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Abstract

We study a model system of complex fluids in one‐dimensional case. We ob‐
serve that our model system is transformed into a hyperbolic system of balance
laws. Moreover we show that the system has a mathematical entropy and sat‐
isfies the stability condition. As the result, by applying the general theory for
hyperbolic balance laws, we can prove the global existence and asymptotic decay
of solutions to our model system.
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1 Introduction

Complex fluids are interesting materials and may include many examples such as sham‐
poo, toothpaste, blood, liquid crystals, \cdot Some of them are considered as viscoelastic
fluids. In this paper we consider the following model system of a compressible viscoelas‐
tic fluid:

 \rho_{t}+div(\rho u)=0,

 (\rho u)_{t}+div(\rho u\otimes u+pI)+div\Pi=0 , (1.1)

 \Gamma_{t}+(u\cdot\nabla)\Gamma+(\partial_{x}u)\Gamma+\Gamma(\partial_{x}u)^{T}
-((\partial_{x}u)+(\partial_{x}u)^{T})=-\Gamma.

Here  \rho>0 is the fluid density,  u=(u^{1}, u^{2}, u^{3})\in \mathbb{R}^{3} is the velocity, and  \Gamma=(\Gamma_{i_{\dot{J}}}) is the
configuration tensor (  3\cross 3 real symmetric matrix), which are the unknown functions
of  t>0 and  x=(x_{1}, x_{2}, x_{3})\in \mathbb{R}^{3} . Also,  p=p(\rho) is the pressure satisfying  p'(\rho)>0
for  \rho>0,  \Pi is the stress tensor which is given by the constitutive relation of the form:

  \Pi=-2(\Gamma-\Gamma^{2})-\frac{1}{2}tr(\Gamma^{2})I,
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and  (\partial_{x}u)=(u_{x_{j}}^{\dot{i}}) denotes the deformation tensor;  I is the identity matrix and the
superscript  T denotes the transpose. In our system (1.1), the first two equations are
the standard conservation laws (of mass and momentum) and the third one is the time
evolution of the configuration tensor  \Gamma . This model system was proposed by Ötinger
[15] and was studied by Huo and Yong [7].

The one‐dimensional version of the system (1.1) is written in the form

 \rho_{t}+(\rho u)_{x}=0,

 ( \rho u)_{t}+(\rho u^{2}+p(\rho))_{x}-(2\gamma-\frac{3}{2}\gamma^{2})_{x}=0 , (1.2)

 \gamma_{t}+u\gamma_{x}-2(1-\gamma)u_{x}=-\gamma.

Here  \rho>0,  u\in \mathbb{R} and  \gamma\in \mathbb{R} are the unknown function of  t>0 and  x\in \mathbb{R}.

In [13, 14] we developed the general mathematical theory for hyperbolic systems of
balance laws:

 w_{t}+ \sum_{j=1}^{n}f^{j}(w)_{x_{j}}=g(w) , (1.3)

where  w\in \mathbb{R}^{m} is the unknown function of  t>0 and  x=  (x_{1}, \cdots , x_{n})\in \mathbb{R}^{n} . We

imposed two structural conditions on the system (1.3). The one is the existence of a
mathematical entropy for (1.3) which is equivalent to the symmetrization of the system
(1.3) (see [13]). The other is the stability condition formulated in [16] which is equivalent
to the craftsmanship condition in [17]. Under these two structural conditions we proved
in [14] that the initial value problem for (1.3) has a unique global solution  w(t, x) which
decays in  L^{2} at the rate  t^{-n/4} as   tarrow\infty , provided that the initial perturbation is small
in  H^{s}\cap L^{1}.

The main purpose of this paper is to check that the above general theory in [13, 14]
is applicable to our one‐dimensional system (1.2). More precisely, we first show that
the system (1.2) is written in the form of (1.3). Then we verify that the system (1.2),
in the form of (1.3), has a mathematical entropy and satisfies the stability condition.
Consequently, we can apply the general theory in [13, 14] to our system (1.2) and
obtain the results concerning the global existence and asymptotic decay of solutions to
the system (1.2).

Notations. Let   1\leq p\leq\infty . Then  L^{p}=L^{p}(\mathbb{R}^{n}) denotes the usual Lebesgue space
over  \mathbb{R}^{n} with the norm  \Vert .  \Vert_{L^{p}} . For a nonnegative integer  s,  H^{s} denotes the s‐th order
Sobolev space over  \mathbb{R}^{n} in the  L^{2} sense, equipped with the norm  \Vert .  \Vert_{H^{S}} . We note that
 L^{2}=H^{0} . Let  I be an interval in  [0, \infty ) and  X be a Banach space over  \mathbb{R}^{n} . Then, for a
nonnegative integer  k,  C^{k}(I;X) denotes the space of  k‐times continuously differentiable
functions on  I with values in  X.

Finally, in this paper, we use  C and  c to denote generic positive constants, which
may change from line to line, when the exact value of the constant is not essential.
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2 Hyperbolic balance laws

The aim of this section is to review the general theory for hyperbolic balance laws,
which were developed in [13, 14].

2.1 Mathematical entropy and symmetrization

Following to [13], we give the definition of the mathematical entropy for hyperbolic
balance laws (1.3). We assume that the state variable  w takes values in a convex open
set  \mathcal{O}_{w} in  \mathbb{R}^{m} . Put

 \mathcal{M}  :=\{\psi\in \mathbb{R}^{m} ; {  \psi,  g(w)\rangle=0 for any  w\in \mathcal{O}_{w} },

where  \langle\cdot,  \cdot\rangle denotes the inner product in  \mathbb{R}^{m} . Then  \mathcal{M} is a subspace of  \mathbb{R}^{m} such that
 g(w)\in \mathcal{M}^{\perp} for any  w\in \mathcal{O}_{w} , where  \mathcal{M}^{\perp} denotes the orthogonal complement of  \mathcal{M}.

