is defined by the
changing ratio of an anisotropic perimeter functional

  E_{\gamma}( \Gamma)=\int_{\Gamma}\gamma_{0}(-n)d\sigma (1.1)
with a density function  \gamma_{0}:\mathbb{S}^{1}arrow(0, \infty) . Here,  n\in S^{1} is a continuous normal vector field
of  \Gamma denoting the orientation of  \Gamma . It is well‐known that, if  \gamma(p)=|p|\gamma_{0}(p/|p|) is smooth
on  \mathbb{R}^{2}\backslash \{0\} and strictly convex, then the Wulff shape  \mathcal{W}_{\gamma} defined by

 \mathcal{W}_{\gamma}=\{p\in \mathbb{R}^{2};\gamma^{\circ}(p)\leq 1\} (1.2)

has a boundary  \partial \mathcal{W}_{\gamma} with constant anisotropic curvature, where   \gamma^{\circ}(p)=\sup\{p\cdot q;\gamma(q)\leq
 1\} is the support function of  \gamma . In fact, if the normal vector for the calculation of the
curvature is oriented to the interior of  \mathcal{W}_{\gamma} , then  H_{\gamma}=1 on  \partial \mathcal{W}_{\gamma} ; see [4] or [7] for details.
We say  H_{\gamma} is the crystalline curvature if  \mathcal{W}_{\gamma} is a convex polygon. Since  \gamma^{\circ} is positively
homogeneous of degree 1, we here assume that  \gamma^{\circ}(p) is a convex and piecewise linear
function, i.e.,

  \gamma^{\circ}(p)=\sup_{0\leq j\leq N_{\gamma}-1}m_{j}\cdot p
for  m_{j}\in \mathbb{R}^{2} , where  N_{\gamma}\geq 3 is a number of the facets of  \mathcal{W}_{\gamma} . In this case, one can find that
 \gamma=(\gamma^{\circ})^{\circ} is also a convex and piecewise linear function by the convex analysis provided
that  \gamma is convex. By the context of the above argument, we here impose the followings.

(A1)  \gamma:\mathbb{R}^{2}arrow[0, \infty) is convex,

(A2)  \gamma is positively homogeneous of degree 1,

(A3)  \gamma>0 on  \mathbb{S}^{1},

(A4)  \gamma is piecewise linear.
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See also [18] or [19] for the fundamental results from convex analysis used in the above.
Under these settiings, we consider the evolving spirals  \Gamma_{t} by the crystalline eikonal‐

curvature flow with driving force of the form

 V_{\gamma}=-\rho_{c}H_{\gamma}+f , (1.3)

where  \rho_{c}>0 is a constant, and  f denotes the driving force of the evolution. Note that
the normal velocity  V_{\gamma} is calculated with the Finsler metric

 d_{\gamma}(x, y)=\gamma^{\circ}(x-y)

so that  \Gamma_{t} can be evolved as polygonal spirals having parallel facets with those of  \mathcal{W}_{\gamma}.
There are some pioneering works by a discrete model by the evolution of facet length

due to [3, 20], which is extended to the motion of a spiral by [8, 9]. However, the evolving
spirals having several centers may merge with each other, which causes singularities on the
curves. Then, it is quite natural to introduce an implicit formulation of evolving curves,
which is, for example, level set method due to [17]. However, such a PDE approach with
assumption (A4) includes  L^{1} type regularization, namely, singular and nonlocal diffusion.
To overcome this difficulty, the variational approach due to [2] is one of powerful options;
see [1] for the variational approach to the crystalline curvature motion. Chambolle [6]
introduced an algorithm combining the variational approach and the level set method
using signed distance function. Oberman, Osher, Takei and Tsai [13] proposed an iterative
method to calculate Chambolle’s algorithm, which is based on Bregman method [5].

The aim of this paper is to extend the numerical method due to [13] to the evolution
of spirals by (1.3). The crucial difficulty of our problem lies into the fact that a spiral
curve does not divide the domain into two regions. This issue seems to be the same as
the level set method for spirals, which is overcome by [14]. However, even if we use the
idea of the sheet structure function due to [11, 14], discontinuity of the signed distance
function still remains. To overcome this issue, we introduce an idea to use a general level
set function instead of the signed distance function. Note that the idea in this paper is
the revised version of that introduced in [15].

2. Proposed Algorithm

In this section we propose a minimizing movement approach for evolving spirals by (1.3).
We first review the algorithm by [6] briefly. Let  \Omega\subset \mathbb{R}^{n} be a domain, and an interface

 \Gamma\subset\Omega be given. Let  d:\Omegaarrow \mathbb{R} be a signed distance function from  \Gamma , which is positive
inside of  \Gamma . We also impose that the normal velocity of  \Gamma is positive when  \Gamma evolves to
the region where  d<0 . Then, consider the minimizer  w^{*} of the functional

 E(w)= \int_{\Omega}\gamma(\nabla w)dx+\frac{1}{2h}\Vert w-d\Vert_{L^{2}}^{2}.
Then,  w^{*} formally satisfies

 - div[D\gamma(\nabla w^{*})]+\frac{w^{*}-d}{h}=0,
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which implies

 \Gamma_{h} :=\{x\in\Omega;w^{*}(x)=0\}=\{x\in\Omega;d(x)=-hdiv[D\gamma(\nabla 
w^{*}(x))]\}.

