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A one dimensional free boundary
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1 Introduction

This works is motivated by water swelling which occurs in each microscopic pore of

concrete materials. Concrete materials has an infinite number of pores at microscopic

level and the liquid of water exists in each pore. The pore is gradually filled by water

due to the effects of the moisture content which distributes at macroscopic scale in the

entire material. Such topics is strongly relevant in cold regions, where buildings exposed

to extremely low temperatures undergo freezing and build microscopic ice lenses that

ultimately lead to the mechanical damage of the material (cf. [20]). Our goal is to establish
a two‐scale model for moisture transport suitable for cementitious mixtures. In this paper,

as the first investigation of our study, we propose a one‐dimensional microscopic problem

posed on a halfline with a moving boundary at one of the ends, and report the result

which is concerned with the existence and uniqueness of a solution locally in time of this

problem.

Here, we state the physical background of our free boundary problem describing water
swelling. In this research we simplify one pore as a one dimensional halfline. Since we

are interested in how far the water content can actually push a priori unknown moving

boundary of swelling, we assume that pore depth is infinite although the actual physical

length is finite. The timespan is [0, T] and the pore is  [a, +\infty ) with  a>0 . Also, the
boundary  z=a denotes the edge of the hole which touches wetness. The interval  [a, s(t)]
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indicates the region of diffusion of the water content  u(t) , where  s(t) is the moving interface

of the water region, and  u(t) is distributed in the region denoted by  Q_{s}(T) :

 Q_{s}(T) :=\{(t, z)|0<t<T, a<z<s(t)\}.

Based on the background, our free boundary problem, which denotes (P)  :=(P)_{u_{0},s_{0},h},
is formulated as follows by equations for the water content  u and the front of the water

content region  s :

 u_{t}-ku_{zz}=0 for  (t, z)\in Q_{s}(T) , (1.1)

 -u_{z}(t, a)=\beta(h-Hu(t, a))) for  t\in(0, T) , (1.2)

 -u_{z}(t, s(t))=u(t, s(t))s_{t}(t) for  t\in(0, T) , (1.3)

 s_{t}(t)=a_{0}(u(t, s(t))-\varphi(s(t))) for  t\in(0, T) , (1.4)

 s(0)=s_{0},  u(0, z)=u_{0}(z) for  z\in[a, s_{0}] . (1.5)

where  k is a diffusion constant of the liquid of water,  \beta is a given functions on  \mathbb{R} which

is equal to  0 for negative input and takes a positive value for positive input,  h is a given

function on  [0, T] , respectively,  H and  a_{0} are given positive constants,  \varphi is also given
function on  \mathbb{R} and  s_{0} and  u_{0} are the initial data.

In our system, (1.1) is a diffusion equation of the water content  u in the unknown region
 [a, s] , and the boundary condition (1.2) implies that the moisture content  h inflows if  h is
present more than  u at  z=a . Also, the boundary condition (1.3) at  z=s(t) is obtained
by the mass conservation law near the free boundary. Indeed, if the flux  u_{z}(t, a) at  z=a

actives on the time interval  [t, t+\triangle t] for  t>0 , namely,  s_{t}(t)>0 , then, it holds that

  \int_{a}^{s(t)}u(t, z)dz-ku_{z}(t, a)\triangle t=\int_{a}^{s(t+\triangle t)}
u(t+\triangle t, z)dz.
Hence, by dividing  \triangle t in both side and letting  \triangle tarrow 0 we obtain that

 -ku_{z}(t, a)= \int_{a}^{s(t)}u_{t}(t, z)dz+s_{t}u(t, s(t)) .

By  u_{t}=ku_{zz} in (1.1), we derive that

 -ku_{z}(t, a)= \int_{a}^{s(t)}ku_{zz}(t, z)dz+s_{t}u(t, s(t))
 =ku_{z}(t, s(t))-ku_{z}(t, a)+s_{t}u(t, s(t)) .

Thus, the boundary condition (1.3) at  z=s(t) can be obtained. Moreover, the ordinary
differential equation (1.4) describes the growth rate of the free boundary  s and it is
determined by the balance between the water content  u(t, s(t)) at  z=s(t) and  \varphi(s(t)) .

