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1 Introduction

Consider second‐order nonlinear dynamic equations on time scales of the form

x^{\triangle\triangle}+p(t)f(x)=0, t\in[t_{0}, \infty)_{T}\subset(0, \infty) , (1.1)

where a time scale  \mathbb{T} is assumed to be unbounded from above,  x^{\triangle} is the delta‐derivative

of  x,  p(t) is an rd‐continuous function on  [t_{0}, \infty ), and  f(x) is a continuous function on  \mathbb{R}

satisfying

 xf(x)>0 if  x\neq 0 . (1.2)

Here, for simplicity, we use the notation  I_{\mathbb{T}}=I\cap \mathbb{T} for the interval  I\subset \mathbb{R} . Moreover,

we use the following notation concerning time scales calculus:  \sigma,  \rho,  \mu,  x^{\sigma},   \int_{a}^{b}g(s)\triangle s,
 C_{rd}(I) , and  e_{u}(t, s) , with the standard meaning, i.e., forward jump operator, backward
jump operator, graininess,   x\circ\sigma , delta integral, the set of rd‐continuous functions, and

generalized exponentialfunction, respectively (for these definitions, see [2, 3]).

A function  x is said to be a solution of equation (1.1) if  x\in C_{rd}^{2}([t_{0}, \infty)_{\mathbb{T}}) and  x

satisfies equation (1.1) for all  t\in[t_{0}, \infty)_{\mathbb{T}} . Throughout this paper, we assume that all

solutions of equation (1.1) exist in the future. Then we can discuss the oscillatory behavior

of solutions of equation (1.1) as   tarrow\infty . Here a solution  x(t) of equation (]. 1) is said to
be nonoscillatory if it is either eventually positive or eventually negative, otherwise it is

said to be oscillatory.

Equation (1.]) naturally includes the Euler‐Cauchy dynamic equation

 yムム  + \frac{\lambda}{t\sigma(t)}y=0,  t\in[t_{0}, \infty)_{\mathbb{T}} (1.3)

as a special case, where  \lambda>0 . It is known that equation (1.3) has the general solution

 y(t)=\begin{array}{ll}
K_{1}e_{z/t}(t, t_{0})+K_{2}e_{(1-z)/t}(t, t_{0})   if \lambda\neq 1/4,
e_{1/(2t)}(t, t_{0})\{K_{3}+K_{4}\int_{t_{0}}^{t}\frac{2}{s+\sigma(s)}\triangle 
s\}   if \lambda=1/4,
\end{array}
where  K_{1},  K_{2},  K_{3},  K_{4} are arbitrary constants and  z is the root of the characteristic equation

 z^{2}-z+\lambda=0.

Hence, we have the following result (for the proof, see [6]).
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Proposition 1.1. Equation (1.3) can be classified into two types as follows:

(i) if  \lambda>1/4, then all nontrivial solutions ofequation (1.3) are oscillatory;

(ii) if  0<\lambda\leq 1/4, then all nontrivial solutions ofequation (1.3) are nonoscillatory.

Thus, we see that the constant 1/4 is the critical value for the oscillation of equation
(1.3). Such a value is generally called an oscillation constant.

When  \mathbb{T}=\mathbb{R} , equation (1.3) becomes the linear differential equation

 y^{\prime/}+ \frac{\lambda}{t^{2}}y=0, t\in[t_{0}, \infty) . (1.4)

It is known that the oscillation constant for equation (1.4) plays an important role in prov‐

ing (non)oscillation criteria for equation (1.1) with  \mathbb{T}=\mathbb{R} , i.e., the nonlinear differential

equation

 x"+p(t)f(x)=0, t\in[t_{0}, \infty) . (1.5)

For example, these results can be found in [4, 5, 7, 8, 9] and the references cited therein.

Especially, Sugie and Kita [8] gave (non)oscillation criteria for equation (1.5) which can

be applied even to the critical case  f(x)/x\searrow 1/4 as  |x|arrow\infty.
On the other hand, the author [10, 11] discussed the oscillation problem for equation

(1.1) with  \mathbb{T}=\mathbb{N} , i.e., the nonlinear difference equation

 \triangle^{2}x(t)+p(t)f(x(t))=0, t\in[t_{0}, \infty)_{\mathbb{N}},

where  \triangle is the forward difference operator, and gave (non)oscillation criteria which can

be regarded as counterparts of the results of Sugie and Kita [8].