Note that  -div[D\gamma(Vw^{*})] denotes an anisotropic curvature of level set of  w^{*} with an
anisotropic energy density  \gamma (see [7]). Hence, one can regard  \Gamma_{h} as the evolution of  \Gamma by
 V=-H_{\gamma} in a short time interval  [0, h].

When we apply this idea to the evolution of spirals, the crucial difficulty lies in the fact
that spiral curve does not divide the domain into two regions, which causes not only the
inconsistency between the inside and outside of the spiral, but also the discontinuity of
the distance function on far away region from the spiral. To overcome these difficulty, we
here propose an approach using general level set function instead of the signed distance.

2.1. Level set method for evolving spirals

We first review the level set method for evolving spirals due to [14] and its evolution
equation for an anisotropic mean curvature flow with driving force.

Let  \Omega\subset \mathbb{R}^{2} be a bounded domain with smooth boundary. We denote the centers
of spirals by  a_{1},  a_{2},   a_{N}\in\Omega . We choose  r>0 satisfying   B_{r}(a_{i})\cap B_{r}(a_{j})=\emptyset if
 i\neq j , and   B_{r}(a_{j})\subset\Omega so that  W  := \Omega\backslash \bigcup_{j=1}^{N}\overline{B_{r}(a_{j})} has smooth boundary, where

 B_{r}(a)=\{x\in \mathbb{R}^{2};|x-a|<r\} for  r>0 and  a\in \mathbb{R}^{2} . Let  m_{j}\in \mathbb{Z} be a signed number of
spirals associated with  a_{j} . It means that

 \bullet  |m_{j}| curves are attached to  a_{j} as their endpoint,

 \bullet if  m_{j}>0 (resp.  m_{j}<0 ), then these curves rotates around  a_{j} with counterclockwise
(resp. clockwise) rotation provided that  V>0.

See [14] for the details of the definition of the signed number of spirals. In this paper,
we call the union of spiral curves associated with  a_{\dot{j}} for  j=1,2,  N as “spirals” or  a

spiral pattern” interchangeably.
To describe the spirals with level set formulation, we introduce a pre‐determined func‐

tion  \theta due to Kobayashi [11, 12]; define

  \theta(x)=\sum_{j=1}^{N}m_{j}\arg(x-a_{j}) .

Let  \Gamma_{t}\subset\overline{W} be a spiral pattern at time  t\geq 0 , and  n\in \mathbb{S}^{1} be a continuous unit normal
vector field of  \Gamma_{t} denoting the orientation of the evolution of  \Gamma_{t} . Then, we describe  \Gamma_{t}

and  n by

  \Gamma_{t}=\{x\in\overline{W};u(t, x)-\theta(x)\equiv 0 mod 2\pi \mathbb{Z}\},
n=-\frac{\nabla(u-\theta)}{|\nabla(u-\theta)|}.
Here and hereafter, we write the above shortly as  \Gamma_{t}=\{u(t)-\theta\equiv 0\} . Note that  \theta should
be a multi‐valued function to describe the spirals completely. However,  \nabla\theta is defined as
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a single‐valued function. Therefore, we observe that  \Gamma_{t} is locally given as a usual level set
formulation by   u-\theta , and then we find

 H_{\gamma}=-divD\gamma(\nabla(u-\theta)) .

On the normal velocity of  \Gamma_{t} , we impose that the normal velocity of  \Gamma_{t} should be calculated
with the metric derived by  \gamma , so that  \Gamma_{t} should be evolved with the polygonal spiral curve
having parallel facets between those of  \mathcal{W}_{\gamma} . Then, we have

 V_{\gamma}= \frac{u_{t}}{\gamma(\nabla(u-\theta))}.
Hence, we obtain the level set equation of (1.3) as

 u_{t}-\gamma(\nabla(u-\theta))\{\rho_{c}div[D\gamma(V(u-\theta))]+f\}=0 in  (0, T)\cross W. (2.1)

2.2. Without distance function scheme

We propose a numerical method to calculate (2.1) due to the minimizing movement ap‐
proach with a general level set function.