The function  \varphi(s(t)) represents the effect to suppress the growth of the free boundary,

that is, we impose the breaking mechanism for the free boundary.
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From the mathematical point of view, our free boundary problem resembles one phase

Stefan problem for superheating, phase transitions, evaporation, and crystal dissolution

and precipitation ([17, 18, 19, 21] and reference therein). Also, the existing works for
the mathematical modeling of swelling are Fasano and collaborators [6, 7] and Zaal [22].
The main difference between these problems and our problem is the boundary conditions

at the edge of the interval. In our problem we impose flux boundary conditions on both

boundaries, while the homogeneous Dirichlet boundary condition is imposed on one of the

boundary in the above problems. In particular, (1.2) is the condition described the strong
connection between the moisture content  h and the relative humidity  u in one pore, and

this is a significant feature of our free boundary problem to emphasize.

Also, from the viewpoint on free boundary problems in porous materials, Muntean and

Böhm [14] originally proposed a free boundary problem as a mathematical model for
concrete carbonation process in one dimension and Aiki and Muntean [3, 4, 5] proved the
existence and uniqueness of a solution for a simplified Muntean‐Böhm model and obtained

the large time behavior of the free boundary at   tarrow\infty . Also, Sato et al [1, 16] proposed
the following free boundary problem as a mathematical model of adsorption phenomenon
in one pore:

 \rho_{g}u_{t}-ku_{xx}=0 for  (t, z)\in D_{s}(T) , (1.6)

 u(t, L)=h(t) for  t\in(0, T) , (1.7)

 ku_{z}(t, s(t))=(\rho_{a}-\rho_{g}u(t, s(t)))s_{t}(t) for  t\in(0, T) , (1.8)

 s_{t}(t)=\alpha(s(t), u(t, s(t))) for  t\in(0, T) , (1.9)

 s(0)=s_{0},  u(0, z)=u_{0}(z) for  z\in[s_{0}, L] , (1.10)

where  \rho_{a} is a constant of the density of the  aqueous-H_{2}O,  \rho_{g} is a constant of the amount of
saturated water vapor,  k is a diffusion constant of water in air,  \alpha is a Lipschitz continuous

function on  \mathbb{R}^{2},  h is a given boundary function on  [0, T],  s_{0} is a positive constant, and
 u_{0} is a given function on  [s_{0}, L] . In this study, they consider a one dimensional interval

 [0, L] as one hole of the media, and  z=0 and  z=L represent the bottom of the hole

and the top of the hole, respectively. Also, the interval  [0, s(t)] and  [s(t), L] indicate the

water region and the air region, and  u is the relative humidity in the hole distributed

in  D_{s}(T)=\{(t, x)|0<t<T, s(t)<z<L\} . This model is quite close to our model,

and it is a significant feature of their model that the boundary condition (1.7) which
represents that the relative humidity  u has a direct contact with the moisture content
 h at the edge of the boundary. For the free boundary problem  (1.6)-(1.10) , Sato et al

showed the existence of a solution locally in time. Also, Aiki and Murase [3] proved the
existence of a solution globally in time of the above problem with  \alpha(s, u)=a(u-\varphi(s)) in

(1.8), where  \varphi is a given function on  \mathbb{R} which represents the the rate from water‐droplet
to moisture based on an attractive force between the wall at  z=0 and the water‐droplet,

and also clarified the large time behavior of the solution as  tarrow\infty.

Recently, based on the results of Sato et al [16] and Aiki and Murase [2], Kumazaki et

147



148

al [11] proposed a macro‐micro model of moisture transport with adsorption phenomenon
consisted of a diffusion equation for moisture in the entire material (macroscopic scale)
and a free boundary problem describing adsorption phenomenon based on the system

 (1.6)-(1.9) in infinite pores (microscopic scale), and prove the local existence of a solution
of this problem. In future, by using the idea of the two scale model we try to consider
a two‐scale model coupled with a diffusion equation of moisture distributed in the entire

material and a free boundary problem describing water swelling in infinite microscopic

pores. For this topics, we note in detail in Section 4.

Our paper is organized as follows: In Section 2, we state the assumptions and our
main theorem concerned with the local existence and uniqueness of a solution for the

free boundary problem. In Section 3, we introduce the outline of the proof of our main

theorem without the detailed calculation. In Section 4, we note some remarks for the

global existence of a solution of (P), and a two‐scale problem for water swelling which
consists a diffusion equation for the relative humidity distributed in the entire materials

and a free boundary problem describing water swelling in infinite pores.

