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楕円関数を用いて表される周期解をもつある遅延微分方程式

中田 行彦

概要.本論文では、Duffing 型の非線型常微分方程式を用いて、以下の遅延微分方程
式の周期解の存在について考察する。

 \frac{d}{dt}x(t)=rx(t)(1-\int_{0}^{1}x(t-s)ds) .
本稿で考察する遅延微分方程式は、ヤコビの楕円関数で表される周期2の周期解を

持つ。証明のアイデアは、Kaplan and York (1974) によるものである。

1. INTRODUCTION

The delay differential equation

(1.1)   \frac{d}{dt}z(t)=f(z(t-1)) ,
where  f :  \mathbb{R}arrow \mathbb{R} is a continuous function, has been extensively studied in the liter‐
ature [3, 4, 9, 8, 12]. Assuming that  f is an odd function, in the paper [5], Kaplan
and Yorke constructed a periodic solution of the equation (1.1) via a Hamiltonian
system of ordinary differential equations. See also Chapter XV of [1]. In this pa‐
per we follow the approach by Kaplan and Yorke [5]: we find a periodic solution
of a differential equation with distributed delay, considering a system of ordinary
differential equations.

In this paper we study the existence of a periodic solution of the following delay
differential equation

(1.2)   \frac{d}{dt}x(t)=rx(t)(1-\int_{0}^{1}x(t-s)ds) ,
where  r is a positive parameter,  r>0 . The delay differential equation (1.2) can be
seen as a variant of the Hutchinson‐Wright equation. The author’s motivation to
study (1.2) is that the equation appears as a limiting case of an infectious disease
model with temporary immunity. For the equation (1.2), the existence of periodic
solutions does not seem to be well understood. The periodicity, which may explain
the recurrent disease dynamics, is a trigger of this study. Differently from the
discrete delay case, the distributed delay is an obstacle, when one tries to construct
a suitable Poincare map to find a periodic solution, but see [6, 11].

The existence of the periodic solution is proven, solving a corresponding ordinary
differential equation, which turns out to be equivalent to the Duffing equation.
The periodic solution, explicitly expressed in terms of the Jacobi elliptic functions,
appears at  r= \frac{\pi^{2}}{2} , as the positive equilibrium  (x=1) loses stability via Hopf
bifurcation. We refer the reader to [7] for detail.
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2. PRELIMINARY

Observe that, defining

 y(t)= \int_{0}^{1}x(t-s)ds-1, t\geq 0,
the delay differential equation (1.2) is equivalent to the following system of delay
differential equations

(2.1a)   \frac{d}{dt}x(t)=-rx(t)y(t) ,

(2.1b)   \frac{d}{dt}y(t)=x(t)-x(t-1)
with the following initial condition

 x(\theta)=\phi(\theta), \theta\in[-1,0],

 y(0)= \int_{0}^{1}\phi(-s)ds-1.
Assume that for (1.2) there exists a periodic solution of period 2. Denote by

 x^{*}(t) the periodic solution, i.e.,  x^{*}(t)=x^{*}(t-2) . Then we let

 x_{1}(t)=x^{*}(t), y_{1}(t)= \int_{0}^{1}x^{*}(t-s)ds-1,
 x_{2}(t)=x^{*}(t-1), y_{2}(t)= \int_{1}^{2}x^{*}(t-s)ds-1.

We are interested in the positive periodic solution. The periodic solution satisfies
the following system of ordinary differential equations

(2.2a)   \frac{d}{dt}x_{1}(t)=-rx_{1}(t)y_{1}(t) ,

(2.2b)   \frac{d}{dt}y_{1}(t)=x_{1}(t)-x_{2}(t) ,

(2.2c)   \frac{d}{dt}x_{2}(t)=-rx_{2}(t)y_{2}(t) ,

(2.2d)   \frac{d}{dt}y_{2}(t)=x_{2}(t)-x_{1}(t) .

The initial condition is

(2.3a)  x_{1}(0)=a>0, x_{2}(0)=b>0,

(2.3b)  y_{1}(0)=y_{2}(0)=0,

where  a and  b will be determined later  (a=x^{*}(0)=x^{*}(2), b=x^{*}(-1)=x^{*}(1)) ,
so that  x_{1}(t)=x_{1}(t+2) holds.

From (2.2) one sees that

(2.4a)  y_{1}(t)+y_{2}(t)=0,

(2.4b)  x_{1}(t)x_{2}(t)=ab
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hold for any  t\geq 0 . Thus one sees that the periodic solution satisfies the following
properties

(2.5)   \int_{0}^{2}x^{*}(t-s)ds=2,  x^{*}(t)x^{*}(t-1)= Const,  t\in \mathbb{R}.

3. INTEGRABLE ORDINARY DIFFERENTIAL EQUATIONS

The system (2.2) with (2.4) is reduced to the following system of ordinary dif‐
ferential equations

(3.1a)   \frac{d}{dt}x(t)=-rx(t)y(t) ,

(3.1b)   \frac{d}{dt}y(t)=x(t)-ab\frac{1}{x(t)},
dropping the indices from  x_{1} and  y_{1} (cf. (2.1)). The initial condition of (3.1) is

(3.2a)  x(0)=a,

(3.2b)  y(0)=0

(see (2.3)).

命題1. It holds that

(3.3)  x(t)+ab \frac{1}{x(t)}+\frac{r}{2}y^{2}(t)=a+b, t\in \mathbb{R}
for the solution of the equation (3.1) with the initial condition (3.2).

Differentiating the both sides of the equation (3.1b), we obtain

  \frac{d^{2}}{dt^{2}}y(t)=-(1+ab\frac{1}{x^{2}(t)})rx(t)y(t)
 =-ry(t)(x(t)+ab \frac{1}{x(t)}) .

