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1 Problem and main results

1.1 Problem and basic facts

In this note, we are concerned with the existence of the global bounds for the
Sobolev norm of time‐global solutions for a semilinear parabolic equations
involving the critical Sobolev exponent.

Let N\geq 3,  \Omega\subset \mathbb{R}^{N} be a smooth domain and let  \dot{H}^{1}(\Omega) be a homogeneous
Sobolev space defined as a closure of  C_{0}^{\infty}(\Omega) by the homogeneous Sobolev
norm  \Vert\nabla  \Vert_{2} , where  \Vert  \Vert_{r} denotes the standard  L^{r}‐norm. Let 2

 *

 := \frac{2N}{N-2}
be the critical Sobolev exponent of the Sobolev embedding  \dot{H}^{1}\mapsto L^{p} . It is
known that  \dot{H}^{1}\mapsto L^{2^{*}} is continuous but fails to be compact. We consider

(P)  \begin{array}{ll}
\partial_{t}u = Au+u|u|^{p-2}   in \Omega\cross(0, T_{m}) ,
u|_{t=0} = u_{0}   in \Omega
\end{array}
with the homogeneous boundary condition

 u=0 on  \partial\Omega\cross(0, T_{m})

if  \partial\Omega\neq\emptyset , where  u_{0}\in L^{\infty}\cap H^{1} for the sake of simplicity,  T_{m} denotes the
maximal existence time of the classical solution  u of (P). A solution with
  T_{m}=\infty is called as a time‐global solution. In the main body of this note,
we assume  p=2^{*},  \Omega=\mathbb{R}^{N} and  u_{0}\geq 0.

155



156

In this note, we are concerned with the validity of the following global
bounds for time global solutions  u :

  \sup_{t>0}\Vert Vu(t)\Vert_{2}<\infty . (1.1)

As is shown in the proof of Theorem 1.2, the analysis of the validity of a
bound of the form (1.1) is a first step for the analysis of the asymptotic
behavior of a time‐global solution  u.

Note that by the decreasing property of the energy  J along the orbit of
 u (see (1.8) below), (1. 1) is equivalent to

  \sup_{t>0}\Vert u(t)\Vert_{p}<\infty . (1.2)

The aim of this note is to introduce an argument to establish the validity of
(1.2) for the case where  p=2^{*},  \Omega=\mathbb{R}^{N} and  u is a nonnegative time‐global
solution of (P).

Time‐local existence of a solution We review basic facts concering the
time local existence of solutions of (P) which is needed in proving main
results. For the proof of facts stated in this paragraph, see e.g. Brezis‐
Cazenave [1], Ruf‐Terraneo [21], and Weissler [25].

We consider the solution of (P) in the following sense:

 u\in C^{2,1}(\mathbb{R}^{N}\cross(0, T_{m}))\cap C^{1}((0, T_{m});L^{2})\cap C(
[0, T_{m});H^{1}) . (1.3)

The solution in this class is easily constructed. Indeed, since  u_{0}\in L^{\infty} , the
existence of a classical solution of (P) is a standard fact and for  u_{0}\in H^{1},
a solution  u\in C^{1}((0, T_{m});L^{2})\cap C([0, T_{m});H^{1}) is constructed, see e.g. in
Brezis‐Cazenave [1], Weissler [25] and Ruf‐Terraneo [21].

Since  u in the class (1.3) is a classical solution, it satisfies the blow‐up
alternative in  L^{\infty} ‐sense:

if   T_{m}<\infty , then   \lim_{tarrow T_{m}}\Vert u(t)\Vert_{\infty}=\infty . (1.4)

It is also well known that this class of solution satisfies the integral equation

 u(t)=e^{t\triangle}u_{0}+ \int_{0}^{t}dse^{(t-s)\triangle}u(s)|u(s)|^{p-2} (1.5)

associated with (P).
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The energy structure By multiplying  \partial_{t}u to both sides of (P) and inte‐
grating over  \mathbb{R}^{N} , we (formally) obtain the energy equality

  \Vert\partial_{t}u(t)\Vert_{2}^{2}=-\frac{d}{dt}J(u(t)) , (1.6)

where  J denotes the energy functional assocated with (P) defined by

 J(u)= \frac{1}{2}\Vert Vu\Vert_{2}^{2}-\frac{1}{p}\Vert u(t)\Vert_{p}^{p}.
It is known that solutions  u of (P) satisfying (1.3) actually satisfy (1.6) for
any  t\in(0, T_{m}) .

In the main body of this note, we assume that  p=2^{*},  \Omega=\mathbb{R}^{N} and  u is a
nonnegative time‐global solution of (P). In this case the concavity argument
(this name comes from the concavity of a part  - \frac{1}{p}\Vert u\Vert_{p}^{p} in the energy func‐
tional) of Payne‐Sattinger [22] and Levine [17] for bounded domain together
with the comparison argument implies that

  \lim_{tarrow\infty}J(u(t))\geq 0 (1.7)

and (1.6) and (1.7) imply the existence of  d\geq 0 satisfying

 J(u_{0})\geq J(u(t))\downarrow d as   tarrow\infty , (1.8)

see Mizoguchi [18, Lemma 2.4].