Also we introduce the set  \mathcal{E} of equilibrium states for hyperbolic balance laws (1.3):

 \mathcal{E}:=\{w\in \mathcal{O}_{w}; g(w)=0\}.

In discrete kinetic theory [8],  \mathcal{M} is called the space of collision invariants and  \mathcal{E} is the
set of Maxwellians. Then the mathematical entropy is defined as follows.

Definition 2.1 (Mathematical entropy [13]). Let  \eta=\eta(w) be a smooth function defined
in a convex open set  \mathcal{O}_{w} . Then  \eta(w) is called a mathematical entropy for hyperbolic
balance laws (1.3) if the following four statements hold true:
(a)  \eta(w) is strictly convex in  \mathcal{O}_{w} in the sense that the Hessian  D_{w}^{2}\eta(w) is positive
definite for  w\in \mathcal{O}_{w}.

(b)  D_{w}f^{j}(w)(D_{w}^{2}\eta(w))^{-1} is symmetric for  w\in \mathcal{O}_{w} and  j=1 , ,  n.

(c) Let  w\in \mathcal{O}_{w} . Then  w\in \mathcal{E} holds if and only if  u  :=((D_{w}\eta(w))^{T}\in \mathcal{M}.
(d) For  w\in \mathcal{E} , the matrix  -D_{w}g(w)(D_{w}^{2}\eta(w))^{-1} is symmetric and nonnegative definite
such that its kernel space coincides with  \mathcal{M}.

The notion of mathematical entropy was first introduced by Godunov [5] in 1961
(cf. [4]) for hyperbolic systems of conservation laws (including the compressible Euler
equation as an example). Then in 1988, this notion was extended by Kawashima and
Shizuta [11] (cf. [9, 10]) to hyperbolic‐parabolic systems of conservation laws (includ‐
ing the compressible Navier‐Stokes equation as an example). The above definition of
mathematical entropy for hyperbolic balance laws was formulated by Kawashima and
Yong [13] in 2004 (cf. [3, 21]).

Next we introduce the notion of symmetrization for the system (1.3). Let  w=w(u)
be a diffeomorphism from an open set  \mathcal{O}_{u} onto  \mathcal{O}_{w} . By using this diffeomorphism
 w=w(u) , we can rewrite (1.3) in the form

 A^{0}(u)u_{t}+ \sum_{j=1}^{n}A^{j}(u)u_{x_{j}}=h(u) , (2.1)
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where

 A^{0}(u)=D_{u}w(u) ,

 A^{j}(u)=D_{u}f^{j}(w(u))=D_{w}f^{j}(w(u))D_{u}w(u) , (2.2)

 h(u)=g(w(u)) .

Also we put

 L(u) :=-D_{u}h(u)=-D_{w}g(w(u))D_{u}w(u) . (2.3)

This matrix  L(u) is called the relaxation matrix.

Definition 2.2 (Symmetric dissipative system [13]). The system (2.1) is called sym‐
metric dissipative if the following four statements hold true:

(a)  A^{0}(u) is symmetric and positive definite for  u\in \mathcal{O}_{u}.

(b)  A^{j}(u) is symmetric for  u\in \mathcal{O}_{u} and  j=1,  \cdot\cdot\cdot ,  n.

(c) For  u\in \mathcal{O}_{u},  h(u)=0 holds if and only if  u\in \mathcal{M}.

(d) For  u\in \mathcal{M}\cap \mathcal{O}_{u} , the relaxation matrix  L(u) is symmetric and nonnegative definite
such that its kernel space coincides with  \mathcal{M}.

As in [5, 4, 11] for hyperbolic (hyperbolic‐parabolic) systems of conservation laws,
we know that the symmetrization of hyperbolic balance laws is characterized by the
existence of a mathematical entropy.

Theorem 2.3 (Mathematical entropy and symmetrization [13]). The following two
statements are equivalent.

(i) The system (1.3) has a mathematical entropy.
(ii) There is a diffeomorphism by which (1.3) is transformed to a symmetric dissipative
system (2.1).

We give a short outline of the proof. Suppose that the system (1.3) has a mathe‐
matical entropy  \eta=\eta(w) . We define the mapping  u=u(w) by

 u=u(w):=(D_{w}\eta(W))^{T} (2.4)

This mapping  u=u(w) is a diffeomorphism from the convex open set  \mathcal{O}_{w} onto an
open set  \mathcal{O}_{u} and satisfies  D_{w}u(w)=D_{w}^{2}\eta(w) . Let  w=w(u) be the corresponding
inverse mapping. Then this  w=w(u) is a diffeomorphism from  \mathcal{O}_{u} onto  \mathcal{O}_{w} satisfying
 D_{u}w(u)=(D_{w}u(w))^{-1}=(D_{w}^{2}\eta(w))^{-1} . By this diffeomorphism  w=w(u) , the system
(1.3) can be transformed into a symmetric dissipative system (2.1), where

 A^{0}(u)=D_{u}w(u)=(D_{w}^{2}\eta(w))^{-1},
 A^{j}(u)=D_{w}f^{j}(w(u))D_{u}w(u)=D_{w}f^{j}(w)(D_{w}^{2}\eta(w))^{-1},

(2.5)
 h(u)=g(w(u)) ,

 L(u)=-D_{w}g(w(u))D_{u}w(u)=-D_{w}g(w)(D_{w}^{2}\eta(w))^{-1}

This shows that (i) implies (ii).
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The converse assertion is shown as follows. Suppose that (1.3) is transformed to a
symmetric dissipative system (2.1) by a diffeomorphism  w=w(u) . Since  D_{u}w(u)=
 A^{0}(u) is symmetric, we know from the Poincaré lemma that there is a smooth function
 \tilde{\eta}=\tilde{\eta}(u) satisfying  (D_{u}\tilde{\eta}(u))^{T}=w(u) . By using this  \tilde{\eta}(u) , we define  \eta(w) by

 \eta(w)=\langle u(w), w\}-\tilde{\eta}(u(w)) ,

where  u=u(w) denotes the inverse mapping of  w=w(u) . This  \eta(w) is the de‐
sired mathematical entropy of the system (1.3), which satisfies  D_{w}\eta(w)=u(w)^{T} and
 D_{w}^{2}\eta(w)=(D_{u}w(u))^{-1}=A^{0}(u)^{-1} Thus we have verified that (ii) implies (i). We omit
the details and refer the reader to [13, 11].

