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Spreading profiles of solutions to a free
boundary problem for a reaction‐diffusion

equation*
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1 Introduction

In this article we will discuss some recent results by Kaneko‐Matsuzawa‐
Yamada [11] on a free boundary problem for a reaction‐difFusion equation.

We consider a free boundary problem for a reaction‐diffusion equation given
by

\begin{array}{ll}
u_{t}=u_{xx}+f(u) ,   t>0,0<x<h(t) ,
u_{x}(t, 0)=0, u(t, h(t))=0,   t>0,
h'(t)=-\mu u_{x}(t, h(t)) ,   t>0,
h(0)=h_{0}, u(0, x)=u_{0}(x) ,   0\leq x\leq h_{0},
\end{array} (1.1)

where  \mu and  h_{0} are positive constants, and the initial function  u_{0} satisfies

 u_{0}\in C^{2}([0, h_{0}]) ,  u_{0}>0 in  [0, h_{0}) ,  u_{0}'(0)=u_{0}(h_{0})=0 and  u_{0}'(h_{0})<0.

Moreover nonlinear function  f(u) is assumed to satisfy the following conditions:

 \begin{array}{l}
f(u)=0 if and only if u=0, u_{1}^{*}, u_{2}^{*}, u_{3}^{*} with 0<u_{1}^{*}
<u_{2}^{*}<u_{3}^{*},
f'(0)>0, f'(u_{1}^{*})<0, f'(u_{2}^{*})>0, f'(u_{3}^{*})<0 and
\int_{u_{1}^{*}}^{u_{3}^{*}}f(u)du>0.
\end{array} (1.2)

The nonlinear term is called positive bistable nonlinearity. Different from the
typical bistable nonlinearity, it has two positive stable equilibrium states  u_{1}^{*},  u_{3}^{*}.

Problem (1.1) may be applied to model the spreading of new or inva‐
sive species in ecology. The spread of biological species is one of the cen‐
tral topic in mathematical ecology. Since Skellam’s investigation (Skellam
[18]), invasion phenomena have been widely studied by lots of researchers (see
 e.g . Shigesada‐Kawasaki [17]). Nonlinearity (1.2) was especially introduced by
Ludwig‐Aronson‐Weinberger [15] to model the population dynamics of spruce
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budworm in North America. The difference between previous works on in‐
vasion phenomena and problem (1.1) is that the problem is described as a
free boundary problem, where  u(t, x) represents the population density of a
species and free boundary  h(t) denotes the spreading front of one‐dimensional
habitat  (0, h(t)) . The dynamical behavior of the free boundary is also deter‐
mined by Stefan condition  h'(t)=-\mu u_{x}(t, h(t)) . We consider a pair of solution
 (u(t, x), h(t)) to (1.1) to investigate the spread of new or invasive species.

This type of free boundary problem was first proposed by Du‐Lin [2] when
 f(u)=u(a-bu) for  a,  b>0 . They obtained the existence and uniqueness of
global solutions and showed spreading and vanishing in large time behaviors
of solutions. For any solution of their free boundary problem, either (i) or (ii)
holds as   tarrow\infty :

(i) Spreading:   \lim_{tarrow\infty}h(t)=\infty and   \lim_{tarrow\infty}u(t, x)=\frac{a}{b} locally uniformly in  \mathbb{R},

(ii) Vanishing:  t arrow\infty 1\dot{{\imath}}mh(t)\leq\frac{\pi}{2\sqrt{a}} and   \lim_{tarrow\infty}\sup_{0\leq x\leq h(t)}|u(t, x)|=0.
After the work of Du‐Lin [2], their results were extended by many researchers
(cf.  [3]-[4],  [6]-[14] ). We also refer to Mimura‐Yamada‐Yotsutani [16] a free
boundary problem for a system of reaction‐diffusion equations. It is seen that
problem (1.1) has a unique classical solution  (u(t, x), h(t)) satisfying

 0<u(t, x)\leq C_{1} for  t>0,0<x<h(t) and  0<h'(t)\leq\mu C_{2} for  t>0

for some constants  C_{1},  C_{2}>0 when  f is locally Lipschitz continuous in  [0 , oo),
 f(0)=0 and  f(u)<0 for all large  u>0 (see Kaneko‐Yamada [9]). Moreover
Kawai‐Yamada [12] studied problem (1.1) with positive bistable nonlinearity
(1.2). They showed that exactly one of the followings occurs for any solution
 (u, h) as   tarrow\infty :