Remark 1.1

In this note, we assume that the nonnegativity of solution of (P) which
is only used to assure (1.8), in other words, to exclude the existence of a
solution satisfying

  T_{m}=\infty and   \lim_{tarrow\infty}J(u(t))=-\infty . (1.9)

For bounded  \Omega , we can exclude the existence of such solutions by using
the concavity argument. In an unbounded domain case, we also rely on
the comparison argument to exclude a solution as in (1.9) and we need the
nonnegativity assumption of solutions for the comparision. 1
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1.2 Known results and motivation for main results

The investigation of the global bounds of the form (1.1) is initiated in Ôtani
[20] in the setting of an abstract evolution equation theory governed by sub‐
differential operators. The systematic analysis of the asymptotics of time‐
global solutions is first introduced by Henry [10].

For a subcritical problem on a bounded domain, i.e., problem (P) with
 p<2^{*} and bounded  \Omega , Ôtani [20] obtained (1.1) for  p in the subcritical range.
Later, more detailed analysis was done, see e.g. Cazenave‐Lions [3], Giga [9],
Fila [7], Ikehata‐Suzuki [11] and references therein. In all these works, it is
proved that every (time‐global) solution has a time‐global bounds (1.1) in
the subcritical case. Also, based on this global bounds, it is proved that

every time‐global solution is attracted to a set of stationary solutionsj1.10)

see e.g. Cazenave‐Haraux [2, §9]. We also discuss in this note how to obtain
this fact, see Proposition 2.1 below. As for a subcritical problem on the en‐
tire domain, see e.g. Kawanago [16], Cortázar‐del Pino‐Elgueta [5], Feireisl‐
Petzeltová [6], Chill‐Jendoubi [4] and references therein.

There is not so much result on the case  p=2^{*} , a critical problem. As
for the asymptotics of time‐global solution, it is pointed out in Ni‐Sacks‐
Tavantzis [19] that (P) with bounded domain admits a time‐global weak
solution which is unbounded in  L^{\infty} ‐sense. Since the solution treated in [19]
is a weak global solution, it is not clear whether the solution blows‐up in
finite time or not in a classical sense. Later, it is proved in [13] that there ex‐
ists an unbounded, time‐global, radially symmetric and nonnegative classical
solution  u of (P) on a ball or on the entire domain which behaves like

 u(\cdot, t)-\Vert u(t)\Vert_{\infty}U(\Vert u(t)\Vert^{\frac{2}{\infty N-2}}
\cdot)=o(1) in  \dot{H}^{1} (1.11)

as   tarrow\infty , where  U is a unique nonnegative nontrivial stationary solution
of (P) (in  \mathbb{R}^{N} ) with  \Vert U\Vert_{\infty}=1(U is called a Talenti function, see [24] and
e.g. [23, §I]). This results shows that the solution  u behaves like a scaling of
a nontrivial stationary solution of (P). Since  \dot{H}^{1} ‐norm is invariant under the
scaling appeared in (1.11) (see Propoition 2.1 below), we have

 \Vert\nabla u(t)\Vert_{2}^{2}=\Vert\nabla(\Vert u(t)\Vert_{\infty}U(\Vert u(t)
\Vert^{\frac{2}{\infty N-2}}\cdot))\Vert_{2}+o(1)=\Vert\nabla U\Vert_{2}^{2}+
o(1) (1.12)
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as   tarrow\infty , thus (1.1) holds for this solution. Based on this fact, it is proved
in [13] that the time‐global bounds (1.1) is true for any time‐global, radially
symmetric and nonnegative solution  u of (P) in ball or  \mathbb{R}^{N} For the validity
of (1.1) for another case, see e.g. [12] and references therein.

The asymptotics (1.11) suggests that the general asymptotic behavior in
the critical case is not so simple as in the subcritical case (1.10). Indeed, for
(P) on a ball, it is proved in [13] that there holds  \Vert u(t)\Vert_{\infty}arrow\infty as  tarrow\infty,

hence a solution in (1.11) concentrates at the origin as   tarrow\infty while the
Sobolev norm is bounded (1.12). Observe that this  u does not converges to
any function in the strong  \dot{H}^{1} ‐topology, since  u(t)harpoonup 0 as   tarrow\infty in  \dot{H}^{1} (this
comes from  u(x, t)arrow 0 a.e.  x as   tarrow\infty by (1.11)) while  \Vert\nabla u(t)\Vert_{2}^{2}\star 0
which is obvious from (1.12). Hence, in the critical case, some time‐global
solution exhibit different behavior from the absorbtion to a set of stationary
solution and the validity of (1.1) for general time‐global solution is an open
problem so far.

We claim in this note that, in spite of these evidences which indicate the
difference between the subcritical and the critical case, general nonnegative
time‐global solution of (P) with  p=2^{*} and  \Omega=\mathbb{R}^{N} satisfy (1.1) (Theo‐
rem 1.1 below). Moreover, we will cralify the fact that, different from the
subcritical case, time‐global solutions behave like a finite number of super‐
position of rescaled and translated starionary solutions (Theorem 1.2 below)
as is implied by the asymptotics (1.11) in a ball.