Next, as in [13, 11], we derive the equation satisfied by our mathematical entropy
 \eta(w) . Since  D_{u}f^{j}(w(u))=A^{j}(u) are symmetric due to (b) of Definition 2.2, we again
deduce from the Poincaré lemma that there exist smooth functions  \tilde{q}^{j}=\tilde{q}^{j}(u) satisfying
 (D_{u}\tilde{q}^{j}(u))^{T}=f^{j}(w(u)),  j=1,  \cdot ,  n . We put

 q^{j}(w)=\langle u(w) , f^{j}(w)\rangle-\tilde{q}^{j}(u(w)) , j=1 , , n.

Then this  q^{j}(w) becomes the corresponding entropy flux. In fact, a simple computa‐
tion using  u(w)^{T}=D_{w}\eta(w) shows that  D_{w}q^{j}(w)=D_{w}\eta(w)D_{w}f^{j}(w),  j=1,  \cdot\cdot\cdot ,  n.

Therefore, taking the inner product of (1.3) with  u(w)=(D_{w}\eta(w))^{T} , we arrive at the
equation

  \eta(w)_{t}+\sum_{j=1}^{n}q^{j}(w)_{x_{j}}=\{u(w), g(w)\rangle , (2.6)

which is the equation of our mathematical entropy  \eta(w) .
Similarly, we derive the equation of the energy form associated with the mathemat‐

ical entropy. Let  \overline{w}\in \mathcal{E} be a fixed constant equilibrium state, namely,  g(\overline{w})=0 , and
define the energy form  \mathcal{H}(w) by

 \mathcal{H}(w)=\eta(w)-\eta(\overline{w})-\langle\overline{u}, w-\overline{w}\} , (2.7)

where  \overline{u}=u(\overline{w})=(D_{w}\eta(\overline{W}))^{T}\in \mathcal{M} . Since the entropy  \eta(w) is a strictly convex function
of  w\in \mathcal{O}_{w} , our energy form  \mathcal{H}(w) is equivalent to the quadratic function  |w-\overline{w}|^{2} for
small  |w-\overline{w}| . We easily see that the energy form  \mathcal{H}(w) satisfies

  \mathcal{H}(w)_{t}+\sum_{j=1}^{n}\mathcal{Q}^{j}(w)_{x_{j}}=\langle u(w) , 
g(w)\rangle , (2.8)

where  \mathcal{Q}^{j}(w)=q^{j}(w)-q^{j}(\overline{w})-\langle\overline{u},  f^{j}(w)-f^{j}(\overline{w}) } is the corresponding flux function.

Finally in this subsection, we introduce another symmetrization of the system (1.3)
which has a mathematical entropy. This symmetrization is useful to treat concrete
physical examples. Let us consider a new state variable  v\in \mathbb{R}^{m} and assume that
 w=w(v) is a diffeomorphism from an open set  \mathcal{O}_{v} onto the convex open set  \mathcal{O}_{w} . We
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put  w=w(v) in (1.3) and then multiply the resulting system by  (D_{v}w)^{T}D_{w}^{2}\eta from the
left, where  \eta=\eta(w) is a mathematical entropy of (1.3). This yields

Ã0  (v)v_{t}+ \sum_{j=1}^{3} Ã j  (v)v_{x_{j}}=\tilde{h}(v) , (2.9)

where

Ã0(  v )  =(D_{v}w)^{T}D_{w}^{2}\eta D_{v}w=(D_{v}u)^{T}D_{v}w,

Ã j (  v )  =(D_{v}w)^{T}D_{w}^{2}\eta D_{v}f^{j}=(D_{v}u)^{T}D_{v}f^{j} , (2.10)

 \tilde{h}(v)=(D_{v}w)^{T}D_{w}^{2}\eta g(w)=(D_{v}u)^{T}g(w) ,

with  u  :=(D_{w}\eta)^{T} . Here in the second equalities in (2.10) we used the elementary
fact that  (D_{v}w)^{T}D_{w}^{2}\eta=(D_{w}^{2}\eta D_{v}w)^{T}=(D_{w}uD_{v}w)^{T}=(D_{v}
u)^{T} . The corresponding
relaxation matrix is defined by

 \tilde{L}(v) :=-D_{v}\tilde{h}(v)=-D_{v}((D_{v}u)^{T}g(w)) . (2.11)

On the other hand, by using the diffeomorphism  w=w(u) with  u=(D_{w}\eta)^{T} directly
in (1.3), we already have the symmetric system (2.1) with (2.5). We have the following
relations between (2.10) and (2.5).

Ã0(  v )  =(D_{v}u)^{T}A^{0}(u)D_{v}u,
Ã j (  v )  =(D_{v}u)^{T}A^{j}(u)D_{v}u , (2.12)
 \tilde{h}(v)=(D_{v}u)^{T}h(u) ,

Concerning the relation between two relaxation matrices  \tilde{L}(v) and  L(u) , we have the
following result: When  v and  u are corresponding to the equilibrium state  w\in \mathcal{E}(i.e.,
 g(w)=0) , we have

 \tilde{L}(v)=-(D_{v}u)^{T}D_{v}g=(D_{v}u)^{T}L(u)D_{v}u , (2.13)

where we used the equality  -D_{v}g=-D_{v}h=-D_{u}hD_{v}u=L(u)D_{v}u.