Using the identity (3.3) in Proposition 1, we derive the Duffing equation:

(3.4)   \frac{d^{2}}{dt^{2}}y(t)=-ry(t)(a+b-\frac{r}{2}y^{2}(t))
with the following initial condition

(3.5a)  y(0)=0,

(3.5b)   \frac{d}{dt}y(0)=x(0)-ab\frac{1}{x(0)}=a-b.
Denote by sn the Jacobi elliptic sine function. It is known that the solution of the
Duffing equation (3.4) is given by

(3.6)  y(t)=\alpha sn(\beta t, k) ,

where  \alpha,  \beta and  k are functions of  a and  b defined by

(3.7)  \alpha(a, b)=\sqrt{\frac{2}{r}}(\sqrt{a}-\sqrt{b}), \beta(a, b)=\sqrt{\frac{r}
{2}}(\sqrt{a}+\sqrt{b}) ,

(3.8)  k(a, b)= \frac{\sqrt{a}-\sqrt{b}}{\sqrt{万}+\sqrt{b}},
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To simplify the notation, we occasionally drop  (a, b) from  \alpha,  \beta and  k.

We then obtain the exact solution of the system (3.1) with the initial condition
(3.2).

命題2. The solution of the equations (3.1) with the initial condition (3.2) is ex‐
pressed as

(3.9)  x(t)=a( \frac{1-k}{dn(\beta t,k)-kcn(\beta t,k)})^{2}=a(\frac{dn(\beta t,k)+kcn
(\beta t,k)}{1+k})^{2},
(3.10)  y(t)=\alpha sn(\beta t, k) ,

where  \alpha,  \beta and  k are defined in (3.7) and (3.8).

4. PERIODIC SOLUTION OF PERIOD 2

In this section we will determine  a , the initial value for the  x component of the
system (3.1), so that, for the solution given in Proposition 2, the period is 2 and
the integral constant becomes  -1 . The periodic solution finally solves the delay
differential equation (1.2).

Let us introduce the complete elliptic integrals of the first kind and of the second
kind. Those are respectively given as

 K(k)= \int_{0}^{\frac{\pi}{2}}\frac{1}{\sqrt{1-k^{2}\sin^{2}\theta}}d\theta,
  E(k)= \int_{0}^{\frac{\pi}{2}}\sqrt{1-k^{2}\sin^{2}\theta}d\theta

for  0\leq k<1 . The Jacobi elliptic functions sn and cn are periodic functions with
period  4K(k) , i.e.,

sn  (t, k)=sn(t+4K(k), k) , cn  (t, k)=cn(t+4K(k), k),  t\in \mathbb{R}

and dn is periodic with period  2K(k) .
In the following theorem we have two conditions so that the period of the solution

given in Proposition 2 is two.

定理3. Assume that the following two conditions hold

(4.1)  \sqrt{\frac{r}{2}} (  \sqrt{a}+ 而)  =2K(k) ,
(4.2)  (\sqrt{a}+\sqrt{b})\sqrt{\frac{2}{r}}E(k)- ab=1.
Then, for the solution of the equation (3.1) with the initial condition (3.2), it holds
that

(4.3)  (x(t), y(t))=(x(t+2), y(t+2))

and that

(4.4)  y(t)=l_{-1}^{t}x(s)ds-1
for any  t\in \mathbb{R}.
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The conditions (4.1) and (4.2) ensure the existence of a periodic solution of
period 2 for the system of ordinary differential equations (3.1), satisfying (4.4).
The periodic solution obtained in Theorem 3 is also a periodic solution of the delay
differential equation (1.2). Our remaining task is to interpret the conditions (4.1)
and (4.2) in terms of the parameter  r in the equation (1.2).

Eliminating  a and  b from the conditions (4.1) and (4.2), we obtain the following
equality

(4.5)  r=L(k), 0\leq k<1,
where

 L(k) :=2K(k)(2E(k)-K(k)(1-k^{2})) .

Now we show that the equation (4.5) has a unique root.

補題4. The function  L is astrictly increasing function with

 L(0)= \frac{\pi^{2}}{2}<\lim_{karrow 1-0}L(k)=\infty.
Then,  a and  b are determined by the following Proposition.

命題5. There exist  a>0 and  b>0 such that the two conditions  (4\cdot 1) and  (4\cdot 2)
in Theorem 3 hold if and only if  r> \frac{\pi^{2}}{2} . In particular,  a and  b are given as

(4.6)   \{\begin{array}{l}
a
b
\end{array}\}=\frac{K(k)}{2E(k)-K(k)(1-k^{2})}   \{\begin{array}{ll}
(1+   k)^{2}
(1-   k)^{2}
\end{array}\}=\frac{2K(k)^{2}}{r}  \{\begin{array}{ll}
(1+   k)^{2}
(1-   k)^{2}
\end{array}\} ,

where  k=L^{-1}(r),  r> \frac{\pi^{2}}{2}.
Finally we introduce the following theorem

定理6. Let  r> \frac{\pi^{2}}{2} . Then the delay differential equation (1.2) has a periodic
solution ofperiod2. The periodic solution is expressed as in (3.9), wherea and  b

are determined in Proposition 5.
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図4.1. Bifurcation of the equilibrium. The equilibrium  x=1 is
asymptotically stable for  r< \frac{\pi^{2}}{2} and is unstable for  r> \frac{\pi^{2}}{2} . At

 r= \frac{\pi^{2}}{2} a Hopf bifurcation occurs and the periodic solution appears.
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図4.2. Time profile of the periodic solution for  T=5 and  T=10.
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