 1_{e}3 Main results

In this note, we show the validity of (1.1) for nonnegative global‐in‐time
solution of (P) without the assumption of radial symmetry, and give an
asymptotic behavior of time‐global solutions.

Theorem 1.1 (Global bounds for the critical case)
Let  u be a nonnegative time‐global solution of (P) with  p=2^{*} and  \Omega=

 \mathbb{R}^{N} Then there holds   \sup_{t>0}\Vert\nabla u(t)\Vert_{2}<\infty. 1

Remark 1.2 (For the general case)
For (P) on general smooth domain  \Omega with  p=2^{*} , we have   \lim\sup_{tarrow\infty}\Vert\nabla u(t)\Vert_{2}<

 \infty if

  \lim\dot{{\imath}}nftarrow\infty\Vert\nabla u(t)\Vert_{2}<\infty , (1.13)
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see [14]. Therefore, for an arbitrary time‐global solution of  u , we have either

  \lim_{tarrow}\sup_{\infty}\Vert\nabla u(t)\Vert_{2}<\infty
or

  \lim_{tarrow\infty}\Vert\nabla u(t)\Vert_{2}=\infty.
For a bounded  \Omega , we always have (1.13). For  \Omega=\mathbb{R}^{N} with  p=2^{*} , we have
the alternative

  \lim_{tarrow}\sup_{\infty}\Vert\nabla u(t)\Vert_{2}<\infty
or

  \lim_{tarrow\infty}\Vert\nabla u(t)\Vert_{2}=\infty and   \lim_{tarrow\infty}J(u(t))=-\infty . (1.14)

since   \lim_{tarrow\infty}J(u(t))>-\infty implies (1.13) as is shown by the same argument
for bounded  \Omega above. The existence of a sign‐changing solution  u satsifying
(1.14) is an open problem.

1

Remark 1.3 (An extension of a class of initial data)
We can considerably enlarge the admissible class of initial datum, see e.g.

Brezis‐Cazenave [1] and Ruf‐Terraneo [21]. 1

Based on the Theorem 1.1, we can clarify the following asymptotics of
nonnegative time‐global solutions of (P). For a Banach space  X and for
 A\subset X , let  dist_{X}(u, A)  := \inf_{v\in A}\Vert u-v\Vert_{X}.

Theorem 1.2 (Asymptotics for the critical case)
Let a time‐global solution  u of (P) with  p=2^{*} and  \Omega=\mathbb{R}^{N} satisfies

  \sup_{t>0}\Vert Vu(t)\Vert_{2}<\infty . (1.15)

Let  E_{\infty}(u_{0}) be a set defined by

 E_{\infty}(u_{0})

 :=   \{\sum_{j=1}^{n}(\lambda^{j})^{\frac{N-2}{2}}\varphi^{j} (  \lambda^{j} (. —yj));  \varphi^{j} is a stationary solution of (P) ,

 (\lambda^{j})_{j=1}^{n}\subset \mathbb{R}_{+},  (y^{j})_{j=1}^{n}\subset \mathbb{R}^{N},  n\in \mathbb{N}\cup\{0\} with   \sum_{j=1}^{n}J(\psi^{j})\leq J(u_{0}) }.
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Then there holds

 dist_{L^{2}}*(u(t), E_{\infty}(u_{0}))arrow 0 (1.16)

as   tarrow\infty (Note that all  \psi^{j} may be a trivial solution).

Remark 1.4 (For nonnegative solutions)
If  u is a nonnegative solution of (P), the conclusion of Theorem 1.2 holds

since (1.15) follows from Theorem 1.1. In this case,  \psi^{j} in the definition of
 E_{\infty}(u_{0}) can be taken as nonnegative functions and the convergence in (1.16)
can be improved to that in  \dot{H}^{1} , see [14]. It is not clear whether we can
improve the convergence in (1.16) to  \dot{H}^{1} for sign‐changing case. 1

Remark 1.5 (Meaning of the asymptotics in the critical case)
We here discuss the intuitive meaning of the result in Theorem 1.2. For

the simplicity, let us consider a nonnegative solution of (P). From Theorem
1.2, we see that for any time sequence  (t_{n}) with   t_{n}arrow\infty , there exists a
subsequence (denoted by the same symbol),  n\in \mathbb{N},  (\lambda_{n}^{j})_{j=1}^{n}\subset \mathbb{R}_{+},  (y_{n}^{j})_{j=1}^{n}
such that

 u( \cdot, t_{n})-\sum_{j=1}^{n}(\lambda_{n}^{j})^{\frac{N-2}{2}}\varphi^{j}
(\lambda_{n}^{j}(\cdot-y_{n}^{j}))=o(1) in  \dot{H}^{1} (1.17)

as   narrow\infty , where  U is a unique nonnegative stationary solution of (P) (in
 \mathbb{R}^{N}) , see Propostition 3.1.