In this paper, we intend to unify these results. For this purpose, we give a pair of an

oscillation theorem and a nonoscillation theorem for equation (1.1). Our main results are
stated as follows.

Theorem 1.1. Assume (1.2). Suppose that  p(t) satisfies

 t\sigma(t)p(t)\geq 1 (1.6)

for  t\in[t_{0}, \infty)_{\mathbb{T}} sufficiently large, and that there exists a  \lambda\in \mathbb{R} with  \lambda>1/4 such that

  \frac{f(x)}{x}\geq\lambda (1.7)

for  |x| sufficiently large. Then all nontrivial solutions ofequation (1.1) are oscillatory.

Theorem 1.2. Assume (1.2). Suppose that  p(t) satisfies

 t\sigma(t)p(t)\leq 1 (1.8)
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for  t\in[t_{0}, \infty)_{\Gamma} sufficiently large, and that

  \frac{f(x)}{x}\leq\frac{1}{4} (1.9)

for  x>0 or  x<0,  |x| sufficiently large. Then equation (1.1) has a nonoscillatory
solution.

2 Proof of oscillation criteria

To begin with we prepare some lemmas which are useful for proving Theorem 1.1.

Lemma 2.1. Let  0<a\in \mathbb{T} . Then,   \int_{a}^{\infty}\triangle t/t=\infty.

Proof. To complete the proof, it suffices to show that,

  \int_{a}^{t}\frac{ds}{s}\leq\int_{a}^{t}\frac{\triangle s}{s}
holds for any unbounded time scale  \mathbb{T},  0<a\in \mathbb{T} , and  a<t\in \mathbb{T} , because   \int_{a}^{t}ds/s=
 \log(t/a)arrow\infty as  tarrow\infty.

Suppose that there exist an unbounded time scale  \mathbb{T}_{0},  \varepsilon_{0}>0,0<a_{0}\in \mathbb{T}_{0} , and

 a_{0}<t_{0}\in \mathbb{T}_{0} such that

  \int_{a_{0}}^{t_{0}}\frac{ds}{s}>\int_{a_{0}}^{t_{0}}\frac{\triangle s}{s}+
\varepsilon_{0}.
Then, in view of the definition of the delta Riemann type integral (see [3, Chapter 5]),

there exists a discrete time scale  \tilde{\mathbb{T}} containing  a_{0} and  t_{0} such that

 | \int_{a0}^{t_{0}}\frac{\triangle s\sim}{s}-\int_{a0}^{t_{0}}\frac{\triangle 
s}{s}|<\frac{\varepsilon_{0}}{2},
where   \int_{a_{0}}t_{0}^{\sim}\triangle s/s is the delta integral with respect to  \tilde{\mathbb{T}} . Since

  \int_{a0}^{t_{0}}\frac{\triangle s\sim}{s}=s\in[a,t_{0})_{\overline{\Gamma}}
\sum_{0}\frac{\tilde{\mu}(s)}{s},
it is clear that   \int_{a0}^{t_{0}}\frac{ds}{s}\leq\int_{a0}^{t_{0}}\frac{\triangle s\sim}{S} , where  \tilde{\mu} stands for the graininess associated to  \tilde{\mathbb{T}} . Hence,
we have

  \int_{a0}^{t_{0}}\frac{\triangle s}{s}+\varepsilon_{0}<\int_{a0}^{t_{0}}
\frac{ds}{s}\leq\int_{a0}^{t_{0}}\frac{\triangle s-}{s}<\int_{a}^{t_{0}}
0\frac{\triangle s}{s}+\frac{\varepsilon_{0}}{2},
which is a contradiction.  \square 