(i) Vanishing:   \lim_{tarrow\infty}h(t)\leq\frac{\pi}{2\sqrt{f'(0)}} and   \lim_{tarrow\infty}\sup_{0\leq x\leq h(t)}|u(t, x)|=0,
(ii) Small Spreading:   \lim_{tarrow\infty}h(t)=\infty and   \lim_{tarrow\infty}u(t, x)=u_{1}^{*} locally uniformly in  \mathbb{R},

(iii) Big Spreading:   \lim_{tarrow\infty}h(t)=\infty and   \lim_{tarrow\infty}u(t, x)=u_{3}^{*} locally uniformly in  \mathbb{R},

(iv) Transition :   \lim_{tarrow\infty}h(t)=\infty and   \lim_{tarrow\infty}u(t, x)=V(x) locally uniformly in  \mathbb{R},

where  V(x) is a unique solution to

 V"+f(V)=0 in  (0, \infty),  V'(0)=0 and   \lim_{xarrow\infty}V(x)=u_{1}^{*}.
The main purpose of this article is to show the asymptotic profile of solu‐

tions as   tarrow\infty . Since small and big spreading mean local uniform convergence
of  u(t, \cdot) in  \mathbb{R} (that is, uniform convergence in  [0,  R] for any  R>0), they do
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not give detailed information near the free boundary. It is known that, for
typical type of  f , the spreading speed and the asymptotic profiles of solutions
near the spreading front are determined by the following semi‐wave problem:

(SWP)  \{\begin{array}{l}
q" -- cq'+f(q)=0, q(z)>0 for z>0,
q(0)=0, \mu q'(0)=c,\lim_{zarrow\infty}q(z)=u^{*},
\end{array}
where  \mu is given in (1.1) and  u^{*} stands for a positive zero point of  f . For
solution  (c^{*}, q^{*}) to (SWP), we call function  q^{*} semi‐wave and refer to  c^{*} as
spreading speed. When  u^{*}=u_{1}^{*} (corresponding to the small spreading case),
there exist a unique solution pair  (c, q)=(c_{S}, q_{S}) to (SWP) and a constant
 Hム  \in \mathbb{R} such that

 tarrow\infty 1\dot{{\imath}}m(h(t)-c_{S}t)=Hム and   \lim_{tarrow\infty}\sup_{0\leq x\leq h(t)}|u(t, x)-qs(h(t)-x)|=0.
However the situation for  u^{*}=u_{3}^{*} (the big spreading case) is more complicated
and it is divided into two cases: (Case A) there exists a a unique solution pair
to (SWP) for any  \mu>0 , while (Case B) we can find some  \mu^{*}>0 such
that (SWP) has a unique solution pair  (c_{B}, q_{B}) to (SWP) for  \mu<\mu^{*} and no
solutions for  \mu\geq\mu^{*} . Moreover average speed is given by

  \lim_{tarrow\infty}\frac{h(t)}{t}=\{\begin{array}{ll}
c_{B},   if \mu<\mu^{*},
c_{S},   if \mu\geq\mu^{*}.
\end{array}
If (SWP) with  u^{*}=u_{3}^{*} has a unique solution, it is possible to show that the
asymptotic profile of  u near the free boundary is determined by the semi‐wave,
that is,

  \lim_{tarrow\infty}(h(t)-c_{B}t)=H^{*} and   \lim_{tarrow\infty}\sup_{0\leq x\leq h(t)}|u(t, x)-q_{B}(h(t)-x)|=0
for some constant  H^{*}\in \mathbb{R} . In the other case the asymptotic profile of solutions
is not obtained by (SWP) with  u^{*}=u_{3}^{*} . Then it was numerically observed
that the solution to (1.1) can form a so called propagating terrace (see Figure
1). The notion of propagating terrace arise from Ducrot‐Giletti‐Matano [5] for
a Cauchy problem of a reaction‐diffusion equation. We are thus interested in
such a terraced profile of solutions.

Figure 1 : Numerical example for terraced profile
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This article is organized as follows: in Section 2 we prepare some notations
and an assumption. Section 3 is devoted to main results concerning on the
profile of propagating terrace and the proofs of the main results.