Note that (P) is invariant under the spatial translations, i.e., if  u(x, t)
satisfies (P), then  u(x-y, t) also satisfies (P) with initial  u_{0}(x-y) for any
 y\in \mathbb{R}^{N} Also, (P) has a scale invariance under  u(x, t)\mapsto\mu^{\frac{2}{p-2}}u(\mu x, \mu^{2}t) ,
where  \mu\in \mathbb{R}_{+} , see Proposition 2.1 below. The peculiarity of the critical
case  p=2^{*} is that, only in this case the energy function  J is also invariant
under the scaling. In other words, only in the critical case, the evolution
equation structure and the variatioinal strucures are both invariant under
the scaling. The relation (1.17) says that time‐global solutions behave like as
a superposition of rescaled stationary solutions by reflecting this invariance.
This behavior is out of the scope of “the absorbtion to a set of equilibrium
a postulate (1.10) in the subcritical case. 1

2 Preliminaries

We introduce preliminary facts which will be needed in the proof of Theorem
1.1 and Theorem 1.2.
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2.1 Scaling invariance and the existence of a balanced
time sequence

In this subsection, we check the invariance property of (P) and  J under the
scaling with  x,  t and  u and introduce an existence of time sequence  (t_{n})
satsifying

 \Vert\nabla u(t_{n})\Vert_{2}^{2}=\Vert u(t_{n})\Vert_{p}^{p}+o(1) (2.1)

as  narrow\infty.

Let  u be a solution of (P) and let  \mu>0 . For any  x_{0}\in \mathbb{R}^{N} and  t_{0}>0 , let

 y:=\mu(x-x_{0}) , s:=\mu^{2}(t-t_{0}) , \mu^{\frac{2}{p-2}}u_{\mu,x_{0}}(y, s)=
u(x, t) . (2.2)

Then it is easy to see that

Proposition 2.1 (Scale invariance)
Let  \delta>0 . Then  u_{\mu,x_{0}} satisfies

 \partial_{s}u_{\mu,x_{0}}=\triangle_{y}u_{\mu,x_{0}}+u_{\mu,x_{0}}|u_{\mu,x_{0}
}|^{p-2}  in  \mathbb{R}^{N}\cross[0, \delta]

if and only if  u satisfies

 \partial_{t}u=\triangle_{x}u+u|u|^{p-2}  in   \mathbb{R}^{N}\cross[t_{0}, t_{0}+\frac{\delta}{\mu^{2}}]
Moreover, we have

  \mu^{\frac{N-2}{p-2}(2^{*}-p)}\int_{0}^{\delta}\Vert\partial_{s}u_{\mu,x_{0}}
\Vert_{2}^{2}ds=\int_{t_{0}}^{t_{0}+\frac{\delta}{\mu^{2}}}\Vert\partial_{t}
u\Vert_{2}^{2}dt,
 \mu^{\frac{N-2}{p-2}(2^{*}-p)}\Vert\nabla u_{\mu,x_{0}}(s)\Vert_{2}=\Vert\nabla
u(t)\Vert_{2},
 \mu^{\frac{N-2}{p-2}(\frac{2}{N-2}(r-p)+2^{*}-p)}\Vert u_{\mu,x_{0}}(s)
\Vert_{r}=\Vert u(t)\Vert_{r}.

Remark 2.1 (The peculiarity of the critical problem)
The proposition above says that the problem (P) is always invariant under

the scaling and the translation (2.2). The important feature of the critical
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case is that only in this case, the energy structure, i.e.,  L^{2}(I;L^{2}),\dot{H}^{1} and
 L^{p}|‐norms, is also invariant, i.e., there hold

  \int_{0}^{\delta}\Vert\partial_{S}u_{\mu,x_{0}}\Vert_{2}^{2}ds=\int_{t_{0}}
^{t_{0+\frac{\delta}{\mu^{2}}}}\Vert\partial_{t}u\Vert_{2}^{2}dt,
 \Vert\nabla u_{\mu,x_{0}}(s)\Vert_{2}=\Vert\nabla u(t)\Vert_{2},
 \Vert u_{\mu,x_{0}}(s)\Vert_{2^{*=}}\Vert u(t)\Vert_{2^{*}},
 (\Vert u_{\mu,x_{0}}(s)\Vert_{2}=\mu\Vert u(t)\Vert_{2}) .

This is one of the origin of the noncompactness for the evolution and the
variational structure. 1

Proposition 2.2 (Existence of a balanced time sequence [12])
Let  u be a nonnegative time‐global solution of (P) with  p=2^{*} and  \Omega=

 \mathbb{R}^{N} Then there exists   t_{n}arrow oo such that  \Vert\nabla u(t_{n})\Vert_{2}^{2}-\Vert u(t_{n})\Vert_{p}^{p}=o(1) as

 narrow\infty.

Proof of Proposition 2.2.
Let  \tau_{n}arrow\infty be a sequence such that

  \lim_{narrow\infty}\Vert u(\tau_{n})\Vert_{2}=\lim_{tarrow}\sup_{\infty}\Vert 
u(t)\Vert_{2}(\leq\infty) .