Lemma 2.2. Assume (1.2) and (1.6). Suppose that equation (1.1) has a positive solution

 x(t) . Then the solution  x(t) is increasingfor  t\in[t_{0}, \infty)_{\mathbb{T}} sufficiently large and it tends to
 \infty as  tarrow\infty.
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Proof. By the assumption, there exists  t_{1}\in \mathbb{T} such that  x(t)>0 for  t\in[t_{1}, \infty)_{\mathbb{T}} . Hence,

in view of (1.2) and (1.6), we have

 x^{\triangle\triangle}(t)=-p(t)f(x(t))<0 (2.1)

for  t\in[t_{1}, \infty)_{\mathbb{T}}.
We first show that  x^{\triangle}(t)>0 for  t\in[t_{1}, \infty)_{\Gamma} . By way of contradiction, we suppose

that there exists  t_{2}\in[t_{1}, \infty)_{\mathbb{T}} such that  x^{\triangle}(t_{2})\leq 0 . Then, by (2.1), we have  x^{\triangle}(t)<
 x^{\triangle}(t_{2})\leq 0 for  t\in(t_{2}, \infty)_{\Gamma} . Therefore, we can find  t_{3}\in(t_{2}, \infty)_{\mathbb{T}} such that  x^{\triangle}(t_{3})<0.
Integrating both sides of (2.1), we get  x^{\triangle}(t)\leq x^{\triangle}(t_{3})<0 for  t\in[t_{3}, \infty)_{\Gamma} . Hence, we

obtain   x(t)\leq x^{\triangle}(t_{3})(t-t_{3})+x(t_{3})arrow-\infty as   tarrow\infty . This contradicts the assumption

that  x(t) is positive for  t\in[t_{1}, \infty)_{\mathbb{T}} . Thus  x(t) is increasing for  t\in[t_{1}, \infty)_{\mathbb{T}}.
We next suppose that  x(t) is bounded from above. Then there exists  K>0 such that

  \lim_{tarrow\infty}x(t)=K.  Si_{t1}cef(x) is continuous on  \mathbb{R} , we have   \lim_{tarrow\infty}f(x(t))=f(K) , and

therefore, there exists  t_{4}\in[t_{1}, \infty)_{\Gamma} such that  0<f(K)/2<f(x(t)) for  t\in[t_{4}, \infty)_{\mathbb{T}}.
Integrating both sides of (2.1) from  t to  2t and using (1.6), we have

 x^{\triangle}(t)=x^{\triangle}(2t)+ \int_{t}^{2t}p(s)f(x(s))\triangle s>\frac{f
(K)}{2}\int_{t}^{2t}\frac{\triangle s}{s\sigma(s)}=\frac{f(K)}{4t}
for  t\in[t_{4}, \infty)_{\Gamma} , and therefore, we obtain

  x(t) \geq x(t_{4})+\frac{f(K)}{4}\int_{t_{4}}^{t}\frac{\triangle s}{s}
arrow\infty
as   tarrow\infty by Lemma 2.1. This contradicts the assumption that  x(t) is bounded from
above. Thus we conclude that   \lim_{tarrow\infty}x(t)=\infty.  \square 

We are now ready to prove Theorem 1.1.

Proofof Theorem 1.1. Let  t_{0}\in \mathbb{T} be a large number satisfying (1.6) for  t\in[t_{0}, \infty)_{\mathbb{T}} and

let  R>0 be a large number such that (1.7) is satisfied for  |x|\geq R.
The proof is by contradiction. Suppose that equation (1. 1) has a nonoscillatory solution

 x(t) . Then, without loss of generality, we may assume that  x(t) is eventually positive. By
Lemma 2.2, there exists  t_{1}\in[t_{0}, \infty)_{\mathbb{T}} such that  x(t)\geq R and  x^{\triangle}(t)>0 for  t\in[t_{1}, \infty)_{\Gamma}.

We define

 w(t)= \frac{x^{\triangle}(t)}{x(t)}.
Then  w(t) is positive and satisfies

 w^{\triangle}(t)= \frac{x^{\triangle\triangle}(t)x(t)-(x^{\triangle}(t))^{2}}{x
(t)x^{\sigma}(t)}=\frac{x^{\triangle\triangle}(t)x(t)+(\mu(t)
x^{\triangle\triangle}(t)-(x^{\triangle}(t))^{\sigma})x^{\triangle}(t)}{x(t)
x^{\sigma}(t)}
 = \frac{(x(t)+\mu(t)x^{\triangle}(t))x^{\triangle\triangle}(t)-(x^{\triangle}
(t))^{\sigma}x^{\triangle}(t)}{x(t)x^{\sigma}(t)}
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 = \frac{x^{\triangle\triangle}(t)}{x(t)}-w(t)w^{\sigma}(t)=-\frac{p(t)f(x(t))}
{x(t)}-w(t)w^{\sigma}(t)
  \leq-\frac{\lambda}{t\sigma(t)}-w(t)w^{\sigma}(t) (2.2)

for  t\in[t_{1}, \infty)_{\Gamma} by (1.6) and (1.7).