2 Notations and assumption (TW)
In this section we will prepare for main results. Let  c_{S}(\mu) and  c_{B}(\mu) be

defined as in Section 1. Here  \mu is a given constant in (1.1) and we make it
clear the dependence of the spreading speeds on  \mu.

We now prepare traveling waves to explain the relation with  c_{S}(\mu) and
 c_{B}(\mu) . One can regard positive bistable term  f(u) as the combination of

 f|_{[0,u_{1}^{*}]} and  f|_{[u_{2}^{*},u_{3}^{*}]} , where  f|_{[a,b]} denotes the restriction of  f onto  [a, b] . Then
we see  f|_{[0,u_{1}^{*}]} as monostable term and  f|_{[u_{2}^{*},u_{3}^{*}]} as bistable one (see Figure 2),
and get a traveling wave corresponding to each part in the following way.

Figure 2 : Positive bistable term

Consider

 \{\begin{array}{l}
Q"-cQ'+f(Q)=0, q(z)>0 for -\infty<z<\infty,
\lim_{zarrow-\infty}Q(z)=u_{1}^{*}, Q(0)=(u_{1}^{*}+u_{3}^{*})/2,
\lim_{zarrow\infty}Q(z)=u_{3}^{*}
\end{array} (2.1)

and

 \{\begin{array}{l}
Q"-cQ'+f(Q)=0, q(z)>0 for -\infty<z< oo,
\lim_{zarrow-\infty}Q(z)=0, Q(0)=u_{1}^{*}/2,\lim_{zarrow\infty}Q(z)=u_{1}^{*}.
\end{array} (2.2)

It is well known that there exists a unique  c=c_{1}^{B} such that (2.1) has a unique
(up to shift) solution  Q=Q_{1}^{B}(z) and that (2.2) has solutions for  |c|\geq c_{0}^{S} for
a minimal speed  c_{0}^{S}>0.
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To get the terraced profile we need an assumption. Recall Case  B in
Section 1; where (SWP) with  u^{*}=u_{3}^{*} has no solutions for large  \mu . Then
  \lim_{tarrow\infty}h(t)/t=c_{S} . It is necessary to assume  c_{1}^{B}<c_{0}^{S} to deduce this esti‐
mate. By Kawai‐Yamada [12] and Du‐Lou [3], we find that semi‐wave speeds
 c_{S}(\mu),  c_{B}(\mu) are increasing with respect to  \mu , and satisfy

 c_{S}(\mu)<c_{0}^{S}, c_{B}(\mu)<c_{1}^{B}
and

 c_{S}(\mu)arrow c_{0}^{S} as  \muarrow\infty,  c_{S}(\mu)arrow 0 as  \muarrow 0.

If we assume  c_{1}^{B}<c_{0}^{S} , then there exists  \mu^{*}>0 such that  c_{S}(\mu^{*})=c_{1}^{B} , and
hence  c_{S}(\mu)>c_{1}^{B} for  \mu>\mu^{*} (see Figure 3). In the rest of the article we assume

(TW)  c_{1}^{B}<c_{0}^{S} and  \mu>\mu^{*}.

Our strategy to get the terraced profile is to approximate the solution for
 u\geq u_{1}^{*} by the traveling wave and for  u<u_{1}^{*} by the semi‐wave (see Figure 4).

Figure 3 : Case  c_{1}^{B}<c_{0}^{S} and  \mu>\mu^{*}

Figure 4: Approximation by traveling wave and semi‐wave
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Finally we prepare a comparison principle which is useful to prove main
results. A pair of functions  (\underline{u}, \underline{h}) in the following lemma is called lower solution
to (1.1). An upper solution is defined in a similar way.

Lemma 1. Let  \underline{h}\in C^{1}([0, T]) and  \underline{u}\in C(\Omega_{1})\cap C^{1,2}(\Omega_{1}) with  \Omega_{1}=\{(t, x)\in
 \mathbb{R}^{2}|0\leq x\leq\underline{h}(t) for  0<t\leq T} satisfy

 \{\begin{array}{ll}
\underline{u}_{t}\leq\underline{u}_{xx}+f(\underline{u}) ,   (t, x)\in\Omega_{1}
,
\underline{u}_{x}(t, 0)\geq 0, \underline{u}(t, \underline{h}(t))=0,   t\in(0, 
T],
\underline{h}'(t)\leq-\mu\underline{u}_{x}(t, \underline{h}(t)) ,   t\in(0, T].
\end{array}
If  \underline{h}(0)\leq h_{0} and  \underline{u}(0, x)\leq u_{0}(x) in  [0, \underline{h}(0)] , then

 \underline{h}(t)\leq h(t) in  [0, T] and  \underline{u}(t, x)\leq u(t, x) in  \overline{\Omega}_{1}.