We define  \lambda_{n}>0 by

  \lambda_{n}^{2} :=\frac{1}{\Vert_{U}(\tau_{n})\Vert_{2}^{2}} (2.3)

and define  y,  s,  u_{n} by  y  :=\lambda_{n}x,  s  :=\lambda_{n}^{2}(t-\tau_{n}) and  u_{n}(y, s)  :=\lambda^{\frac{N-2}{n^{2}}}u(x, t) .
Observe that

 \Vert u_{n}(0)\Vert_{2}^{2}=\lambda_{n}^{2}\Vert u(\tau_{n})\Vert_{2}^{2}=1 (2.4)

by Proposition 2.1 and (2.3). Then by Proposition 2.1, (1.6) and (1.8), there
holds

  \int_{0}^{\delta}ds\Vert\partial_{s}u_{n}\Vert_{2}^{2} = -J(u_{n}(\delta))+
J(u_{n}(0))
 = -J(u( \tau_{n}+\frac{\delta}{\lambda_{n}^{2}}))+J(u(\tau_{n}))
 = -d+d+o(1)=o(1) (2.5)
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as   narrow\infty for any  \delta>0 , thus

  \Vert u_{n}(\sigma)-u_{n}(0)\Vert_{2}\leq\int_{0}^{\sigma}\Vert\partial_{s}
u_{n}(s)\Vert_{2}ds\leq\sqrt{\delta}(\int_{0}^{\sigma}\Vert\partial_{s}u_{n}(s)
\Vert_{2}^{2}ds)^{\frac{1}{2}}=o(1)
as   narrow\infty , uniformly in  \sigma\in[0, \delta] . This relation together with (2.4) yields

 \Vert u_{n}(\sigma)\Vert_{2}^{2}\leq 2\Vert u_{n}(0)\Vert_{2}^{2}=2, 
\sigma\in[0, \delta]

for large  n . Again by (2.5), we can find  \eta\in[0, \delta] such that

 \Vert\partial_{s}u_{n}(\eta)\Vert_{2}=o(1) , (2.6)

as   narrow\infty , passing subsequences if necessary. Since  u_{n} satisfies (P) due to
Proposition 2.1, by multplying  u_{n} to (P) and integrating over  \mathbb{R}^{N} , we have

 |-\Vert\nabla u_{n}(\eta)\Vert_{2}^{2}+\Vert u_{n}(\eta)\Vert_{p}^{p}|  \leq  | \int\partial_{s}u_{n}(\eta)u_{n}(\eta)|
 \leq \Vert\partial_{s}u_{n}(\eta)\Vert_{2}\Vert u_{n}(\eta)\Vert_{2}=o(1) (2.7)

 asarrow\infty , where we used (2.6) in the last line. Let  t_{n}  := \tau_{n}+\frac{\eta}{\lambda_{n}^{2}} . Then from
(2.7) and Proposition 2.1, we obtain

 \Vert\nabla u(t_{n})\Vert_{2}^{2}=\Vert\nabla u_{n}(\eta)\Vert_{2}^{2}=\Vert u_
{n}(\eta)\Vert_{p}^{p}+o(1)=\Vert u(t_{n})\Vert_{p}^{p}+o(1) ,

which implies the conclusion. 1

2.2 A profile decomposition of Gérard‐Jaffard

In order to analyze the asymptotic behavior of time‐global solutions in the
critical case, we rely on the following compactness device, see Gérard [8,
THÉORÈME 1.1, REMARQUES  1.2.(b) ], see also Jaffard [15, Theorem 1].

Proposition 2.3 (Profile decomposition)
Let  (u_{n})\subset\dot{H}^{1}(\mathbb{R}^{N}) be a bounded sequence. Then there exist  (\lambda_{n}^{j})_{j\in \mathbb{N}}\subset

 \mathbb{R}_{+},  (x_{n}^{j})_{j\in \mathbb{N}}\subset \mathbb{R}^{N}(j=1, \cdots),  (\psi^{j})_{j\in \mathbb{N}}\subset\dot{H}^{1}(\mathbb{R}^{N}) such that, for

 \psi_{n}^{j}(x):=(\lambda_{n}^{j})^{\frac{N-2}{2}}\psi^{j}(\lambda_{n}^{j}(x-x_
{n}^{j})) ,

there hold the following.
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(a) There holds

  \frac{\lambda_{n}^{i}}{\lambda_{n}^{j}}+\frac{\lambda_{n}^{j}}{\lambda_{n}^{i}
}+\frac{|x_{n}^{i}-x_{n}^{j}|}{\lambda_{n}^{i}}arrow oo as   narrow\infty for  i\neq j.

(b) For any  l\in \mathbb{N} , there holds

  \lim_{larrow\infty}\lim_{narrow\infty}\Vert r_{n}^{l}\Vert_{2^{*}}=0,
where  r_{n}^{l}  :=u_{n}- \sum_{j=1}^{l}\psi_{n}^{j}.
(c) There hold

  \Vert\nabla u_{n}\Vert_{2}^{2} = \sum_{j=1}^{l}\Vert\nabla\psi^{j}\Vert_{2}
^{2}+\Vert\nabla r_{n}^{l}\Vert_{2}^{2}+o(1) ,

  \Vert u_{n}\Vert_{2^{*}}^{2^{*}} = \sum_{j=1}^{l}\Vert\psi^{j}\Vert_{2^{*}}
^{2^{*}}+\Vert r_{n}^{l}\Vert_{2^{*}}^{2^{*}}+o(1)
as  narrow\infty.