Consider the situation that a spiral pattern denoted by  \Gamma\subset\overline{W} is given by the level
set formulation

 \Gamma=\{x\in\overline{W};u(x)-\theta(x)\equiv 0 mod 2\pi \mathbb{Z}\}

with  u\in C(\overline{W}) . Note that  u possibly is not the signed distance function. Let us consider
the minimizer  w^{*} of

 E(w;u)= \int_{W}\rho_{c}\gamma(\nabla(w-\theta))dx-\int_{W}fwdx+\frac{1}{2h}
\Vert\frac{w-u}{\gamma(\nabla(u-\theta))}\Vert_{L^{2}}^{2}
Then,  w^{*} should satisfy

 w^{*}=u+h\gamma(\nabla(u-\theta))\{\rho_{c}div[D\gamma(\nabla(w^{*}-\theta))]+f
\}

with a suitable boundary condition. We now focus on the analogy between the above and
the implicit finite difference scheme of (2.1), i.e.,

 u(t+h)\approx u(t)+h\gamma(\nabla(u-\theta))\{\rho_{c}div[D\gamma(\nabla(u-
\theta))]+f\}.

Accordingly, we regard

 S_{h}(\Gamma):=\{x\in\overline{W};w^{*}-\theta\equiv 0 mod 2\pi \mathbb{Z}\}

as the result of the evolution of  \Gamma by (1.3) in a short time span  h>0 . Hence, for
every given time  t>0 and the initial spiral patterm  \Gamma_{0} , we obtain the solution  \Gamma_{t} of the
evolution of spirals by (1.3) by  \Gamma_{t}=S_{h}^{[t/h]}(\Gamma_{0}) , where  [a] is the Gaussian bracket of  a\in \mathbb{R}.
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3. Split Bregman iteration

Our proposed method includes the problem finding the minimizer  w^{*} of an energy func‐
tional of the form

 E(w;g)= \int_{W}\rho_{c}\gamma(\nabla(w-\theta))dx-\int_{W}fwdx+\frac{1}{2h}
\Vert\frac{w-g}{V}\Vert_{L}^{2},
for  f,  g\in L^{2}(W) and  \psi:\overline{W}arrow \mathbb{R} satisfying  \varphi/\psi\in L^{2}(W) for  \varphi\in L^{2}(W) . In this section,
we give a brief introduction to the split Bregman iteration to solve the above problem,
which is due to [13].

3.1. Review: Bregman method

We first describe the split Bregman method due to [13] briefly.
The key idea to find  w^{*} is to interpret the problem to the following constraint mini‐

mization problem: find a minimizer  (w^{*}, d^{*}) of

 F(w, d;g) := \int_{W}\rho_{c}\gamma(d-\nabla\theta)dx-\int_{W}fwdx+\frac{1}{2h}
\Vert\frac{w-g}{\psi}\Vert_{L^{2}}^{2}
subject to  d=\nabla w.

For this problem, we introduce a functional with penalty term:

 F_{\mu}(w, d;g) :=F(w, d;g)+ \frac{\mu}{2}\Vert d-\nabla w\Vert_{L^{2}}^{2}

 = \int_{W}\rho_{c}\gamma(d-\nabla\theta)dx-\int_{W}fwdx+\frac{1}{2h}
\Vert\frac{w-g}{\psi}\Vert_{L^{2}}^{2}+\frac{\mu}{2}\Vert d-\nabla w\Vert_{L^{2}
}^{2}
for  (w, d)\in H^{1}(W)\cross L^{2}(W;\mathbb{R}^{2}) . We now apply Bregman iteration to obtain  (w^{*}, d^{*}) .

We shall give a brief review of the Bregman method with an abstract functional. See
[16] for details. Let  X be a reflexive Banach space. Assume that  F,  H:Xarrow[0, \infty] be con‐
vex functionals, and  H is smooth. Let us consider the following constrained minimization
problem:

 J(u)=F(u)+\mu H(u) subject to  H(u)=0.

We introduce the Bregman distance  D_{F}^{p}(u;v) for  F of the form

 D_{F}^{p}(u;v)=F(u)-F(v)-\langle p, u-v\rangle,

where  p\in\partial F(v) and  \partial F(v)=\{q\in X^{*};F(u)\geq F(v)+\langle q, u-v\rangle\} is a subdifferential

of  F at  v\in X . Then, one can find that the iteration

 u^{k+1}=\arg m\dot{{\imath}}n(D_{F}^{p^{k}}(u;u^{k})u\in X+\mu H(u)) , u^{0}=0,
p^{0}=0, p^{k}\in\partial F(u^{k})
yields the desired minimizer  u^{*}\in X by   u^{*}=\lim_{karrow\infty}u^{k} under some suitable assumptions.
Moreover, it is important to find that, if  H(u)=\Vert Au-\zeta\Vert_{Y}^{2}/2 with a linear operator
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 A:Xarrow Y onto a Hilbert space  Y and  \zeta\in Y , then the minimizer  u^{k+1} of the above is
equivalent to the following iteration:

  u^{k+1}=\arg m\dot{{\imath}}nu\in\cdot(J(u)+\frac{\mu}{2}\Vert Au-\zeta-b^{k}
\Vert_{Y}^{2}) ,

 b^{k+1}=b^{k}+\zeta-Au^{k+1} , b^{0}=0.