We will show that   \lim_{tarrow\infty}w(t)=0 . Since  w^{\triangle}(t)<0 on  [t_{1}, \infty)_{\mathbb{T}} , we see that

 w(t)\searrow\alpha\in[0, \infty) as   tarrow\infty . Assume that  \alpha>0 . Then, from (2.2), we have

 (- \frac{1}{w(t)})^{\triangle}=\frac{w^{\triangle}(t)}{w(t)w^{\sigma}(t)}\leq-
\frac{\lambda}{t\sigma(t)w(t)w^{\sigma}(t)}-1<-1.
Hence, using  w(t)\geq\alpha>0 , we get

  \frac{1}{w(t_{1})}-\frac{1}{\alpha}\leq\frac{1}{w(t_{1})}-\frac{1}{w(t)}\leq-t
+t_{1}arrow\infty
as   tarrow\infty . This is a contradiction. Hence, we obtain  \alpha=0.

Integrating both sides of (2.2) from  t to  s , we have

  \int_{t}^{s}(\frac{\lambda}{\tau\sigma(\tau)}+w(\tau)w^{\sigma}(\tau))
\triangle\tau\leq w(t)-w(s)\leq w(t) .

Letting   sarrow\infty , we get

 w(t) \geq\frac{\lambda}{t}+\int_{t}^{\infty}w(s)w^{\sigma}(s)\triangle s (2.3)

for  t\in[t_{1}, \infty)_{\Gamma} . Define the sequence  \{u_{k}\} as follows:

 u_{0}(t)= \frac{\lambda}{t}, u_{k}(t)=u_{0}(t)+\int_{t}^{\infty}u_{k-1}(s)u_{k-
1}^{\sigma}(s)\triangle s (2.4)

for  t\in[t_{1}, \infty)_{\mathbb{T}},  k=0,1,2 , . . . . Note that the sequence  \{u_{k}\} is well defined. In fact, we

have  u_{0}(t)\leq w(t) , and therefore, from (2.3), we obtain

 u_{1}(t)=u_{0}(t)+ \int_{t}^{\infty}u_{0}(s)u_{0}^{\sigma}(s)\triangle s\leq u_
{0}(t)+\int_{t}^{\infty}w(s)w^{\sigma}(s)\triangle s\leq w(t) ,

for  t\in[t_{1}, \infty)_{\mathbb{T}} . By induction, we obtain  0<u_{k}(t)\leq w(t) and  u_{k}(t)\leq u_{k+1}(t) for   t\in

 [t_{1}, \infty)_{\Gamma},  k=0,1,2 , . . . . Hence,  \{u_{k}\} is monotone and bounded from above, thus there

exists the limit   \lim_{karrow\infty}u_{k}(t)=u(t) for  t\in[t_{1}, \infty)_{\mathbb{T}} . Applying the Lebesgue monotone

convergence theorem on time scales (see e.g., [1]) to (2.4), we find that  u satisfies the

equation

 u(t)= \frac{\lambda}{t}+\int_{t}^{\infty}u(s)u^{\sigma}(s)\triangle s.
Differentiating both sides of the equality, we have

 u^{\triangle}(t)=- \frac{\lambda}{t\sigma(t)}-u(t)u^{\sigma}(t) .
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Define  y(t)=e_{u}(t, t_{1})>0 . Then, since  u(t)=y^{\triangle}(t)/y(t) , we have

 u^{\triangle}(t)= \frac{y^{\triangle\triangle}(t)}{y(t)}-u(t)u^{\sigma}(t) ,

and therefore,  y(t) is a positive solution of equation (1.3). Hence, we see that equation

(1.3) has a nonoscillatory solution  y(t) . However, since  \lambda>1/4 , all nontrivial solutions

of equation (1.3) are oscillatory by Proposition 1.1. This is a contradiction. The proof is

now complete.  \square 

3 Proof of nonoscillation criteria

To prove Theorem 1.2, we require some lemmas.