2.2 Stability condition and global existence

In this subsection we review the general theory on the dissipativity structure for sym‐
metric dissipative system (2.1), which was developed in [16, 17]. Also we summarize the
corresponding results on the global existence and decay of solutions to the hyperbolic
balance laws (1.3), which were obtained in [14] (cf. [2, 6, 21]).

In order to formulate the stability condition for the symmetric dissipative system
(2.1) obtained from (1.3), we consider the linearized system of (2.1) at  u=\overline{u} , where

 \overline{u}\in \mathcal{M}\cap \mathcal{O}_{u} is a constant state.

 A^{0}u_{t}+ \sum_{j=1}^{n}A^{j}u_{x_{j}}+Lu=0 , (2.14)
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where we write  A^{0}=A^{0}(\overline{u}),  A^{j}=A^{j}(\overline{u}) and  L=L(\overline{u}) for simplicity. Taking the
Fourier transform of (2.14) with respect to  x\in \mathbb{R}^{n} , we obtain

 A^{0}\hat{u}_{t}+i|\xi|A(\omega)\hat{u}+  Lû  = 0, (2.15)

where  A(\omega)  := \sum_{j=1}^{n}A^{j}\omega_{j} with  \omega=\xi/|\xi|\in S^{n-1} (the unit sphere). We denote
by  \lambda=\lambda(i\xi) the eigenvalues of (2.15), which are the solutions to the corresponding
characteristic equation

 \det(\lambda A^{0}+i|\xi|A(\omega)+L)=0.

The stability condition for (2.14) is then formulated as follows.

Definition 2.4 (Stability condition [16]). The system (2.14) satisfies the stability con‐
dition if the following holds true: Let  \phi\in \mathbb{R}^{m} satisfy  L\phi=0 and  \mu A^{0}\phi+A(\omega)\phi=0
for some  \mu\in \mathbb{R} and  \omega\in S^{n-1} Then  \phi=0.

This stability condition was first formulated in [16] for a general class of linear sym‐
metric hyperbolic‐parabolic systems including our linear symmetric hyperbolic systems
(2.14). On the other hand, another condition was introduced in [17] to derive the de‐
cay estimate of solutions for linearized symmetric hyperbolic‐parabolic systems. This
condition is now called “craftsmanship condition” and is formulated as follows.

Definition 2.5 (Craftsmanship condition [17]). The system (2.14) satisfies the crafts‐
manship condition if there is an  m\cross m matrix  K(\omega) depending smoothly on  \omega\in S^{n-1}

with the following properties:

(i)  K(-\omega)=K(\omega) for  \omega\in S^{n-1}

(ii)  K(\omega)A^{0} is skew‐symmetric for  \omega\in S^{n-1}

(iii)  (K(\omega)A(\omega))^{sy}+L is positive definite for  \omega\in S^{n-1} , where  X^{sy} denotes the sym‐
metric part of the matrix  X , i. e.,  X^{sy}=(X+X^{T})/2.

The following characterization of the dissipative structure was also given in [16].

Theorem 2.6 (Dissipative structure [16]). The following four conditions are equivalent
to each other.

(i) The system (2.14) satisfies the stability condition.
(ii) The system (2.14) satisfies the craftsmanship condition.
(iii) The system (2.14) is uniformly dissipative in the sense that  {\rm Re}\lambda(i\xi)\leq-c\rho(\xi) for
 \xi\in \mathbb{R}^{n} , where  \rho(\xi)=|\xi|^{2}/(1+|\xi|^{2}) .

(iv) The system (2.14) is strictly dissipative in the sense that  {\rm Re}\lambda(i\xi)<0 for  \xi\neq 0.

Remark 1. The above two structural conditions (stability condition and craftsman‐
ship condition) formulated for the system (2.14) are equivalent to the corresponding
structural conditions for the linearized system of (2.9), respectively, because we have
the relations (2.12) and (2.13) between these two systems.

Remark 2. The Kalman rank condition was shown to be equivalent to the above
stability condition. For the details we refer to [1].
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The craftsmanship condition in Definition 2.5 is the key to show the decay estimate
of solutions to the system (2.14).

Theorem 2.7 (Linear decay [17]). Suppose that the system (2.14) satisfies the crafts‐
manship condition. Then the solution  u of (2.14) with the initial data  u_{0} satisfies the
following pointwise estimate in the Fourier space:

lû  (t, \xi)|\leq Ce^{-c\rho(\xi)t}|\hat{u}_{0}(\xi)| , (2.16)

where  \rho(\xi)=|\xi|^{2}/(1+|\xi|^{2}) . Moreover the solution  u satisfies the decay estimate

 \Vert\partial_{x}^{k}u(t)\Vert_{L^{2}}\leq C(1+t)^{-n/4-k/2}\Vert u_{0}
\Vert_{L^{1}}+Ce^{-ct}\Vert\partial_{x}^{k}u_{0}\Vert_{L^{2}} (2.17)

for  k\geq 0.

Finally, we review the global existence and decay results for hyperbolic balance
laws (1.3). We assume that the system (1.3) has a mathematical entropy and the
corresponding symmetric dissipative system (2.1) satisfies the stability condition at a
given constant state  \overline{u}\in \mathcal{M}\cap \mathcal{O}_{u} . We prescribe the initial data

 u(0, x)=u_{0}(x) . (2.18)

The global existence result obtained in [14] is then stated as follows.