By applying the above sketch to our problem, we consider the itaration

 (u^{k+1}, d^{k+1})= \arg\min_{(w,d)}[\int_{W}\rho_{c}\gamma(d-\nabla\theta)dx-
\int_{W} fwdx

 + \frac{1}{2h}\Vert\frac{w-g}{\psi}\Vert_{L^{2}}^{2}+\frac{\mu}{2}\Vert d-
\nabla w-b^{k}\Vert_{L^{2}}^{2}] , (3.1)

 b^{k+1}=b^{k}+\nabla u^{k+1}-d^{k+1}, u^{0}=g, d^{0}=b^{0}=0 (3.2)

with  \psi=\gamma(\nabla(g-\theta)) to obtain the minimizer  (u^{*}, d^{*}) of  F(w, d;g) . To solve this problem,
we introduce the following alternate iteration;

 u^{k,j+1}= \arg m\dot{{\imath}}nw[-\int_{W}fwdx+\frac{1}{2h}\Vert\frac{w-g}
{\psi}\Vert_{L^{2}}^{2}+\frac{\mu}{2}\Vert d^{k,j}-\nabla w-b^{k}\Vert_{L^{2}}
^{2}] , (3.3)

 d^{k,j+1}= \arg m_{d}\dot{{\imath}}n[\int_{W}\rho_{c}\gamma(d-\nabla\theta)dx+
\frac{\mu}{2}\Vert d-\nabla u^{k,j+1}-b^{k}\Vert_{L^{2}}^{2}] (3.4)

Then, we observe that  (u^{k+1}, d^{k+1})= \lim_{jarrow\infty}(u^{k,j}, d^{k,j}) .
The first minimization (3.3) is established by just solving the following boundary value

problem of an elliptic equation;

 w-h\psi\triangle w=g+h\psi(f-div(d^{k,j}-b^{k})) in  W, (3.5)

  \frac{\partial w}{\partial\nu}=d^{k,j}-b^{k} on  \partial W. (3.6)

The second minimization (3.4) is established by calculating the minimizer of integrating
function  x\mapsto\rho_{c}\gamma(x-z)+(\mu/2)|x-y|^{2} , which is considered in the next subsection.

3.2. Shrinkage function

According to [13], we calculate the polyhedral shrinkage function for the second minimiz‐
ing problem of the split Bregman iteration. Moreover, our integrating function includes
the translation term  \nabla\theta in  \gamma . Thus, we present the calculation of polyhedral shrinkage
as in [13] with the translation briefly.

We first consider the minimizing problem of the integrating function in (3.4) with
general settings. Remark that  \gamma(x) is represented as

  \gamma(x)=\sup_{p\in \mathcal{W}_{\gamma}}p\cdot x
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when  \gamma is convex, where  \mathcal{W}_{\gamma}=\{p\in \mathbb{R}^{2};\gamma^{\circ}(p)\leq 1\} , and   \gamma^{\circ}(p)=\sup\{p\cdot q;\gamma(q)\leq 1\}.
Let us define the projection map  P_{\mathcal{W}_{\gamma}}:\mathbb{R}^{2}arrow \mathcal{W}_{\gamma} onto  \mathcal{W}_{\gamma} , which is defined by

 P_{\mathcal{W}_{\gamma}}(x)= \arg\min_{y\in \mathcal{W}_{\gamma}}|y-x|^{2}
Let us consider the minimization problem

 x^{*}=x^{*}(y, z)= \arg_{x\in \mathbb{R}^{2}}m\dot{{\imath}}n\{\frac{1}{c}
\gamma(x-z)+\frac{1}{2}|x-y|^{2}\} (3.7)

with a constant  c>0 with the above notations.

We first derive the necessary condition for the minimizer.

Lemma 3.1 Let  x^{*}=x^{*}(y, z) be the minimizer defined by (3.7). Then,

 x^{*}=y- \frac{1}{c}P_{\mathcal{W}_{\gamma}}(c(y-z)) .

Proof. Note that, in this proof, we denote the part which has no influence to the
minimizer  x^{*} by  C , which may change by step‐by‐step calculation.

Set  \varphi(x,p)=(1/c)p\cdot(x-z)+(1/2)|x-y|^{2} and interpret the minimizing problem
(3.7) to finding  x^{*} which attains the following minimum:

 M= \min_{x\in \mathbb{R}^{2}p}\max_{\in \mathcal{W}_{\gamma}}\varphi(x,p)=\min_
{x\in \mathbb{R}^{2}p}\max_{\in \mathcal{W}_{\gamma}}(\frac{1}{c}p\cdot(x-z)+
\frac{1}{2}|x-y|^{2}) .

Note that  x\mapsto\varphi(x,p) is convex,   \lim_{|x|arrow\infty}\varphi(x,p)=\infty uniformly for  p\in \mathcal{W}_{\gamma} , and
 p\mapsto\varphi(x, p) is affine. Then, by the minimax theorem due to [21] we observe that

 M= \max_{p\in}\min_{\mathcal{W}_{\gamma^{x\in \mathbb{R}^{2}}}}(\frac{1}{c}
p\cdot(x-z)+\frac{1}{2}|x-y|^{2}) .