Lemma 3.1. Let  0<a\in \mathbb{T} . Then   \int_{a}^{\infty}\triangle t/\sigma(t)=\infty.

Proof. Let  I=\{t\in \mathbb{T} : \mu(t)\geq t\} . Suppose that  I is bounded from above. Then there
exists  a\leq t_{1}\in \mathbb{T} such that  \mu(t)<t for  t\in[t_{1}, \infty)_{\mathbb{T}} . Hence, we have

  \int_{a}^{\infty}\frac{\triangle t}{\sigma(t)}\geq\int_{t_{1}}^{\infty}
\frac{\triangle t}{\sigma(t)}=\int_{t_{1}}^{\infty}\frac{\triangle t}{t+\mu(t)}
\geq\int_{t_{1}}^{\infty}\frac{\triangle t}{2t}=\infty
by Lemma 2.1. On the contrary, if  I is unbounded from above, we obtain

  \int_{a}^{\infty}\frac{\triangle t}{\sigma(t)}\geq\sum_{t\in I}\int_{t}
^{\sigma(t)}\frac{\triangle s}{\sigma(s)}=\sum_{t\in I}\frac{\mu(t)}{\sigma(t)}=
\sum_{t\in I}\frac{\mu(t)}{t+\mu(t)}\geq\sum_{t\in I}\frac{1}{2}=\infty.
The proof is now complete.  \square 

We next present a comparison lemma.

Lemma 3.2. Assume that  g(t, x) is a continuousfunction such that

 x\mapsto x+\mu(t)g(t, x) is nondecreasingfor each fixed  t . (3. 1)

lf  \varphi and  \psi satisfy  \psi(a)\geq\varphi(a),  \varphi^{\triangle}=g(t, \varphi(t)),  \psi^{\triangle}(t)>g(t, \psi(t)) for  t\in[a, b]_{\mathbb{T}}^{\kappa} then

 \psi(t)\geq\varphi(t) (3.2)

for  t\in[a, b]_{\mathbb{T}}.

Proof. We use the following abbreviations: ld for left‐dense, rd for right‐dense, ls for

left‐scattered, and rs for right‐scattered. Let

 A_{\mathbb{T}}= {  t_{n}\in[a,  b]_{\mathbb{T}} :  t_{n} is ld and rs or  t_{n}=a or  t_{n}=b,  n\in \mathbb{N}}
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with  t_{n}<t_{n+1} . Then  t_{1}=a and  A_{\mathbb{T}} is at most countable. Indeed, every (real) interval

 (t_{n}, t_{n+1}) can be represented by a rational number which is contained in it, and these

intervals are pairwise disjoint.
We will show that

 \psi(t)>\varphi(t) for  t\in(t_{n}, t_{n+1})_{\mathbb{T}} , and  \psi(t_{n})\geq\varphi(t_{n}) for all  n , (3.3)

which then implies (3.2).

Assume that  a is rd. We claim that there is a right neighborhood  U of  a (more precisely,

 U=(a, a+\varepsilon)\cap \mathbb{T} with some  \varepsilon>0) such that  \psi(t)>\varphi(t) for  t\in U . Indeed, if

 \psi(a)>\varphi(a) , then the existence of  U clearly follows from the continuity of  \psi and  \varphi ;

note that  \psi,  \varphi are continuous thanks to their  \triangle‐differentiability, see [2, Theorem 1.16]. If

 \psi(a)=\varphi(a) , then  \psi^{\triangle}(a)>g(a, \psi(a))=g(a, \varphi(a))=\varphi^{\triangle}(a) . Hence,  (\varphi-\psi)^{\triangle}(a)<0,
which implies  (\varphi-\psi)(t)<0 for  t\in U by [3, Theorem 1.9].

If  a is rs, then  \psi(\sigma(a))>\psi(a)+\mu(a)g(a, \psi(a))\geq\varphi(a)+\mu(a)g(a, \varphi(a)
)=\varphi(\sigma(a)) ,

and so  \psi(\sigma(a))>\varphi(\sigma(a)) .