Theorem 2.8 (Global existence [14]). Assume the above structural conditions for (1.3)
and (2.1). Let  n\geq 1 and  s\geq s_{0}+1 , where  s_{0}=[n/2]+1 . For a given fixed constant
state  \overline{u}\in \mathcal{M}\cap \mathcal{O}_{u} , we suppose that  u_{0}-\overline{u}\in H^{S} and put  E_{0}=\Vert u_{0}-\overline{u}\Vert_{H^{s}} . Then there is
a positive constant  \delta_{0} such that if  E_{0}\leq\delta_{0} , the initial value problem (2.1), (2.18) has a
unique global solution  u with  u-\overline{u}\in C^{0}([0, \infty);H^{s})\cap C^{1}([0, \infty);H^{s-1}) , which satisfies
the following uniform estimate

  \Vert(u-\overline{u})(t)\Vert_{H^{s}}^{2}+\int_{0}^{t}\Vert(I-P)u(\tau)
\Vert_{H^{s}}^{2}+\Vert\partial_{x}u(\tau)\Vert_{H^{s-1}}^{2}d\tau\leq CE_{0}
^{2}
for  t\geq 0 . Here  P is the orthogonal projection onto  \mathcal{M} . Moreover, the solution  u

converges to the constant state  \overline{u} as   tarrow\infty , namely, we have

 \Vert\partial_{x}^{l}(u-\overline{u})(t)\Vert_{L^{\infty}}arrow 0

for   tarrow\infty , where  0\leq l\leq s-s_{0}.

When the initial data are also in  L^{1} , we have the sharp decay estimates of solutions.

Theorem 2.9 (Decay estimate [14]). Assume the same structural conditions as in
Theorem 2.8. Let  n\geq 1 and let  s\geq 3 for  n=1 and  s\geq s_{0}+1 for  n\geq 2 . Suppose that

 u_{0}-\overline{u}\in H^{s}\cap L^{1} If the norm  E_{1}=\Vert U_{0}-\overline{U}\Vert_{H^{s}\cap L^{1}} is sufficiently small, then the global
solution  u obtained in Theorem 2.8 satisfies the following decay estimates:

 \Vert\partial_{x}^{k}(u-\overline{u})(t)\Vert_{L^{2}}\leq CE_{1}(1+t)^{-n/4-
k/2} , (2.19)

 \Vert(I-P)\partial_{x}^{k}u(t)\Vert_{L^{2}}\leq CE_{1}(1+t)^{-n/4-(k+1)/2} , (2.20)

where  0\leq k\leq s-1 in (2.19) and  0\leq k\leq s-2 in (2.20).

Remark 3. In the above results we assumed the  H^{S} regularity with  s=[n/2]+2 on
the initial data. This regularity requirement can be relaxed to  s=n/2+1 if we use
the Besov spaces  B_{2,1}^{s} . For the details, we refer the readers to [18, 19, 20].
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3 One‐dimensional complex fluids

In this section we treat the one‐dimensional model system (1.2) of complex fluids. This
model system (1.2) was studied by Hua and Yong [7] and global existence of solutions
was proved there by direct computations. Our aim in this section is to verify that the
general theory reviewed in the previous section is applicable to the system (1.2). As
the consequence, we prove the global existence and asymptotic decay of solutions to
the system (1.2) by applying Theorems 2.8 and 2.9.

Our first step is to show that the system (1.2) is rewritten in the form of hyperbolic
balance laws.

Claim 1. The system (1.2) is written in the form of hyperbolic balance laws for  \gamma<1.

Proof. To verify this claim, we need to rewrite the third equation in (1.2). Let  \gamma<1
and we divide the third equation in (1.2) by  (1-\gamma)^{1/2} . This yields

  \frac{\gamma_{t}}{(1-\gamma)^{1/2}}+u\frac{\gamma_{x}}{(1-\gamma)^{1/2}}-2(1-
\gamma)^{1/2}u_{x}=-\frac{\gamma}{(1-\gamma)^{1/2}}.
Since   \frac{d}{d\gamma}\{-2(1-\gamma)^{1/2}\}=\frac{1}{(1-\gamma)^{1/2}} , we can rewrite the above equation in the form

 2 \{1-(1-\gamma)^{1/2}\}_{t}-2\{(1-\gamma)^{1/2}u\}_{x}=-\frac{\gamma}{(1-
\gamma)^{1/2}}.
Thus we find that the system (1.2) is rewritten as

 W_{t}+F(W)_{x}=G(W) , (3.1)

where

 W=(\begin{array}{l}
\rho
\rho u
\beta(\gamma)
\end{array}) ,  F(W)=(\begin{array}{ll}
\rho u   
\rho u^{2}+p(\rho)-(2\gamma-   \frac{3}{2}\gamma^{2})
-2(1-\gamma)^{1/2}u   
\end{array}) ,  G(W)=(\begin{array}{l}
0
0
-d(\gamma)
\end{array}) (3.2)

Here we put

  \beta(\gamma)=2\{1-(1-\gamma)^{1/2}\}, d(\gamma)=\frac{\gamma}{(1-\gamma)
^{1/2}}.
This completes the proof of Claim 1.  \square 

We choose the set of state variables  W for our system (3.1) as

 \mathcal{O}_{W}=\{W=(\rho, \rho u, \beta(\gamma))^{T};\rho>0, u\in \mathbb{R}, 
\gamma<2/3\}\subset \mathbb{R}^{3} (3.3)

The restriction  \gamma<2/3 will be used in Claim 2 below. Let  \{e_{1}, e_{2}, e_{3}\} be the standard

orthonormal basis of  \mathbb{R}^{3} . Then the subspace  \mathcal{M} and the set  \mathcal{E} of equilibrium states for
our system (3.1) are given by

 \mathcal{M}= span  \{e_{1}, e_{2}\},  \mathcal{E}=\{W=(\rho, \rho u, 0)^{T};\rho>0, u\in \mathbb{R}\} , (3.4)

respectively; we see that  \dim \mathcal{M}=2 and  \mathcal{E}\subset \mathcal{M}.

Next we consider a mathematical entropy for the system (3.1) corresponding to the
original system (1.2).
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Claim 2. The system (3.1) corresponding to (1.2) has a mathematical entropy in  \mathcal{O}_{W}
in the sense of Definition 2.1.

Proof. We consider the following total energy for the original system (1.2).