2 Assumptions

Throughout this paper, we assume the following restrictions on the model parameters
and functions:

(A1)  a,  a_{0},  H,  k and  T are positive constants.
(A2)  h\in W^{1,2}(0, T)\cap L^{\infty}(0, T) with  h\geq 0 on  (0, T) .
(A3)  \beta\in C^{1}(\mathbb{R})\cap W^{1,\infty}(\mathbb{R}) such that  \beta=0 on  (-\infty, 0], and there exists  r_{\beta}>0 such

that  \beta'>0 on  (0, r_{\beta}) and  \beta\equiv k_{0} on  [r_{\beta}, +\infty ), where  k_{0} is a positive constant.
(A4)  \varphi\in C^{1}(\mathbb{R})\cap W^{1,\infty}(\mathbb{R}) such that  \varphi=0 on  (-\infty, 0], and there exists  r_{\varphi}>0 such

that  \varphi'>0 on  (0, r_{\varphi}) and  \varphi\equiv c_{0} on  [r_{\varphi}, +\infty ), where  0<c_{0} \leq\min\{2\varphi(a), |h|_{L^{\infty}(0},{}_{T)}H^{-1}\}.
(A5)  s_{0}>a and  u_{0}\in H^{1}(a, s_{0}) such that  \varphi(s_{0})\leq u_{0}(z)\leq|h|_{L^{\infty}(0},{}_{T)}H^{-1} on  [a, s_{0}].

For  T>0 , let  s be a function on  [0, T] and  u be a function on  Q_{s}(T) . Now, we define

a solution to  (P)_{u_{0},s_{0},h} on  [0, T] in the following way.

Definition of solutions for (P): We call that pair  (s, u) a solution to  (P)_{u_{0},s_{0},h} on  [0, T]
if the following conditions  (S1)-(S6) hold:

(S1)  s,  s_{t}\in L^{\infty}(0, T),  a<s on  [0, T],  u\in L^{\infty}(Q_{s}(T)),  u_{t},  u_{zz}\in L^{2}(Q_{s}(T)) and
 t\in[0, T]arrow|u_{z}(t, \cdot)|_{L^{2}(a,s(t))} is bounded;

(S2)  u_{t}-ku_{zz}=0 on  Q_{s}(T) ;
(S3)  -ku_{z}(t, a)=\beta(h(t)-Hu(t, a)) for a.e.  t\in[0, T] ;
(S4)  -ku_{z}(t, s(t))=u(t, s(t))s_{t}(t) for a.e.  t\in[0, T] ;
(S5)  s_{t}(t)=a_{0}(u(t, s(t))-\varphi(s(t))) for a.e.  t\in[0, T] ;
(S6)  s(0)=s_{0} and  u(0, z)=u_{0}(z) for  z\in[a, s_{0}].

148



149

Our main result of this paper is the existence and uniqueness of a time local solution

for the problem  (P)_{u_{0},s_{0},h}.

Theorem 1 (cf. [12]) Let  T>0 . If  (A1)-(A5) hold, then there exists  T^{*}>0 such that
 (P)_{u_{0},s_{0},h} has a unique solution  (s, u) on  [0, T^{*}] satisfying  \varphi(a)\leq u\leq|h|_{L^{\infty}(0},{}_{T)}H^{-1}a.e.
on  Q_{s}(T^{*}) .

To prove Theorem 1, we transform  (P)_{u_{0},s_{0},h} , initially posed in a non‐cylindrical domain,

to a cylindrical domain. Let  T>0 . For given  s\in W^{1,2}(0, T) with  a<s(t) on  [0, T] , we

introduce the following new function obtained by the indicated change of variables:

ũ  (t, y)=u(t, (1-y)a+ys(t)) for  (t, y)\in Q(T)  :=(0, T)\cross(0,1) .