By stragithforward calculation we have

  \varphi(x,p)=\frac{1}{2}|x|^{2}-  (\begin{array}{l}
1
y-p\overline{c}
\end{array}) .  x+C= \frac{1}{2}|x-  (\begin{array}{l}
1
y-p\overline{c}
\end{array})  |^{2}+C.
Hence, we obtain

  \min_{x\in \mathbb{R}^{2}}\varphi(x,p)=\varphi   (\begin{array}{l}
1
y-p,p\overline{c}
\end{array})=\frac{1}{c}p .  (\begin{array}{l}
1
y-z-p\overline{c}
\end{array})  + \frac{1}{2c^{2}}|p|^{2}
 =- \frac{1}{2c^{2}}|p|^{2}+\frac{1}{c}p\cdot(y-z)=-\frac{1}{2c^{2}}|p-c(y-z)
|^{2}+C.

Consequently, the minimum  M is attained at

 x^{*}(y, z)=y- \frac{1}{c}p^{*},  p^{*}=P_{\mathcal{W}_{\gamma}}(c(y-z)) .  \square 

The following corollary directly follows from Lemma 3.1, so that we omit its proof.
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Corollary 3.2 It holds that  c(y-z)\in \mathcal{W}_{\gamma} if and only if  x^{*}(y, z)=z.

Let us consider the case when  c(y-z)\not\in \mathcal{W}_{\gamma} . From here on, let  \gamma be a convex and
piecewise linear function, i.e.,

  \gamma(p)=_{0\leq j}\max_{\leq N_{\gamma}-1}n_{j}\cdot p,
where  n_{j}=r_{j}(\cos\theta_{j}, \sin\theta_{j}) (  r_{i}>0 is a constant) satisfies

(W1)  \theta_{0}<\theta_{1}<\theta_{2}<  <\theta_{N_{\gamma}-1}<\theta_{0}+2\pi,

(W2)  \theta_{j}<\theta_{j+1}<\theta_{j}+\pi for  j=0,1 , ,  N_{\gamma}-1.

Note that, the index number  j of  n_{j} has been extended to  \mathbb{Z} by regarding  j\in \mathbb{Z}/(N_{\gamma}\mathbb{Z}) ,
in other words,  n_{j+kN_{\gamma}}=n_{j} for  k\in \mathbb{Z} . For the calculation of the subdifferential  \partial\gamma of  \gamma,

we partition  \mathbb{R}^{2}\backslash \{0\} into the regions

 Q_{i}= { p\neq 0;n_{i}\cdot p>n_{j}\cdot p for  j\neq i},
 R_{i,i+1}=\{p\neq 0;n_{i}\cdot p=n_{i+1}\cdot p>0\}

for  i\in \mathbb{Z} . Assume the following.

(W3)   Q_{i}=\Xi_{i,i-1}\cap\Xi_{i,i+1}\neq\emptyset , where  \Xi_{j,k}=\{p\neq 0;n_{j}\cdot p>n_{k}\cdot p\}.

Note that (W3) implies  \partial Q_{i}=R_{i-1,i}\cup R_{i,i+1}\cup\{0\} . Moreover,  \gamma is smooth on  Q_{i} and has
singularities on each  R_{i,i+1} . By using the above notations, we now characterize  x^{*} when
 c(y-z)\not\in \mathcal{W}_{\gamma}.

Lemma 3.3 Let   \gamma(p)=\max_{0\leq j\leq N_{\gamma}-1}n_{j} .  p with  n_{j}=r_{j}(\cos\theta_{j}, \sin\theta_{j}) for  r_{j}>0 and
 \theta_{j}\in \mathbb{R} , and assume that  (W1)-(W3) holds. Let  c>0 and  y,  z\in \mathbb{R}^{2} satisfy  c(y-z)\not\in \mathcal{W}_{\gamma}.
Set

  \lambda_{i}=\frac{c(y-z)\cdot(n_{i}-n_{i+1})-n_{i}\cdot n_{i+1}+|n_{i+1}|^{2}}
{|n_{i}-n_{i+1}|^{2}} , (3.8)

 \xi_{i}=\lambda_{i}n_{i}+(1-\lambda_{i})n_{i+1} . (3.9)

For the minimizer  x^{*} defined by (3.7), the followings hold.

(i) If  x^{*}-z\in R_{i,i+1} , then  \lambda_{i}\in[0,1] and  (c(y-z)-\xi_{i})\cdot\xi_{i}\geq 0.

(ii) If  x^{*}-z\in Q_{i} , then  \lambda_{i}>1 and  \lambda_{i-1}<0.