Suppose that there exists  c\in(t_{1}, t_{2})=(a, t_{2}) such that  \psi(t)>\varphi(t) for  t\in(a, c)_{\mathbb{T}}
and  \psi(c)\leq\varphi(c) . Then, in view of  \psi(t)>\varphi(t) for  t\in(a, c)_{\Gamma} and the continuity of  \psi,  \varphi,

we see that the strict inequality in  \psi(c)\leq\varphi(c) cannot happen when  c is ld. Assume that  c

is ld. Then  \psi(c)=\varphi(c) , and so

 \psi^{\triangle}(c)>g(c, \psi(c))=g(c, \varphi(c))=\varphi^{\triangle}(c) . (3.4)

On the other hand, since  c\not\in A_{\Gamma} , we see that  c is ld and rd, and so

 \psi^{\triangle}(c)\leq\varphi^{\triangle}(c) , (3.5)

which contradicts (3.4). To see (3.5), note that

  \lim_{tarrow c-}\frac{\psi(c)-\psi(t)}{c-t}\leq\lim_{tarrow c-}
\frac{\varphi(c)-\varphi(t)}{c-t},
in view of  \psi>\varphi on  (a, c)_{\Gamma} , and

  \varphi^{\triangle}(c)=\lim_{tarrow c}\frac{\varphi(c)-\varphi(t)}{c-t}, \psi^
{\triangle}(c)=\lim_{tarrow c}\frac{\psi(c)-\psi(t)}{c-t},
which follows from [2, Theorem 1.16]. Assume now that  c is ls. Then we see that  \rho(c)<c,
and therefore,  \sigma(\rho(c))=c . Hence, from  \psi(\rho(c))>\varphi(\rho(c)) and

 \varphi(c)=\varphi(\sigma(\rho(c)))=\varphi(\rho(c))+\mu(\rho(c))g(\rho(c), 
\varphi(\rho(c))) ,

 \psi(c)=\psi(\sigma(\rho(c)))>\psi(\rho(c))+\mu(\rho(c))g(\rho(c), \psi(\rho(c)
)) ,

we get  \psi(c)>\varphi(c) , again contradiction with  \psi(c)\leq\varphi(c) . Therefore,  \psi(t)>\varphi(t) for

 t\in(a, t_{2})_{\mathbb{T}} . This implies  \psi(t_{2})\geq\varphi(t_{2}) since  t_{2} is ld and  \psi,  \varphi are continuous.

Similarly we prove that  \psi(t_{n})\geq\varphi(t_{n}) implies  \psi(t)>\varphi(t) for  t\in(t_{n}, t_{n+1})_{\mathbb{T}} and

 \psi(t_{n+1})\geq\varphi(t_{n+1}) for all  n . Thus, by induction, (3.3) follows.  \square 
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Let  x(t) be a solution of equation (1.1) and put  y(t)=tx^{\triangle}(t)-x(t) . Then we can

transform equation (1.1) into the system

 tx^{\triangle}=y+x, ty^{\triangle}=-t\sigma(t)p(t)f(x) . (3.6)

For simplicity, put

 D_{1}=\{(x, y)\in \mathbb{R}^{2}:x>0, y\geq-x\},  D_{2}=\{(x, y)\in \mathbb{R}^{2} : x>0, y<-x\}.

Then we have the following lemma.

Lemma 3.3. Let  (x(t), y(t)) be a solution of(3.6) which corresponds to a nontrivial oscil‐

latory solution of equation (1.1). lf  t_{0}\in \mathbb{T} satisfies  (x(t_{0}), y(t_{0}))\in D_{1} , then there exists

 t_{1}\in \mathbb{T} such that  (x(t), y(t))\in D_{1} on  [t_{0}, t_{1})_{\mathbb{T}} and  (x(t_{1}), y(t_{1}))\in D_{2}.

Proof. Since  x(t) is oscillatory, there exists  \tilde{t}\in \mathbb{T} such that  x(t)>0 on  [t_{0},\tilde{t})_{\Gamma} and

 x(\tilde{t})\leq 0.
Let  \tilde{t} be left‐scattered. Then we have  x(\rho(\tilde{t}))>0 , and therefore,  (x(\rho(\tilde{t})), y(\rho(\tilde{t}))) is

either in  D_{1} or  D_{2} . Suppose that  (x(\rho(\tilde{t})), y(\rho(\tilde{t})))\in D_{1} . Then we see that

 \rho(\tilde{t})x^{\triangle}(\rho(\tilde{t}))=y(\rho(\tilde{t}))+
x(\rho(\tilde{t}))\geq 0.