  \eta(W)=\rho(e(\rho)+\frac{1}{2}u^{2})+\frac{1}{2}\gamma^{2}, e(\rho)=
\int^{\rho}\frac{p(s)}{s^{2}}ds . (3.5)

Here  e(\rho) denotes the internal energy. We show that this  \eta(W) becomes a mathematical
entropy of the system (3.1) in  \mathcal{O}_{W} . We need to check all the conditions in Definition
2.1. The computations below are similar to those used in [12].

Condition (a): It is useful to use the physical state variable  V=(\rho, u, \gamma)^{T} for
actual computations. We first calculate  U=(D_{W}\eta)^{T} by using  D_{W}\eta=D_{V}\eta(D_{V}W)^{-1}.
A simple computation gives  D_{V} \eta=(a(\rho)+\frac{1}{2}u^{2}, \rho u, \gamma) , where  a(\rho)  :=e( \rho)+\frac{p(\rho)}{\rho} . Also
we have

 D_{V}W=(\begin{array}{lll}
1   0   0
u   \rho   0
0   0   \beta'(\gamma)
\end{array}) , (D_{V}W)^{-1}=(\begin{array}{lll}
1   0   0
-\frac{u}{\rho}   \frac{1}{\rho}   0
0   0   \frac{1}{\beta'(\gamma)}
\end{array}),
where   \beta'(\gamma)=\frac{1}{(1-\gamma)^{1/2}} . Consequently we obtain

 U=(D_{W} \eta)^{T}=(a(\rho)-\frac{1}{2}u^{2}, u, b(\gamma))^{T} (3.6)

where we put  b(\gamma)  := \frac{\gamma}{\beta(\gamma)}=(1-\gamma)^{1/2}\gamma.
Next we show the strict convexity of  \eta in (3.5) with respect to  W . We need to verify

that   D_{W}^{2}\eta is positive definite. For this purpose it suffices to show the same for the
matrix ÃO(V) in (2.10) because we have the relation Ã0(V)  =(D_{V}W)^{T}D_{W}^{2}\eta D_{V}W . We

 Bydirect computation,using a  '( \rho)=\frac{V)p(\rho)}{\rho},  wehavecompute \tilde{A}^{0}(V)bytheexpression\tilde{A}^{0}(,=(D_{V}U)^{T}D_{V}W in (2.10) with  U=(D_{W}\eta)^{T}.

 D_{V}U= (\begin{array}{lll}
\underline{p'(\rho)}   -u   0
\rho      
0   1   0
0   0   b'(\gamma)
\end{array}) (D_{V}U)^{T}=(\begin{array}{lll}
\frac{p'(\rho)}{\rho}   0   0
-u   1   0
0   0   b'(\gamma)
\end{array}),
where  b'( \gamma)=\frac{2-3\gamma}{2(1-\gamma)^{1/2}} . Therefore we arrive at the expression

Ã0(  V )  =(^{\frac{p'(\rho)}{00\rho}}  \rho 00   \frac{2-3\gamma 00}{2(1-\gamma)}) (3.7)

Here we used the fact that  b'( \gamma)\beta'(\gamma)=\frac{2-3\gamma}{2(1-\gamma)} . Since we restrict to  \gamma<2/3 , we see that

ÃO(V) in (3.7) is (diagonal and) positive definite. Thus the condition (a) of Definition
2.1 has been verified.
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Condition (b): We need to show the matrix  D_{W}F(D_{W}^{2}\eta)^{-1}=A(U) in (2.5)
is symmetric. Since we have the relation Ã(V)  =(D_{V}U)^{T}A(U)D_{V}U in (2.12), it
suffices to show that Ã(V) is symmetric. We compute Ã(V) by using the expression
 \~{A}(V)=(D_{V}U)^{T}D_{V}F in (2.10). Technical computation gives

 D_{V}F=(\begin{array}{lll}
u   \rho   0
u^{2}+p'(\rho)   2\rho u   -(2-3\gamma)
0   -2(1-\gamma)^{1/2}   \frac{u}{(1-\gamma)^{1/2}}
\end{array})
Therefore we obtain

  \~{A}(v)=(\rho) -(2-3\gamma)p'(\rho)\rho u -\frac{(2-2-3\gamma 0}{2(1-\gamma)}
3u\gamma)) , (3.8)

where we used the fact that  -2(1-\gamma)^{1/2}b'(\gamma)=-(2-3\gamma) and  b'( \gamma)\frac{u}{(1-\gamma)^{1/2}}=\frac{2-3\gamma}{2(1-\gamma)}u.
This implies that Ã(V) is symmetric. Thus we have verified (b) of Definition 2.1.

Condition (c): Let  W=(\rho, \rho u, \beta(\gamma))^{T}\in \mathcal{O}_{W} (namely,  \rho>0 and  \gamma<2/3
by (3.3)) and assume that  W\in \mathcal{E} . Then we have  \beta(\gamma)=0 which implies  \gamma=0.
Therefore we have  W=(\rho, \rho u, 0)^{T} . In this case the associated  U in (3.6) becomes
 U=(a( \rho)-\frac{1}{2}u^{2}, u, 0)^{T} because  b(0)=0 . Therefore we see that  U\in \mathcal{M}= span  \{e_{1}, e_{2}\}.