By using the function ũ,  (P)_{\~{u}_{0},s_{0},h} becomes:

ũt—   \frac{k}{(s(t)-a)^{2}}\~{u}_{yy}=\frac{ys_{t}}{s(t)-a}\~{u}_{y} for  (t, z)\in Q(T) , (2.1)

‐   \frac{k}{s(t)-a}\~{u}_{y}(t, 0)=\beta (  h —Hũ(t,  0 )) for  t\in(0, T) , (2.2)

‐   \frac{k}{s(t)-a}\~{u}_{y}(t, 1)=u(t, s(t))s_{t}(t) for  t\in(0, T) , (2.3)

 s_{t}=a_{0}(\~{u} (t, 1)-\varphi(s(t)) for  t\in(0, T) , (2.4)

 s(0)=s_{0} , (2.5)

ũ  ( 0,  y)  = ũ  ( 0,  y)=u_{0}(1-y)a+ys(0)) (  := ũ0 (y)) for  y\in[0,1] . (2.6)

Definition of solutions for  (P)_{\overline{u}_{0},s_{0},h} : For  T>0 , let  s be functions on  [0, T] and ũ be

a function on  Q(T) , respectively. We call that a pair (  s , ũ) is a solution of  (P)_{\~{u}_{0},s_{0},h} on
 [0, T] if the conditions  (S' 1)-(S' 2) hold:

 (S' 1)s,  s_{t}\in L^{\infty}(0, T),  a<s on  [0, T] , ũ  \in W^{1,2}(Q(T))\cap L^{\infty}(0, T;H^{1}(0,1))\cap
 L^{2}(0, T;H^{2}(0,1))\cap L^{\infty}(Q(T)) .

 (S' 2)(2.1)-(2.6) hold.

For  (P)_{\~{u}_{0},s_{0},h} , we note that the following theorem which is concerned with the existence
and uniqueness of solutions holds:

Theorem 2 (cf. [12]) Let  T>0 . If  (A1)-(A5) hold, then there exists  T^{*}>0 such that
 (P)_{\~{u}_{0},s_{0},h} has a unique solution (  s , ũ) on  [0, T^{*}].

By Theorem 2, we see that for a solution (  s , ũ) of  (P)_{\~{u}_{0},s_{0},h} on  [0, T^{*}] , a pair of the
function  (s, u) with the variable

 u(t, z)  :=\~{u}  (t,  \frac{z-a}{s(t)-a}) for  z\in[a, s(t)] (2.7)

149



150

is a solution of  (P)_{\~{u}_{0},s_{0},h} . Finally, by proving that  (s, u) satisfies  \varphi(a)\leq u\leq|h|_{L^{\infty}(0},{}_{T)}H^{-1}
on  Q_{s}(T^{*}) , the pair  (s, u) is the desired solution satisfying Theorem 1.

3 Outline of the proof

In this section, we restrict ourselves only the outline of the proof, so we omit the detailed

calculation. First, we consider the following problem  (AP)_{\overline{u}_{0},s,h}^{\sigma} for given  s :

ũt  (t, y)- \frac{k}{(s(t)-a)^{2}}\~{u}_{yy}(t, y)=\frac{ys_{t}(t)}{s(t)-a}\~{u}
_{y}(t, y) for  (t, y)\in Q(T) , (3.1)

‐   \frac{k}{s(t)-a}\~{u}_{y}(t, 0)=\beta (  h(t) —Hũ(t,  0) ) for  t\in(0, T) , (3.2)

‐   \frac{k}{s(t)-a}\~{u}_{y}  (t, l)  = a0  \sigma (ũ(t, 1))  (\sigma (ũ(t,  1 )  )-\varphi(s(t))) for  t\in(0, T) , (3.3)

ũ(0, y)  = ũ0(y) for  y\in[0,1] , (3.4)

where and  \sigma is a lower cut‐off function on  \mathbb{R} given by

 \sigma(r)=\{\begin{array}{l}
r if r>\varphi(a) ,
\varphi(a) if r\leq\varphi(a) .
\end{array}
In the proof of the existence of solutions, we use the abstract theory of evolution equa‐

tions in Hilbert spaces governed by time‐dependent subdifferentials which is characterized

by the following form (cf. [10] and references cited therein):

 u_{t}(t)+\partial\varphi^{t}(u(t))\ni l(t) in  H for  t\in[0, T] (3.5)

where  \varphi^{t} is a proper, lower semi‐continuous, convex function on Hilbert spaces  H for

 t\in[0, T] , and  \partial\varphi^{t} is the subdifferential of  \varphi^{t} defined by

 \partial\varphi^{t}(u)  := {  z^{*}\in H|(z^{*}, v-u)_{H}\leq\varphi^{t}(v)-\varphi^{t}(u) for  v\in H},

and  l is a given  H‐valued function on  [0, T] . For  (AP)_{\~{u}_{0},s,h} , by setting  \varphi^{t} on  H=L^{2}(0,1)
defined by