Proof. By (3.7) we have

  \frac{1}{c}\gamma(x-z)+\frac{1}{2}|x-y|^{2}\geq\frac{1}{c}\gamma(x^{*}-z)+
\frac{1}{2}|x^{*}-y|^{2}.
This implies that

  \gamma(x-z)\geq\gamma(x^{*}-z)-c(x^{*}-y)\cdot(x-x^{*})-\frac{c}{2}|x-x^{*}
|^{2},
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and thus  -c(x^{*}-y)\in\partial\gamma(x^{*}-z) . The subdifferential  \partial\gamma can be explicitly calculated as

 \partial\gamma(q)=\{\begin{array}{l}
\{n_{i}\} if q\in Q_{i}
for some i\in\{0,1, N_{\gamma}-1\},
\{\lambda n_{i}+(1-\lambda)n_{i+1};\lambda\in[0,1]\} if q\in R_{i,i+1}
for some i\in\{0,1, N_{\gamma}-1\}.
\end{array}
By Corollary 3.2,  c(y-z)\not\in \mathcal{W}_{\gamma} implies that  x^{*}-z\neq 0 , and thus   x^{*}-z \in\bigcup_{i=0}^{N_{\gamma}-1}Q_{i}\cup
  \bigcup_{\dot{i}=0}^{N_{\gamma}-1}R_{i,i+1} . By combining the above, we obtain the followings.

(i) If  x^{*}-z\in R_{\dot{i}},i+1 , then  x^{*}=y-(1/c)(\lambda n_{i}+(1-\lambda)n_{i+1}) for some  \lambda\in[0,1].

(ii) If  x^{*}-z\in Q_{i} , then  x^{*}=y-(1/c)n_{i}.

Let us consider the case (i). In this case, we have

 -c(x^{*}-y)=\lambda n_{i}+(1-\lambda)n_{i+1}

for some  \lambda\in[0,1] . By taking an inner product between  n_{i} or  n_{i+1} and the above, we
obtain

 -c(x^{*}-y)\cdot n_{i}=\lambda|n_{i}|^{2}+(1-\lambda)n_{i+1}\cdot n_{i} , (3.10)
 -c(x^{*}-y)\cdot n_{i+1}=\lambda n_{i}\cdot n_{i+1}+(1-\lambda)|n_{i+1}|^{2} (3.11)

Note that  x^{*}-z\in R_{\dot{i}},i+1 implies  n_{i}\cdot(x^{*}-z)=n_{i+1}\cdot(x^{*}-z) . Then, (3.10) and (3.11)
yield the following;

 c(y-z)\cdot n_{i}-\lambda|n_{i}|^{2}-(1-\lambda)n_{i+1}\cdot n_{i}=c(y-z)\cdot 
n_{i+1}-\lambda n_{i}\cdot n_{i+1}-(1-\lambda)|n_{i+1}|^{2}
We calculate the above and obtain

  \lambda=\lambda_{i}=\frac{c(y-z)\cdot(n_{\dot{i}}-n_{i+1})-n_{i}\cdot n_{i+1}+
|n_{i+1}|^{2}}{|n_{\dot{i}}-n_{i+1}|^{2}}\in[0,1].
Moreover, we have  x^{*}=y-(1/c)\xi_{i} , and then  (x^{*}-z) .  n_{i}=(x^{*}-z)\cdot n_{i+1}\geq 0 . This
implies

 (c(y-z)- \xi_{\dot{i}})\cdot\xi_{i}=(c(x^{*}-\frac{1}{c}\xi_{i}-z)-\xi_{i}) .  \xi_{i}

 =c[\lambda_{i}(x^{*}-z)\cdot n_{i}+(1-\lambda_{i})(x^{*}-z)\cdot n_{i+1}]\geq 
0.

We next consider the case (ii). In this case we have

 (x^{*}-z)\cdot n_{i}>(x^{*}-z)\cdot n_{j} for  j\neq i.

Since  x^{*}=y-(1/c)n_{i} , the formula (3.8) yields that

  \lambda_{i}=\frac{c(y-z)\cdot(n_{i}-n_{i+1})-n_{i}\cdot n_{i+1}+|n_{i+1}|^{2}}
{|n_{\dot{i}}-n_{i+1}|^{2}}
 = \frac{c(x^{*}-z+(1/c)n_{i})\cdot(n_{i}-n_{i+1})-n_{i}\cdot n_{i+1}+|n_{i+1}|^
{2}}{|n_{i}-n_{i+1}|^{2}}
 = \frac{c(x^{*}-z)\cdot(n_{i}-n_{i+1})+|n_{i}-n_{i+1}|^{2}}{|n_{i}-n_{\dot{i}+
1}|^{2}}>1.
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Similarly, we obtain

  \lambda_{i-1}=\frac{c(y-z)\cdot(n_{i-1}-n_{i})-n_{i-1}\cdot n_{i}+|n_{i}|^{2}}
{|n_{i-1}-n_{i}|^{2}}
 = \frac{c(x^{*}-z+(1/c)n_{i})\cdot(n_{i-1}-n_{\dot{i}})-n_{\dot{i}-1}\cdot 
n_{\dot{i}}+|n_{i}|^{2}}{|n_{i-1}-n_{i}|^{2}}
 = \frac{c(x^{*}-z)\cdot(n_{i-1}-n_{i})}{|n_{i-1}-n_{i}|^{2}}<0. \square 

By Lemma 3.3, either the following (A) or (B) occurs when  c(y-z)\not\in \mathcal{W}_{\gamma} :

(A) There exists  i\in\{0,1, N_{\gamma}-1\} such that  \lambda_{i}\in[0,1] and  (y-(1/c)\xi_{i})\cdot\xi_{i}\geq 0.