Remark 2.2 (The meaning of the profile decompisition)
As is mentioned in Proposition 2.1, norms of  \dot{H}^{1} and  L^{2^{*}} have a scale and

translation invariance in the sence that  \Vert\nabla u_{\lambda,y}\Vert_{2}=\Vert Vu\Vert_{2} and  \Vert u_{\lambda,y}\Vert_{2^{*}}=
 \Vert u\Vert_{2^{*}} , where

 u_{\lambda,y}(x)=\lambda^{\frac{N-2}{2}}u(\lambda(x-y)) , \lambda\in \mathbb{R}
_{+}, y\in \mathbb{R}^{N} (2.8)

By using this invariance, it is easy to construct a bounded sequence  (u_{n})\subset
 \dot{H}^{1} which is not strongly convergent in  L^{2^{*}} Indeed, let

 u_{n}(x):=\lambda^{\frac{N-2}{n^{2}}}\varphi(\lambda_{n}(x-x_{n})) , 
\lambda_{n}arrow\infty, (x_{n})\subset \mathbb{R}^{N},
where  \varphi\in C_{0}^{\infty} Then it is easy to see that is bounded in  \dot{H}^{1} since  \Vert\nabla u_{n}\Vert_{2}=
 \Vert\nabla g\Vert_{2} by the scale invariance mentioned above and,  u_{n}(x)arrow 0 a.e.  x\in \mathbb{R}^{N}

as   narrow\infty . These together with the Sobolev embedding imply  u_{n}harpoonup 0 in
 L^{2^{*}} but  (u_{n}) cannot be strongly convergent to  0 in  L^{2^{*}} since  \Vert u_{n}\Vert_{2^{*}}=\Vert\varphi\Vert_{2^{*}}
again by the scale invariance.

The proposition above says that the converse is also true, i.e., the lack of
the compactness of  \dot{H}^{1}\mapsto L^{2^{*}} only comes from the invariance above. Namely,
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for bounded sequence  (u_{n}) in  \dot{H}^{1} , if one substract finitely many “profiles”
which are the rescaling and a translation of  \varphi^{j}(\cdot) , then the remainder term
 r_{n}^{\iota} tends to  0 strongly in  L^{2^{*}} as   narrow\infty . Moreover, by (a), the rescalings
and translations are “mutually orthogonal” in  \dot{H}^{1} Namely, if one consider,
for fixed  l\in \mathbb{N},

 v_{n}^{j_{0}}(y)  :=  ( \frac{1}{\lambda_{n}^{jo}})^{\frac{N-2}{2}}u_{n}(x_{n}^{j_{0}}+\frac{y}
{\lambda_{n}^{J0}})
 =  \psi^{jo}(y)+\sum_{i\neq j_{0},1\underline{<}i\leq l}(\frac{\lambda_{n}^{i}}
{\lambda_{n}^{j_{0}}})^{\frac{N-2}{2}}\psi^{i}(\frac{\lambda_{n}^{i}}
{\lambda_{n}^{jo}}[y+\frac{x_{n}^{jo}-x_{n}^{i}}{\lambda_{n}^{\dot{i}}}])

 +( \frac{1}{\lambda_{n}^{j_{0}}})^{\frac{N-2}{2}}r_{n}^{l}(x_{n}^{j_{0}}+
\frac{y}{\lambda_{n}^{jo}})
which is a scale back of  u_{n} focusing on the  j_{0}‐th “bubble”, then  v_{n}^{jo}harpoonup\psi^{jo} in
 \dot{H}^{1} by virtue of (a), i.e., bubbles other than the  j_{0}‐th one “disappears” from
the asymptotics of  v_{n}^{jo}. 1

3 Proof of main results

In this section, we always assume that  u is a time‐global solution of (P)
with  p=2^{*} and  \Omega=\mathbb{R}^{N} satisfying (1.8) with finite  d (if  u is a nonnegative
solution, then this assumption is satisfied, see (1.7)).

Let  (t_{n}) be any time sequence with

(A)   t_{n}arrow\infty as   narrow\infty and   \sup_{n\in \mathbb{N}}\Vert u(t_{n})\Vert_{2^{*}}<\infty.
By (A) and (1.8), we also have

  \sup_{n\in \mathbb{N}}\Vert\nabla u(t_{n})\Vert_{2}<\infty,
hence  u_{n}  :=u(t_{n}) satisfies the assumption of Proposition 2.3. The key claim
to have main results is the following:

Proposition 3.1 (Profiles are stationary solutions)
 \psi^{j} appeared in Proposition 2.3 for  (u(t_{n})) is a stationary solution of (P).

The proof of Proposition 3.1 is rather technical, see [14].
We assume Proposition 3.1 is correct and prove Theorem 1.1 and Theorem

1.2.

166



167

3.1 Proof of Theorem 1.1

We start with the following:

Proposition 3.2 (Liminf is finite in the critical case)
There holds

  \lim inft\cdot\infty\Vert u(t)\Vert_{2^{*}}^{2^{*}}\leq\frac{d}{\frac{1}{2}-
\frac{1}{p}},
where  d= \lim_{tarrow\infty}J(u(t))(>-\infty) .