Conversely, we assume that  U=(a( \rho)-\frac{1}{2}u^{2}, u, b(\gamma))^{T}\in \mathcal{M} . Then we have  b(\gamma)=0
which implies  \gamma=0 since  \gamma<2/3 . Therefore the corresponding  W becomes  W=

 (\rho, \rho u, 0)^{T}\in \mathcal{E} , where we used  \beta(0)=0 . Thus we have verified (c) of Definition 2.1.
Condition (d): To check the condition (d) of Definition 2.1, we have to calculate

the matrix  -D_{W}G(D_{W}^{2}\eta)^{-1}=L(U) in (2.5) for  W\in \mathcal{E} . Using  D_{W}G=D_{V}G(D_{V}W)^{-1}
and  D_{W}^{2}\eta=D_{V}U(D_{V}W)^{-1} with  U=(D_{W}\eta)^{T} , we can express  L(U) in the form

 L(U)=-D_{V}G(D_{V}U)^{-1} (3.9)

We see that

 (D_{V}U)^{-1}=(\begin{array}{lll}
\frac{\rho}{p'(\rho)}   \frac{\rho}{p'(\rho)}u   0
0   1   0
0   0   \frac{1}{b^{l}(\gamma)}
\end{array})
Also a direct computation yields

 D_{V}G=(\begin{array}{lll}
0   0   0
0   0   0
0   0   -d,(\gamma)
\end{array})
where  d( \gamma)=\frac{\gamma}{(1-\gamma)^{1/2}} so that  d'( \gamma)=\frac{2-\gamma}{2(1-7)^{3/2}} . Therefore we obtain

 L(U)=(\begin{array}{lll}
0   0   0
0   0   0
0   0   \frac{2-\gamma}{(1-\gamma)(2-3\gamma)}
\end{array}) , (3.10)
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where w  eused\frac{d'.(\gamma)}{b'(,),)}=\frac{2-\gamma}{(1-\gamma)(2-3\gamma),re1axa}
.Inparticular, wehaveL(U)=diag(0,0,l)forW\in \mathcal{E}(namely,  \gamma=0Th\dot{{\imath}}st\dot{{\imath}}onmatrix L  (U)\dot{{\imath}}ssymmetr\dot{{\imath}}candnonnegat\dot{{\imath}}
vedefin\dot{{\imath}}te
such that  kerL(U)=\mathcal{M}= span  \{e_{1}, e_{2}\} . Thus we have verified (d) of Definition 2.1
and the proof of Claim 2 is complete.  \square 

Let us derive the equation satisfied by the mathematical entropy (total energy)
 \eta(W) in (3.5). By direct computations, using (1.2), we have

  \{\rho(e(\rho)+\frac{1}{2}u^{2})+\frac{1}{2}\gamma^{2}\}_{t}
(3.11)

 + \{\rho u(e(\rho)+\frac{1}{2}u^{2})+\frac{1}{2}\gamma^{2}u+p(\rho)u-(2\gamma-
\frac{3}{2}\gamma^{2})u\}_{x}+\gamma^{2}=0,
where  e( \rho)=\int^{\rho}\frac{p(s)}{s^{2}}ds . Also we consider the energy form associated with our math‐
ematical entropy. Let us fix a constant equilibrium state  \overline{W}=(\overline{\rho},\overline{u}, 0)^{T}\in \mathcal{E} (see
(3.4)). The corresponding constant state  \overline{U} for  U=(D_{W}\eta)^{T} in (3.6) is given by

  \overline{U}=(e(\overline{\rho})+\frac{p(\overline{\rho})}{\overline{\rho}}-
\frac{1}{2}\overline{u}^{2},\overline{u}, 0)^{T} Therefore the associated energy form is given by

 \mathcal{H}(W)=\eta(W)-\eta(\overline{W})-\{\overline{U}, W-\overline{W}\rangle

 = \rho(e_{*}(\rho)+\frac{1}{2}(u-\overline{u})^{2})+\frac{1}{2}\gamma^{2} , (3.12)
where

  \epsilon_{*}(\rho):=e(\rho)-e(\overline{\rho})+p(\overline{\rho}) 
(\begin{array}{ll}
1   1
---   
\overline{\rho}\rho   
\end{array})= \int_{\overline{\rho}}^{\rho}\frac{p(s)-p(\overline{\rho})}{s^{2}}
ds.
We note that  e( \rho)=\int^{\rho}\frac{p(s)}{s^{2}}ds is a strictly convex function of  v= \frac{1}{\rho} with   \frac{d}{dv}e(\rho)=-p(\rho) .
By direct computations, using (3.11) and (1.2), we find that the equation satisfied by
the energy form is

  \{\rho(e_{*}(\rho)+\frac{1}{2}(u-\overline{u})^{2})+\frac{1}{2}\gamma^{2}\}
_{t}+\{   \rho u(e_{*}(\rho)+\frac{1}{2}(u-\overline{u})^{2})+\frac{1}{2}\gamma^{2}u
(3.13)

 +(p(\rho)-p(\overline{\rho}))(u-\overline{u})-(2\gamma  - \frac{3}{2}\gamma^{2})(u-\overline{u})\}+\gamma^{2}=0.
This equality plays an important role in deriving uniform a priori estimates of solutions.

Next we investigate the stability condition in Definition 2.4 for our system (3.1).
For this purpose we derive the corresponding symmetric system in the form of (2.9) for
the physical state variable  V=(\rho, u, \gamma)^{T} :

Ã0  (V)V_{t}+\~{A}(V)V_{x}=\tilde{H}(V) . (3.14)

Here we already derived the coefficient matrices ÃO(V) and Ã(V) in (3.7) and (3.8),
respectively. We compute the term  \tilde{H}(V) in (3.14) by the expression  \tilde{H}(V)=(D_{V}U)^{T}G
(see (2.10)) and find that

 \tilde{H}(V)=(\begin{array}{l}
0
0
-\frac{2-3\gamma}{2(1-\gamma)}\gamma
\end{array}) , (3.15)
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where we used   b'( \gamma)d(\gamma)=\frac{2-3\gamma}{2(1-\gamma)}\gamma . Consequently, we have

 \tilde{H}(V)=-\tilde{L}_{0}(V)V, \tilde{L}_{0}(V)=(\begin{array}{lll}
0   0   0
0   0   0
0   0   \frac{2-3\gamma}{2(1-\gamma)}
\end{array}) (3.16)

We remark that this matrix  \tilde{L}_{0}(V) is not the relaxation matrix  \tilde{L}(V) for the system
(3.14). In fact, we can compute  \tilde{L}(V)=-D_{V}\tilde{H}(V) directly by using (3.15) and obtain