(B) There exists  i\in\{0,1, N_{\gamma}-1\} such that  \lambda_{i}>1 and  \lambda_{i-1}<0.

Hence, by combining Corollary 3.2 and Lemma 3.3, we obtain the following scheme to
calculate the minimizer  d^{k,j+1} as (3.4). See [10] for the practical way to construct  \gamma^{\circ} from
a polyhedral  \gamma.

  \frac{Scheme(Sh)toca1cu1ated^{k,j+1}of(3.4)}{Sety=\nabla u^{k,j+1}(x)+b^{k}(x)
andz=\nabla\theta(x}) .

 \bullet If  c(y-z)\in \mathcal{W}_{\gamma} , i.e.,  \gamma^{\circ}(y-z)\leq 1/c , then set

 d^{k,j+1}=z=\nabla\theta(x) .

 \bullet If  \gamma^{\circ}(y-z)>1/c , then set  d^{k,j+1} as follows: Set  \lambda_{i} and  \xi_{i} by (3.8) and (3.9),
respectively.

‐ If there exists  i\in\{0,1, , N_{\gamma}-1\} such that  \lambda_{i}\in[0,1] and  (y-(1/c)\xi_{i})\cdot\xi_{i}\geq 0,
then set

 d^{k,j+1}(x)=y- \frac{1}{c}\xi_{i}=\nabla u^{k,j+1}(x)+b^{k}(x)-\frac{1}{c}\xi_
{i}.
‐ Otherwise, find  i\in\{0,1, , N_{\gamma}-1\} satisfying  \lambda_{i}>1 and  \lambda_{i-1}<0 , and then

set

 d^{k,j+1}(x)=y- \frac{1}{c}n_{i}=\nabla u^{k,j+1}(x)+b^{k}(x)-\frac{1}{c}n_{i}.
4. Numerical results

In this section, we propose some numerical results on the evolution of spirals by (1.3) by
our scheme.

For a given initial curve  \Gamma_{0}\subset \mathbb{R}^{n} , we give a continuous initial data  u_{0}\in C(\overline{W})
satisfying  \Gamma_{0}=\{u_{0}-\theta\equiv 0\} . Then, by repeating the algorithm proposed in §2.2, we
obtain a sequence of minimizers  u_{n}  := \arg\min_{u}E(u;u_{n-1}) and a family of the spirals
 \Gamma_{n}=\{u_{n}-\theta\equiv 0\} . One can find two loops to obtain  u_{n+1} from  u_{n} ;
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(Outer) Finding  u_{n+1} from  u_{n} by  (3.1)-(3.2) ,

(Inner) Finding  (u_{n}^{k+1}, d^{k+1}) from  (u_{n}^{k}, d^{k}) by  (3.3)-(3.4) .

See Algorithm 1 for the summary of our algorithm. In the both Outer and Inner loops, we
calculate  F_{\mu}(u_{n}^{k,j}, d^{k,j};u_{n}) or  F_{\mu}(u_{n}^{k}, d^{k};u_{n}) to check if they are the minimizer of  F_{\mu}(w, d;u_{n})
with  \psi=\gamma(\nabla(u_{n}-\theta)) . However, it is failed when the set  \{x\in\overline{W};\gamma(\nabla(u_{n}-\theta))=0\}
has nonempty interior. To avoid this issue, we introduce an approximation of  F_{\mu}(w, d;g)
by cut‐off only for checking the condition breaking the loop; define

 F_{\mu,\alpha}(w, d;g)  := \int_{W}\rho_{c}\gamma(d-\nabla\theta)dx-\int_{W} fwdx

 + \frac{1}{2h}\Vert\frac{w-g}{\max\{\gamma(\nabla(g-\theta)),\alpha\}}\Vert_{L^
{2}}^{2}+\frac{\mu}{2}\Vert d-\nabla w\Vert_{L^{2}}^{2},
with a positive constant  \alpha\ll 1 . Then, to break the inner and outer loop, we check if

(for Inner)  |F_{\mu,\alpha}(u_{n}^{k,j+1}, d^{k,j+1};u_{n})-F_{\mu,\alpha}(u_{n}^{k,j}, 
d^{k,j};u_{n})|<\varepsilon_{in},
(for Outer)  |F_{\mu,\alpha}(u_{n}^{k+1}, d^{k+1};u_{n})-F_{\mu,\alpha}(u_{n}^{k}, d^{k};
u_{n})|<\varepsilon_{out}

for some  \varepsilon_{in},  \varepsilon_{out}\ll 1 . The equation  (3.5)-(3.6) can be solved by SOR method. Remark