Proof of Proposition 3.2.
By Proposition 2.2, we have the existence of  (t_{n}) satisfying   t_{n}arrow\infty and

 \Vert\nabla u(t_{n})\Vert_{2}^{2}=\Vert u(t_{n})\Vert_{2^{*}}^{2^{*}}+o(1)

as   narrow\infty . Combining this with (1.8), the decreasing property of the energy
with finite limit  d , we see that

 d=J(u(t_{n}))+o(1)= \frac{1}{2}\Vert\nabla u(t_{n})\Vert_{2}^{2}-\frac{1}{2^{*}
}\Vert u(t_{n})\Vert_{2^{*}}^{2^{*}}=(\frac{1}{2}-\frac{1}{2^{*}})\Vert u(t_{n})
\Vert_{2^{*}}^{2^{*}}+o(1)
as   narrow\infty , hence the conclusion follows. 1

Next we prove:

Proposition 3.3 (Non‐oscilation theorem for  \Vert u(t)\Vert_{p} in the critical
case)

Let  (t_{n}) be a time sequence satisfying the assumption (A). Then there
holds

  \Vert u(t_{n})\Vert_{p}^{p}\leq\frac{d}{\frac{1}{2}-\frac{1}{p}}+o(1)
as   narrow\infty , where  d= \lim_{tarrow\infty}J(u(t))(>-\infty) .

Proof of Proposition 3.3.
By the assumption and (1.8), we see   \sup_{n\in \mathbb{N}}\Vert\nabla u(t_{n})\Vert_{2}<\infty . This to‐

gether with Proposition 2.3 yields the existence of  (\lambda_{n}^{j})_{j\in \mathbb{N}}\subset \mathbb{R}_{+},  (x_{n}^{j})_{j\in \mathbb{N}}\subset
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 \mathbb{R}^{N}(j=1, \cdots) and  (\psi^{j})_{j\in \mathbb{N}}\subset\dot{H}^{1}(\mathbb{R}^{N}) such that the conclusion of Proposi‐
tion 2.3 holds. Moreover, for any  l\in \mathbb{N} , we have

  \Vert u(t_{n})\Vert_{2^{*}}^{2^{*}}=\sum_{j=1}^{l}\Vert\psi^{j}\Vert_{2^{*}}
^{2^{*}}+\Vert r_{n}^{l}\Vert_{2^{*}}^{2^{*}}+o(1) ,

  \Vert\nabla u(t_{n})\Vert_{2}^{2}=\sum_{j=1}^{l}\Vert\nabla\psi^{j}\Vert_{2}
^{2}+\Vert\nabla r_{n}^{l}\Vert_{2}^{2}+o(1)
as   narrow\infty by (b) and for any  \varepsilon>0 , taking  n large, we see that

 \Vert r_{n}^{l}\Vert_{2^{*}}^{2^{*}}<\varepsilon.

by (c). Proposition 3.1 says that  \psi^{j} is a stationary solution of (P) for each
 j\in \mathbb{N} . Hence we see that

 -\triangle\psi^{j}=\psi^{j}|\psi^{j}|^{2^{*}-2} in  \mathbb{R}^{N}

Multiplying  \psi^{j} to both sides and integrating over  \mathbb{R}^{N} , we obtain

 \Vert V\psi^{j}\Vert_{2}^{2}=\Vert\psi^{j}\Vert_{2}^{2}: . (3.1)

Then we have

 d+o(1)  =  J(u(t_{n}))= \frac{1}{2}\Vert\nabla u(t_{n})\Vert_{2}^{2}-\frac{1}{2^{*}}\Vert 
u(t_{n})\Vert_{2^{*}}^{2^{*}}

 =  \frac{1}{2}(\sum_{j=1}^{l}\Vert\nabla\psi^{j}\Vert_{2}^{2}+\Vert\nabla r_{n}
^{l}\Vert_{2}^{2}+o(1))-\frac{1}{p}(\sum_{j=1}^{l}\Vert\psi^{j}\Vert_{2^{*}}^{2^
{*}}+\Vert r_{n}^{l}\Vert_{2^{*}}^{2^{*}}+o(1))
 = ( \frac{1}{2}-\frac{1}{2^{*}})\sum_{j=1}^{l}\Vert\psi^{j}\Vert_{2^{*}}^{2^{*}
}+\frac{1}{2}\Vert\nabla r_{n}^{l}\Vert_{2}^{2}-\frac{1}{p}\Vert r_{n}^{l}\Vert_
{2^{*}}^{2^{*}}+o(1)

as   narrow\infty , hence

 d+o(1)+ \frac{1}{2}\varepsilon \geq d+o(1)+\frac{1}{2}\Vert r_{n}^{l}\Vert_{2^{
*}}^{2^{*}}

  \geq (\frac{1}{2}-\frac{1}{2^{*}})(\sum_{j=1}^{l}\Vert\psi^{j}\Vert_{2^{*}}
^{2^{*}})+o(1)
 = ( \frac{1}{2}-\frac{1}{2^{*}})\Vert u(t_{n})\Vert_{2^{*}}^{2^{*}}+o(1) ,
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thus