3 Main results and proofs

3.1 Main results

We will see main results in this section. Let  (u, h) be a solution to (1.1).
We call  (u, h) big spreading solution if and only if  u(t, x) and  h(t) satisfy

  \lim_{tarrow\infty}h(t)=\infty and   \lim_{tarrow\infty}u(t, x)=u_{3}^{*} locally uniformly in  \mathbb{R}.

The following result is concerned with rough estimates of the asymptotic profile
of solutions.

Theorem 1 ([11]). Assume (TW). Let  (u, h) be any big spreading solution to
(1.1). For any small  \varepsilon>0 , there exist  M>0,  \delta>0 and  T>0 such that for
 t\geq T

  \sup_{x\in[0,(c_{1}^{B}-\varepsilon)t]}|u(t, x)-u_{3}^{*}|\leq Me^{-\delta t} , (3.1)

  \sup_{x\in[(c_{1}^{B}+\varepsilon)t,(c_{S}-\varepsilon)t]}|u(t, x)-u_{1}^{*}
|\leq Me^{-\delta t} , (3.2)

where  c_{1}^{B} denotes the speed of traveling wave defined in Section 2 and  c_{S} rep‐
resents the speed of semi‐wave defined in Section 1.

We will explain a terraced profile of big spreading solutions to (1.1).
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Theorem 2 ([11]). Assume (TW). Let  (u, h) be any big spreading solution to
(1.1) and let  (c_{S}, q_{S}) be the solution to (SWP) with  u=u_{1}^{*} . Then, for any
 c\in(c_{1}^{B}, c_{S}) , there exist  H_{S},  H_{B}\in \mathbb{R} such that

  \lim_{tarrow\infty}(h(t)-c_{S}t-H_{S})=0, \lim_{tarrow\infty}h'(t)=c_{S},

  \lim_{tarrow\infty}\sup_{x\in[ct,h(t)]}|u(t, x)-q_{S}(h(t)-x)|=0 and

  \lim_{tarrow\infty}\sup_{x\in[0,ct]}|u(t, x)-Q_{1}^{B}(c_{1}^{B}t+H_{B}-x)|=0,
where  Q_{1}^{B} is a unique solution to (2.1) with  c=c_{1}^{B}.

3.2 Proof of Theorem 1

We first show (3.1). Let  U=U(t) be a solution of

 \{\begin{array}{l}
U_{t}=f(U) , t>0,
U(0)=a>\max\{\Vert u_{0}\Vert_{C([0,h_{0}])}, u_{3}^{*}\}.
\end{array}
Then the standard comparison principle gives  u(t, x)\leq U(t) for  t>0,0<x<
 h(t) . Moreover  U(t) is monotone decreasing with respect to  t and converges
to  u_{3}^{*} as   tarrow\infty . From the linearization problem at  U=u_{3}^{*} , we can choose
positive constants  T^{*},  \delta and  M such that

 u(t, x)\leq u_{3}^{*}+Me^{-\delta t} for  t\geq T^{*},  0\leq x\leq h(t) .

Fix  c\in(0, c_{1}^{B}) . Let  q_{c}=q_{c}(z) be a solution of  q_{c}"-cq_{c}'+f(q_{c})=0 such

that  Q_{c}  :=q_{c}(0)<u_{3}^{*},  q_{c}'(0)=0,  q_{c}(-z_{1})=0 and  q_{c}'>0 in  [-z_{1},0 ) for some
constant  z_{1}>0 . Then we see  Q_{c}arrow u_{3}^{*} as  carrow c_{1}^{B} . Define

 \underline{u}(t, x)=\{\begin{array}{ll}
Q_{c},   0\leq x\leq ct,
q_{c}(ct-x) ,   ct\leq x\leq ct+z_{1}
\end{array} and  \underline{h}(t)=ct+z_{1}.