Hence, we have  x(\tilde{t})=x(\sigma(\rho(\tilde{t})))\geq x(\rho(\tilde{t}))>0 , which is a contradiction. Thus we

obtain  (x(\rho(\tilde{t})), y(\rho(\tilde{t})))\in D_{2} , that is, there exists  t_{1}\in(t_{0}, \rho(\tilde{t})]_{\mathbb{T}} such that  (x(t), y(t))\in
 D_{1} on  [t_{0}, t_{1})_{\mathbb{T}} and  (x(t_{1}), y(t_{1}))\in D_{2}.

Let  \tilde{t} be left‐dense. Then there is a left neighborhood  U\subset[t_{0},\tilde{t})_{\mathbb{T}} of  \overline{t} such that  x(t)>
 0 for  t\in U . Suppose that  (x(t), y(t))\in D_{1} for  t\in U . Since  tx^{\triangle}(t)=y(t)+x(t)\geq 0,
in view of [3, Corollary 1.20] and the continuity of  x , we have  x( \tilde{t})=\lim_{tarrow\overline{t}-}x(t)>0,
which is a contradiction. Thus there exists  t_{2}\in U such that  (x(t_{2}), y(t_{2}))\in D_{2} , that is,

the assertion of this lemma holds.  \square 

We are now ready to prove Theorem 1.2.

Proofof Theorem 1.2. We prove only the case that condition (1.9) is satisfied for  x>0

sufficiently large, because the other case can be proved in the same manner. Let  R>0

be a number such that (1.9) is satisfied for  x\geq R . Moreover, we suppose that there exists
 T\in \mathbb{T} such that  p(t) satisfies (1.8) for  t\in[T, \infty)_{\mathbb{T}}.

The proof is by contradiction. Suppose that all nontrivial solutions of equation (1. 1) are

oscillatory. Let  (x(t), y(t)) be the solution of system (3.6) satisfying the initial condition

 (x(t_{0}), y(t_{0}))=(R, (- \frac{1}{2}+\frac{1}{2l(t_{0})})R)\in D_{1},
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where  t_{0}\in[T, \infty)_{\Gamma} and the function  l(t) is positive and satisfies  l^{\triangle}(t)=2/(t+\sigma(t)) on

 [t_{0}, \infty)_{\Gamma} . Note that   l(t)arrow\infty as   tarrow\infty because of Lemma 3.1. By Lemma 3.3, there
exists  t_{1}\in \mathbb{T} such that

 (x(t), y(t))\in D_{1} on  [t_{0}, t_{1})_{\Gamma} and  (x(t_{1}), y(t_{1}))\in D_{2}.

Note that  x(t)\geq R on  [t_{0}, t_{1}]_{\mathbb{T}}^{\kappa} because  tx^{\triangle}(t)=y(t)+x(t)>0 on  [t_{0}, t_{1})_{\mathbb{T}}.
Define  \psi(t)=y(t)/x(t) . Then  \psi(t) satisfies

  \psi(t_{0})=\frac{y(t_{0})}{x(t_{0})}=-\frac{1}{2}+\frac{1}{2l(t_{0})} , and   \psi(t_{1})=\frac{y(t_{1})}{x(t_{1})}<-1 . (3.7)

Moreover, using (1.8) and (1.9), we easily see that  \psi(t) satisfies

  \psi^{\triangle}(t)=\frac{y^{\triangle}(t)x(t)-y(t)x^{\triangle}(t)}{x(t)
x^{\sigma}(t)}=\frac{x(t)}{tx^{\sigma}(t)}(\frac{ty^{\triangle}(t)}{x(t)}-
\frac{y(t)tx^{\triangle}(t)}{x^{2}(t)})
 = \frac{x(t)}{tx^{\sigma}(t)}(-\frac{t\sigma(t)p(t)f(x(t))}{x(t)}-\frac{y(t)
(y(t)+x(t))}{x^{2}(t)})
  \geq\frac{x(t)}{tx^{\sigma}(t)}\{-\frac{1}{4}-(\frac{y(t)}{x(t)})^{2}-
\frac{y(t)}{x(t)}\}=-\frac{x(t)}{tx^{\sigma}(t)}(\psi^{2}(t)+\psi(t)+\frac{1}{4}
)
 =- \frac{1}{\mu(t)\psi(t)+\sigma(t)}(\psi(t)+\frac{1}{2})^{2}
 >- \frac{1}{\mu(t)\psi(t)+\sigma(t)}\{(\psi(t)+\frac{1}{2})^{2}+\frac{1}{4l(t)
l^{\sigma}(t)}\}