 \varphi^{t}(u):=\{\begin{array}{l}
\frac{k}{2(s(t)-a)^{2}}\int_{0}^{1}|u_{y}(y)|^{2}dy+\frac{1}{s(t)-a}\int_{0}
^{u(1)}a_{0}\sigma(\xi)(\sigma(\xi)-\varphi(s(t)))d\xi
- \frac{1}{s(t)-a}\int_{0}^{u(0)}\beta(h(t)-H\xi)d\xi if u\in D(\psi^{t}) ,
+\infty if otherwise,
\end{array}
where  D(\varphi^{t})= {  z\in H^{1}(0,1)|z\geq 0 on  [0,1] } for  t\in[0, T] , and considering   \frac{ys_{t}(t)}{s(t)-a}\~{u}_{y}(t)
with given  s\in W^{1,\infty}(0, T) as  l(t) , we apply (3.5). As a property of the function  \varphi we
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note that its subdifferential realizes the second term in the left hand side of (3.1) with
the boundary conditions (3.2) and (3.3).

For  s\in W^{1,2}(0, T) , we take a sequence  \{s_{n}\}\subset W^{1,\infty}(0, T) such that  s_{n}arrow s in

 W^{1,2}(0, T) as  n  arrow\infty , and we consider the limiting process with respect to  n after

obtaining some energy estimates of  \~{u}_{n} independent of  n , where  \~{u}_{n} is a solution on  [0, T]
of  (AP)_{\overline{u}_{0},s_{n},h}^{\sigma} for each  n . Then, we can find a solution ũ of  (AP)_{\overline{u}_{0},s,h}^{\sigma} on  [0, T] for given

 s\in W^{1,2}(0, T) .

Next, we define the set

 M(T, s_{0}, a'):= {  s\in W^{1,2}(0, T)|a'\leq s<L on  [0,  T],  s(0)=s_{0} }.

Also, for given  s\in M(T, s_{0}, a') , we define the operator  \Phi :  M(T, s_{0}, a')arrow V(T)  :=

 W^{1,2}(0, T;L^{2}(0,1))\cap L^{\infty}(0, T;H^{1}(0,1)) by  \Phi(s)  = ũ, where ũ is a solution of  (AP)_{\overline{u}_{0},s,h}^{\sigma},
and the operator  \Gamma_{T} :  M(T, s_{0}, a')arrow W^{1,2}(0, T) by   \Gamma_{T}(s)=s_{0}+\int_{0}^{t}a_{0}(\sigma(\Phi(s)(\tau, 1))-
 \varphi(s(\tau)))d\tau for  t\in[0, T] . Moreover, for any  K>0 we put

 M_{K}(T) :=\{s\in M(T, s_{0}, a')||s|_{W^{1,2}(0,T)}\leq K\}.

The solution of  (P)_{\~{u}_{0},s_{0},h} is obtained by the following procedure: First, by the continuous

dependence of a solution ũ of  (AP)_{\overline{u}_{0},s,h}^{\sigma} for given  s in a suitable subspace of  W^{1,2}(0, T)
we show that  \Gamma_{T_{1}} is a contraction mapping on  M_{K}(T_{1}) in  W^{1,2}(0, T_{1}) for some  T_{1}<T.

Next, by Banach’s fixed point theorem, we prove the existence of a time local solution of

(P)  \overline{u}_{0},s_{0},h\sigma , where  (P)_{\overline{u}_{0},s_{0},h}^{\sigma} is a problem replaced ũ(t, 1) by  \sigma  (\~{u} (t, s(t)) . Therefore, we can
prove that Theorem 2 holds.

Finally, by using (2.7), the solution of  (P)_{\overline{u}_{0},s_{0},h}^{\sigma} is a solution of  (P)_{u_{0},s_{0},h}^{\sigma} , and by the
maximum principle, we observe that a solution  (s, u) of  (P)_{u_{0},s_{0},h}^{\sigma} on  [0, T] satisfies  \varphi(a)\leq
 u\leq|h|_{L^{\infty}(0},{}_{T)}H^{-1} on  Q(T) , and remove  \sigma.