  \frac{d+o(1)+\frac{1}{2}\varepsilon}{\frac{1}{2}-\frac{1}{2^{*}}}\geq\Vert 
u(t_{n})\Vert_{2^{*}}^{2^{*}}
as   narrow\infty , thus the conclusion. 1

End of the proof of Theorem 1.1 Now assume that   \lim\sup_{tarrow\infty}\Vert u(t)\Vert_{2^{*}}^{2^{*}}=
 \infty . Then this assumption and Proposition 3.2 yield the existence of  (t_{n}) sat‐
isfying   t_{n}arrow\infty and

  \Vert u(t_{n})\Vert_{2^{*}}^{2^{*}}=2\frac{d}{\frac{1}{2}-\frac{1}{p}} for any  n (3.2)

as   narrow\infty . Then since  (t_{n}) satisfies the assumption (A), Proposition 3.3
implies

  \Vert u(t_{n})\Vert_{2^{*}}^{2^{*}}\leq\frac{d}{\frac{1}{2}-\frac{1}{p}},
which contradicts (3.2). This completes the proof.

3.2 Proof of Theorem 1.2

Let us assume, on the contrary, the conclusion does not hold. Then there
exists a time sequecne  (t_{n}) and  \varepsilon>0 satsifying   t_{n}arrow\infty and

 dist_{L^{2}}*(u(t_{n}), E_{\infty}(u_{0}))\geq\varepsilon . (3.3)

By Theorem 1.1, we know   \sup_{n}\Vert u(t_{n})\Vert_{2^{*}}<\infty . Hence Proposition 2.3 and
Proposition 3.1 yields the existence of  (\lambda_{n}^{j})_{j\in \mathbb{N}}\subset \mathbb{R}_{+},  (x_{n}^{j})_{j\in \mathbb{N}}\subset \mathbb{R}^{N}(j=
 1,  \cdots) , a family of stationary solution  (\psi^{j})_{j\in \mathbb{N}}\subset\dot{H}^{1}(\mathbb{R}^{N}) of (P) whixh satisfy
 (a)-(c) of Proposition 2.3. Take any  l\in \mathbb{N} . Then for large  n , we see that

 u(t_{n})= \sum_{j=1}^{l}(\lambda_{n}^{j})^{\frac{N-2}{2}\psi^{j}(\lambda_{n}
^{j}(\cdot-x_{n}^{j}))+r_{n}^{l}} (3.4)

and

  \Vert r_{n}^{l}\Vert_{2^{*}}<\frac{\varepsilon}{2} . (3.5)
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Note that

 w:= \sum_{j=1}^{l}(\lambda_{n}^{j})^{\frac{N-2}{2}\psi^{j}(\lambda_{n}^{j}
(\cdot-X_{n}^{j}))}\in E_{\infty}(u_{0}) .

Let  (t_{n}) be a time sequence satisfying   t_{n}arrow\infty as   narrow\infty . Then by (1.8) and
Proposition 2.3 (b) and (c), passing to subsequence if necessary, we have

 J(u_{0})  \geq   \frac{1}{2}\Vert\nabla u(t_{n})\Vert_{2}^{2}-\frac{1}{p}\Vert u(t_{n})
\Vert_{2^{*}}^{2^{*}}
 =   \frac{1}{2}(\sum_{j=1}^{l}\Vert\nabla\psi^{j}\Vert_{2}^{2}+\Vert\nabla r_{n}
^{l}\Vert_{2}^{2}+o(1))-\frac{1}{p}(\sum_{j=1}^{l}\Vert\psi^{j}\Vert_{2^{*}}
^{2\prime}+\Vert r_{n}^{l}\Vert_{2^{*}}^{2^{*}}+o(1))
  \geq \frac{1}{2}\sum_{j=1}^{l}\Vert\nabla\psi^{j}\Vert_{2}^{2}-\frac{1}{p}
\sum_{j=1}^{l}\Vert\psi^{j}\Vert_{2^{*}}^{2^{*}}+o(1)=\sum_{j=1}^{l}J(\psi^{j})+
o(1) (3.6)

as   narrow\infty for any  l\in \mathbb{N} . This together with (3.4) and (3.5) imply

  dist_{L^{2}}*(u, E_{\infty}(u_{0}))\leq\Vert u(t_{n})-w\Vert_{2^{*}}=\Vert 
r_{n}^{l}\Vert_{2^{*}}<\frac{\varepsilon}{2} ,

which contradicts to (3.3). This completes the proof of Theorem 1.2.

Remark 3.1

By (3.6) and the fact that  J(\psi^{j})\geq S^{\frac{N}{2}} for a stationary solution  \psi^{j} of
(P), where  S  := \inf_{u\in\dot{H}^{1}\backslash \{0\}}\frac{||\nabla u\Vert_{2}^{2}}
{||u||_{2^{*}}^{2}} is the best Sobolev constant, we see that
the number of  j for which  \psi^{j}\neq 0 is at most   \frac{d}{S^{\frac{N}{2}}} . 1
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