Note that

  \mu(t)\psi(t)+\sigma(t)=\mu(t)(\psi(t)+1)+t=\mu(t)(\frac{tx^{\triangle}(t)-
x(t)}{x(t)}+1)+t
 = \mu(t)\frac{tx^{\triangle}(t)}{x(t)}+t=\frac{t(\mu(t)x^{\triangle}(t)+x(t))}
{x(t)}=\frac{tx^{\sigma}(t)}{x(t)}>0

for  t\in[t_{0}, t_{1}]_{\Gamma}^{\kappa}.
We compare the function  \psi(t) with the function

  \varphi(t)=-\frac{1}{2}+\frac{1}{2l(t)} . (3.8)

Note that  \varphi is a solution of the equation

  \varphi^{\triangle}(t)=-\frac{1}{\mu(t)\varphi(t)+\sigma(t)}\{(\varphi(t)+
\frac{1}{2})^{2}+\frac{1}{4l(t)l^{\sigma}(t)}\}.
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Indeed, by a direct computation, we have

  \frac{1}{\mu(t)\varphi(t)+\sigma(t)}\{(\varphi(t)+\frac{1}{2})^{2}+\frac{1}{4l
(t)l^{\sigma}(t)}\}
 = \{\mu(t)(-\frac{1}{2}+\frac{1}{2l(t)})+\sigma(t)\}^{-1}\{\frac{1}{4l^{2}(t)}+
\frac{1}{4l(t)l^{\sigma}(t)}\}
 =( \frac{\mu(t)}{2l(t)}+\frac{2\sigma(t)-\mu(t)}{2})^{-1}(\frac{l^{\sigma}(t)}
{2l(t)}+\frac{1}{2})\frac{1}{2l(t)l^{\sigma}(t)}
 =( \frac{\mu(t)}{2l(t)}+\frac{t+\sigma(t)}{2})^{-1}(\frac{l(t)+\mu(t)
l^{\triangle}(t)}{2l(t)}+\frac{1}{2})\frac{1}{2l(t)l^{\sigma}(t)}
 =( \frac{\mu(t)}{2l(t)}+\frac{1}{l^{\triangle}(t)})^{-1}(\frac{\mu(t)
l^{\triangle}(t)}{2l(t)}+1)\frac{1}{2l(t)l^{\sigma}(t)}=\frac{l^{\triangle}(t)}
{2l(t)l^{\sigma}(t)}=-\varphi^{\triangle}(t) .

Since, with  x such that  \mu(t)x+\sigma(t)\neq 0,

  \frac{d}{dx}[x-\frac{\mu(t)}{\mu(t)x+\sigma(t)}\{(x+\frac{1}{2})^{2}+\frac{1}
{4l(t)l^{\sigma}(t)}\}]
 =1+ \frac{\mu^{2}(t)}{(\mu(t)x+\sigma(t))^{2}}\{(x+\frac{1}{2})^{2}+\frac{1}{4l
(t)l^{\sigma}(t)}\}-\frac{2\mu(t)}{\mu(t)x+\sigma(t)}(x+\frac{1}{2})
 = \{1-\frac{\mu(t)}{\mu(t)x+\sigma(t)}(x+\frac{1}{2})\}^{2}+\frac{\mu^{2}(t)}
{4l(t)l^{\sigma}(t)(\mu(t)x+\sigma(t))^{2}}\geq 0,

using Lemma 3.2, we have  \varphi(t)\leq\psi(t) on  [t_{0}, t_{1}]_{\Gamma} because  \psi(t_{0})=\varphi(t_{0}) . Hence,

together with (3.7) and (3.8), we have

 - \frac{1}{2}<\varphi(t_{1})\leq\psi(t_{1})<-1,
which is a contradiction. This completes the proof.  \square 
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