4 Further topics

4.1 Global solutions

To obtain a globally in time solution of  (P)_{u_{0},s_{0},h} , we challenge to extend the existing
locally in time solution to  (P)_{\overline{u},s_{0},h}^{\sigma_{0}} . However, if the free boundary  s equals to the edge

of the hole  a , then  s-a=0 , that is, there is no domain to find a solution. Therefore, we

need to guarantee that  s is strictly grater than  a at the maximal existence time. Since
the free boundary  s is not always monotone with respect to time  t , it is not easy to prove

such a strict lower bound on the sharp interface position. In the forthcoming paper [13],
by assuming that the initial data  u_{0} is small in some sense and is strictly grater than

 \varphi(a) , we guarantee that the free boundary  s is strictly grater than  \varphi(a) , and show the
existence and uniqueness of a globally in time solution of  (P)_{u_{0},s_{0},h}.
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4.2 Two‐scale model

As the mentioned in Introduction, our long‐term goal is to construct a two‐scale model
for moisture transport suitable for cementitious mixtures. The main idea of so‐called two

scale model is established in [9], and is applied in [8, 11, 15]. Based on this idea, we chal‐
lenge to consider a two‐scale model describing water swelling in porous materials, where

at the macroscopic scale the transport of moisture follows a porous‐media‐like equation,

while at the microscopic scale the moisture is involved in an adsorption‐desorption process

leading to a strong local swelling of the pores. One of the expected problem is:

 h_{t}-\triangle h=\beta(h(t, x)-Hu(t, x, a(x)) for  (t, x)\in(0, T)\cross\Omega , (4.1)

 u_{t}-ku_{zz}=0 on  \tilde{Q}_{s}(T) (4.2)

 -u_{z}(t, x, a(x))=\beta(h(t, x)-Hu(t, x, a(x))) for  (t, x)\in(0, T)\cross\Omega , (4.3)

 -u_{z}(t, x, s(t, x))=u(t, x, s(t, x))s_{t}(t, x) for  (t, x)\in(0, T)\cross\Omega , (4.4)

 s_{t}(t, x)=a_{0}(u(t, x, s(t, x))-\varphi(s(t, x))) for  (t, x)\in(0, T)\cross\Omega . (4.5)

 h(0, x)=h_{0}(x),  s(0, x)=s_{0}(x) for   x\in\Omega , (4.6)

 u(0, x, z)=u_{0}(x, z) for  (x, z)\in\Omega\cross[a, s_{0}] , (4.7)

where  \Omega is a bounded smooth domain in  \mathbb{R}^{3} which is occupied by cementitious materials,

and  h represents the relative humidity distributed in  \Omega , and  \beta,  k,  H and  a_{0} are the same

function and positive constants as in (P). Also,  h_{0},  s_{0} are given function on  \Omega and  u_{0} is
also given function on  \Omega\cross[a, s_{0}(x)].

As the above model, we consider a macro domain  \Omega and a micro domain for each
  x\in\Omega . In the macro domain  \Omega , we consider the diffusion equation (4.1) of moisture.
On the other hand, we regard that the micro domain is one pore of the material at each
  x\in\Omega , and each pore is a one dimensional halfline  [a(x), +\infty] . Also, we suppose that

the halfline has the water content region  [a(x), s(t, x)] and a priori unknown swelling

space  [s(t, x), +\infty] , where  s=s(t, x) is the front of the water content region in the
halfline at each   x\in\Omega , and the water content  u=u(t, x, z) is distributed in  \tilde{Q}_{s}(T)  :=

 \{(t, x, z)|(t, x)\in(0, T)\cross\Omega, a(x)<z<s(t, x)\} . The system  (4.2)-(4.5) corresponds to

the free boundary problem  (1.1)-(1.4) for each   x\in\Omega , and  (4.2)-(4.5) indicates that  (1.1) ‐

(1.4) holds in each pore for each   x\in\Omega . In these settings, we consider infinite numbers
of the free boundary problems all at once. As one of the significant feature of our model,

by  \beta(h(t, x)-Hu(t, x, s(t, x)) in (4.1) and (4.3) we consider the connection between the
macro domain and the micro domain, and attempt to consider how the structure on one

of the scale affects the structure on another scale. The constant  H is called upscalling

constant, and by this constant  H we can consider the microscopic function at macroscopic
scale. Thus, our two scale model consists of a diffusion equation of the relative humidity

at macroscopic scale and an infinite free boundary problems describing water swelling at

microscopic scale. In the future, we clarify the dependence between the relative humidity
 h at macroscopic scale and the water content  u at microscopic scale, and build and study

a model for the transport of moisture suitable for cementitious mixtures.
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