 \tilde{L}(V)=(\begin{array}{lll}
0   0   0
0   0   0
0   0   \frac{2-6\gamma+3\gamma^{2}}{2(1-\gamma)^{2}}
\end{array}) (3.17)

Now we linearize the symmetric system (3.14) at the constant state  \overline{V}=(\overline{\rho},\overline{u}, 0)^{T}
corresponding to the constant equilibrium state  \overline{W}=(\overline{\rho},\overline{\rho}\overline{u}, 0)^{T}\in 
\mathcal{E} . We have

 \~{A}^{0}V_{t}+\~{A} V_{x}+\tilde{L}V=0 , (3.18)

where Ã0, Ã and  \tilde{L} are constant matrices given by

Ã0  =  (\begin{array}{lll}
\underline{p'(\overline{\rho})}-   0   0
\rho      
0   \overline{\rho}   0
0   0   1
\end{array})=  (\begin{array}{lll}
\frac{p'(\overline{\rho})}{\overline{\rho}}\overline{u}   p'(\overline{\rho})   
0
p'(\overline{\rho})   \overline{\rho}\overline{u}   -2
0   -2   \overline{u}
\end{array}) ,  \tilde{L}=(\begin{array}{lll}
0   0   0
0   0   0
0   0   1
\end{array})
Note that  \tilde{L}(\overline{V})=\tilde{L}_{0}(\overline{V})=diag(0,0,1) .

We check the stability condition for the system (3.18).

Claim 3. The linearized system (3.18) corresponding to (1.2) satisfies the stability con‐
dition in the sense of Definition 2.4.

Proof. Let  \phi=(\phi_{1}, \phi_{2}, \phi_{3})^{T}\in \mathbb{R}^{3} and suppose that  \tilde{L}\phi=0 and  \muÃ0  \phi+ Ã  \phi  =0 for some
 \mu\in \mathbb{R} . Then it follows from  \tilde{L}\phi=0 that  \phi_{3}=0 . For this  \phi the equality  \muÃ0  \phi+ Ã  \phi  =0

gives

  \frac{p'(\overline{\rho})}{\overline{\rho}}(\mu+\overline{u})\phi_{1}+
p'(\overline{\rho})\phi_{2}=0,
 p'(\overline{\rho})\phi_{1}+\overline{\rho}(\mu+\overline{u})\phi_{2}=0, -
2\phi_{2}=0.

From the third equation we have  \phi_{2}=0 . Substituting it into the second equation,
we get  \phi_{1}=0 . Consequently, we have  \phi=0 . Thus we have verified the stability
condition.  \square 

We have checked Claims 1, 2 and 3 for our model system (1.2). As the consequence
we can apply the general theory reviewed in the previous section to the system (1.2).
In particular, as an application of Theorems 2.8 and 2.9, we have the following result
on the global existence and decay of solutions.
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Theorem 3.1 (Complex fluids). Consider the initial value problem for (1.2) with the
initial data  (\rho_{0}, u_{0}, \gamma_{0}) . Let  (\overline{\rho},\overline{u}, 0) be a constant state with  \overline{\rho}>0 and  \overline{u}\in \mathbb{R}.

(i) Let  s\geq 2 . Suppose that  (p_{0}-\overline{p}, u_{0}-\overline{u}, \gamma_{0})\in H^{s} and put  E_{0}=\Vert(\rho_{0}-\overline{p}, u_{0}-\overline{u}, \gamma_{0})\Vert_{H^{S}}
.
If  E_{0} is suitably small, then the initial value problem for (1.2) has a unique global
solution satisfying  (\rho-\overline{p}, u-\overline{u}, \gamma)\in C^{0}([0, \infty);H^{s})\cap 
C^{1}([0, \infty);H^{s-1}) . This solution
satisfies the uniform estimate

  \Vert(\rho-\overline{\rho}, u-\overline{u}, \gamma)(t)\Vert_{H^{s}}^{2}+
\int_{0}^{t}\Vert\partial_{x}(\rho, u)(\tau)\Vert_{H^{s-1}}^{2}+
\Vert\gamma(\tau)\Vert_{H^{s}}^{2}d\tau\leq CE_{0}^{2}
for  t\geq 0 . Moreover, the solution  (\rho, u, \gamma) converges to the constant state  (\overline{\rho},\overline{u}, 0) as
  tarrow\infty , namely, we have  \Vert\partial_{x}^{l}(\rho-\overline{\rho}, u-\overline{u}, \gamma)(t)\Vert_{L}
\inftyarrow 0 for   tarrow\infty , where  0\leq l\leq s-1.

(ii) Let  s\geq 3 . Suppose that  (\rho_{0}-\overline{\rho}, u_{0}-\overline{u}, \gamma_{0})\in H^{S}\cap L^{1} and put  E_{1}=\Vert(\rho_{0}-
 \overline{\rho},  u_{0}-\overline{u},  \gamma_{0})\Vert_{H^{S}\cap L^{1}} . If  E_{1} is small, then the global solution  u obtained in (i) satisfies
the following decay estimates:

 \Vert\partial_{x}^{k}(\rho-\overline{\rho}, u-\overline{u}, \gamma)(t)\Vert_{L^
{2}}\leq CE_{1}(1+t)^{-n/4-k/2}, 0\leq k\leq s-1,

 \Vert\partial_{x}^{k}\gamma(t)\Vert_{L^{2}}\leq CE_{1}(1+t)^{-n/4-(k+1)/2} , 
0\leq k\leq s-2.

Remark 4. The global existence result in Theorem 2.9 (i) was proved by Hua and Yong
[7] in a case where  \overline{u}=0 . Their proof is based on the straightforward computations.

Remark 5. We can prove a similar global existence result in (i) for initial data in the
Besov space  B_{2,1}^{3/2} . Also we can show the decay estimate similar to the one in (ii) for
initial data in  B_{2,1}^{3/2}\cap\dot{B}_{2,\infty}^{-1/2} For the details, we refer the readers to [18, 19, 20].
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