Letting  c sufficiently close to  c_{1}^{B} , we deduce from Lemma 1 that

 \underline{h}(t-T_{1})\leq h(t) for  t\geq T_{2},  \underline{u}(t-T_{1}, x)\leq u(t, x) for  t>T_{2},0\leq x\leq\underline{h}(t-T_{1})

for some constants  T_{1},  T_{2} with  T_{1}<T_{2} . In particular  u(t, x)\geq Q_{c} for   t\geq

 T_{2},0\leq x\leq c(t-T_{1}) . Moreover, taking  c(<c_{1}^{B}) and  T^{*} suitably large, we
have

 (c_{1}^{B}-\varepsilon)t\leq c(t-T_{1}) for  t\geq T^{*}

Using the above estimate and  Q_{c}arrow u_{3}^{*} as  carrow c_{1}^{B} , one can choose suitable
constant  T^{*},  M,  \delta>0 satisfying

 u(t, x)\geq u_{3}^{*}-Me^{-\delta}オ f。r  t\geq T^{*},  0\leq x\leq(c_{1}^{B}-\varepsilon)t.
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These estimates show (3.1) (See Figure 5). We next prove (3.2). It is easy to
check that

 s(t)=c_{S}(t-T)+h_{0}, w(t, x)=q_{S}(s(t)-x)

is a lower solution to (1.1) for  t\geq T,  0\leq x\leq s(t) . Note that there exist
 C_{0},  \gamma>0 satisfying  q_{S}(z)\geq u_{1}^{*}-C_{0}e^{-\gamma z} for  z\geq 0 . Then, for any  c\in(0, c_{S}) ,
we obtain

 u(t, x)\geq u_{1}^{*}-\tilde{M}e^{-\overline{6}t} t\geq\tilde{T}, 0\leq x\leq 
ct
with some constants  \tilde{T},\tilde{M},\tilde{\delta}>0 . Let

 \overline{u}(t, x)=Q_{1}^{B}(c_{1}^{B}(t-T_{0})+X_{0}+M_{0}\rho(e^{-\delta_{0}
T_{0}}-e^{-\delta_{0}t})-x)+M_{0}e^{-\delta_{0}t}

for positive constants  T_{0},  X_{0},  M_{0},  \rho and  \delta_{0} . Then, by choosing the constants
suitablely, the standard comparison principle proves  u(t, x)\leq\overline{u}(t, x) for  t\geq T_{0},
 0\leq x\leq h(t) . This estimate enables us to get, for any  c\in(c_{1}^{B}, c_{S})

 u(t, x)\leq u_{1}^{*}+M_{0}e^{-\delta_{0}t} t\geq T_{0}, ct\leq x\leq h(t)

by adjusting the constants (see Figure 5). These estimates prove (3.2). 口

Figure 5 : Functions compared with solutions

3.3 Proof of Theorem 2

The spreading speed estimate and the convergence of  u to semi‐wave  q_{S} are
proved by a similar manner as in Du‐Matsuzawa‐Zhou [4] and Kaneko‐Yamada
[10] by zero number arguments and the comparison principle. Hence it remains
to show the convergence to traveling wave  Q_{1}^{B} . As in the proof of Theorem 1,
we can construct upper and lower solutions and find some constants  H_{0},  H_{1}\in \mathbb{R}
and  T,  M,  \delta>0 such that

 Q_{1}^{B}(c_{1}^{B}t+H_{1}-x)-Me^{-\delta t}\leq u(t, x)\leq Q_{1}^{B}(c_{1}
^{B}t+H_{0}-x)+Me^{-\delta t}
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for  t\geq T,  0\leq x\leq ct with  c\in(c_{1}^{B}, c_{S}) . Define  v(t, z)=u(t, z+c_{1}^{B}t) . Then it

follows that

 Q_{1}^{B}(H_{1}-z)-Me^{-\delta t}\leq v(t, z)\leq Q_{1}^{B}(H_{0}-z)+Me^{-
\delta t}

for  t\geq T,  -c_{1}^{B}t\leq z\leq(c-c_{1}^{B})t . By Berestycki‐Hamel [1],  v(t, z) converges
along subsequences  \{t_{n}\} to a traveling waves locally uniformly in  \mathbb{R} , that is,

 v(t_{n}, z)arrow Q_{1}^{B} (HB—Z) locally uniformly in  \mathbb{R} as   narrow\infty

for some constant  H_{B} . We can finally prove that  H_{B} does not depend on
the subsequences by constructing appropriate upper and lower solutions. The
proof is complete. 口
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