Algorithm 1: Minimizing movement without distance function

Input:  \Gamma_{0}\subset\overline{W} and  u_{0}\in C(\overline{W}) such that  \Gamma_{0}=\{u_{0}-\theta\equiv 0\}.
Output:  \Gamma(T)=\{u(T)-\theta\equiv 0\} with some function  u(T):\overline{W}arrow \mathbb{R}.
(Time step) for  n=0,1,  [T/h]-1 do

 \ovalbox{\tt\small REJECT} In\dot{{\imath}}tia1izeu_{n}^{0}=u_{n},' b^{0}=d^{0}
,\cdot=.0;Setu_{n+1}=u_{n}^{k};Setg=u_{n};(u_{Setb^{k+1}=b^{k}+\nabla u_{n}^{k+
1}-d^{k+1};}\ovalbox{\tt\small REJECT}\lfloor_{if|F_{\mu,\alpha}(u_{n}^{kj+1},d^
{k,j+1};g)-F_{\mu\alpha}(u_{n}^{kj},d^{k_{\dot{J}}};g)|<\varepsilon_{in}thenb}
^{So,1ve(35)-(,36)with\psi=\gamma(\nabla(g,-\theta),)toobtainu_{n}^{k,j+1};}fk=.
0,1,.do. reak;

that we do not apply the cut‐off of  \psi=\gamma(\nabla(u_{n}-\theta)) for (3.5).
Finally, we present some numerical results on the evolution of spirals by (1.3) with

 f\equiv 2 and  \rho_{c}=0.04 , i.e.,
 V_{\gamma}=2-0.04H_{\gamma} (4.1)
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with Algorithm 1. Here we set  \Omega=[-2.5,2.5]^{2} and the numerical lattice on  \Omega as  D=

 \{x_{i,j}=(i\triangle x, j\triangle x)\in\Omega;-100\leq i, j\leq 100\} , so that the mesh size is  \triangle x=0.025 . We
impose that  a_{j}\in D , and set  r=(2-10^{-8})\triangle x . The time span and the number of time
steps are chosen as  h=0.02\cross\triangle x and 2000 steps, and then  T=1.0 . For the split
Bregman method, we set  \mu=\rho_{c},  \varepsilon_{in}=10^{-2},  \varepsilon_{out}=10^{-5} , and  \alpha=10^{-8}.

Figure 1 and 2 presents profiles of spirals with two centers;  N=2,  a_{1}=(-0.75,0) ,
 a_{2}=(0.75,0) . The settings for Figure 1 and Figure 2 are as follows.

(Figure 1):  \gamma(p)=\gamma_{1}(p)=|p_{1}|+|p_{2}| , i.e.,  N_{\gamma}=4,   \theta_{j}=\frac{\pi}{4}+\frac{\pi j}{2},  r_{j}=\sqrt{2},

 \theta(x)=\arg(x-a_{1})+\arg(x-a_{2}) , u_{0}\equiv 0 . (4.2)

(Figure 2):   \gamma(p)=\sqrt{2}\gamma_{\infty}(p)=\sqrt{2}\max\{|p_{1}|, |p_{2}|\} , i.e.,  N_{\gamma}=4,   \theta_{j}=\frac{\pi j}{2},  r_{j}=\sqrt{2},

 \theta(x)=\arg(x-a_{1})-\arg(x-a_{2}) , u_{0}\equiv-\pi . (4.3)

for  p=(p_{1},p_{2}) . Note that  \gamma_{1}=\gamma_{\infty} and  \gamma_{\infty}^{\circ}=\gamma_{1} , and then  \mathcal{W}_{\gamma_{1}}=[-1,1]^{2} is a square and
 \mathcal{W}_{\gamma_{\infty}} is a diagonal square whose vertices are  (\pm 1,0) and  (0, \pm 1) . As in Figure 1 and 2,
one can find the evolution of square spiral with topological change reflecting the shape of
 \mathcal{W}_{\gamma_{1}} and  \mathcal{W}_{\gamma_{\infty}} , respectively. Moreover, we can choose an initial curve which is not parallel
to the facets of  \mathcal{W}_{\gamma} as in Figure 2. Note that such an initial curve is not admissible which
is defined in [9], although the admissibility is required in the discrete model due to [9].
Our scheme can be applied to the evolution which violates the admissibility of the curve
in finite time.

 t=0 t=0.2 t=0.4

 t=0.6 t=0.8 t=1.0

Figure 1: Profiles of spirals evolving by (4.1) with (4.2).
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 t=0 t=0.2 t=0.4

 t=0.6 t=0.8 t=1.0

Figure 2: Profiles of spirals evolving by (4.1) with (4.3).
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