Oscillation constants for second-order nonlinear dynamic equations on time scales

Naoto Yamaoka

Department of Mathematical Sciences, Osaka Prefecture University

1 Introduction

Consider second-order nonlinear dynamic equations on time scales of the form

$$x^{\Delta\Delta} + p(t)f(x) = 0, \quad t \in [t_0, \infty)_{\mathbb{T}} \subset (0, \infty), \tag{1.1}$$

where a time scale \mathbb{T} is assumed to be unbounded from above, x^{Δ} is the *delta-derivative* of x, p(t) is an *rd-continuous* function on $[t_0, \infty)$, and f(x) is a continuous function on \mathbb{R} satisfying

$$xf(x) > 0 \quad \text{if } x \neq 0.$$
 (1.2)

Here, for simplicity, we use the notation $I_{\mathbb{T}} = I \cap \mathbb{T}$ for the interval $I \subset \mathbb{R}$. Moreover, we use the following notation concerning time scales calculus: σ , ρ , μ , x^{σ} , $\int_{a}^{b} g(s) \Delta s$, $C_{rd}(I)$, and $e_u(t,s)$, with the standard meaning, i.e., forward jump operator, backward jump operator, graininess, $x \circ \sigma$, delta integral, the set of rd-continuous functions, and generalized exponential function, respectively (for these definitions, see [2, 3]).

A function x is said to be a *solution* of equation (1.1) if $x \in C^2_{rd}([t_0, \infty)_T)$ and x satisfies equation (1.1) for all $t \in [t_0, \infty)_T$. Throughout this paper, we assume that all solutions of equation (1.1) exist in the future. Then we can discuss the oscillatory behavior of solutions of equation (1.1) as $t \to \infty$. Here a solution x(t) of equation (1.1) is said to be *nonoscillatory* if it is either eventually positive or eventually negative, otherwise it is said to be *oscillatory*.

Equation (1.1) naturally includes the Euler-Cauchy dynamic equation

$$y^{\Delta\Delta} + \frac{\lambda}{t\sigma(t)}y = 0, \quad t \in [t_0, \infty)_{\mathbb{T}}$$
(1.3)

as a special case, where $\lambda > 0$. It is known that equation (1.3) has the general solution

$$y(t) = \begin{cases} K_1 e_{z/t}(t, t_0) + K_2 e_{(1-z)/t}(t, t_0) & \text{if } \lambda \neq 1/4, \\ e_{1/(2t)}(t, t_0) \left\{ K_3 + K_4 \int_{t_0}^t \frac{2}{s + \sigma(s)} \Delta s \right\} & \text{if } \lambda = 1/4, \end{cases}$$

where K_1, K_2, K_3, K_4 are arbitrary constants and z is the root of the characteristic equation

$$z^2 - z + \lambda = 0.$$

Hence, we have the following result (for the proof, see [6]).

Proposition 1.1. Equation (1.3) can be classified into two types as follows:

- (i) if $\lambda > 1/4$, then all nontrivial solutions of equation (1.3) are oscillatory;
- (ii) if $0 < \lambda \le 1/4$, then all nontrivial solutions of equation (1.3) are nonoscillatory.

Thus, we see that the constant 1/4 is the critical value for the oscillation of equation (1.3). Such a value is generally called an *oscillation constant*.

When $\mathbb{T} = \mathbb{R}$, equation (1.3) becomes the linear differential equation

$$y'' + \frac{\lambda}{t^2}y = 0, \quad t \in [t_0, \infty).$$
 (1.4)

It is known that the oscillation constant for equation (1.4) plays an important role in proving (non)oscillation criteria for equation (1.1) with $\mathbb{T} = \mathbb{R}$, i.e., the nonlinear differential equation

$$x'' + p(t)f(x) = 0, \qquad t \in [t_0, \infty).$$
 (1.5)

For example, these results can be found in [4, 5, 7, 8, 9] and the references cited therein. Especially, Sugie and Kita [8] gave (non)oscillation criteria for equation (1.5) which can be applied even to the critical case $f(x)/x \searrow 1/4$ as $|x| \to \infty$.

On the other hand, the author [10, 11] discussed the oscillation problem for equation (1.1) with $\mathbb{T} = \mathbb{N}$, i.e., the nonlinear difference equation

$$\Delta^2 x(t) + p(t)f(x(t)) = 0, \quad t \in [t_0, \infty)_{\mathbb{N}},$$

where Δ is the forward difference operator, and gave (non)oscillation criteria which can be regarded as counterparts of the results of Sugie and Kita [8].

In this paper, we intend to unify these results. For this purpose, we give a pair of an oscillation theorem and a nonoscillation theorem for equation (1.1). Our main results are stated as follows.

Theorem 1.1. Assume (1.2). Suppose that p(t) satisfies

$$t\sigma(t)p(t) \ge 1 \tag{1.6}$$

for $t \in [t_0, \infty)_{\mathbb{T}}$ sufficiently large, and that there exists a $\lambda \in \mathbb{R}$ with $\lambda > 1/4$ such that

$$\frac{f(x)}{x} \ge \lambda \tag{1.7}$$

for |x| sufficiently large. Then all nontrivial solutions of equation (1.1) are oscillatory.

Theorem 1.2. Assume (1.2). Suppose that p(t) satisfies

$$t\sigma(t)p(t) \le 1 \tag{1.8}$$

for $t \in [t_0, \infty)_{\mathbb{T}}$ sufficiently large, and that

$$\frac{f(x)}{x} \le \frac{1}{4} \tag{1.9}$$

for x > 0 or x < 0, |x| sufficiently large. Then equation (1.1) has a nonoscillatory solution.

2 Proof of oscillation criteria

To begin with we prepare some lemmas which are useful for proving Theorem 1.1.

Lemma 2.1. Let $0 < a \in \mathbb{T}$. Then, $\int_a^{\infty} \Delta t/t = \infty$.

Proof. To complete the proof, it suffices to show that,

$$\int_{a}^{t} \frac{ds}{s} \le \int_{a}^{t} \frac{\Delta s}{s}$$

holds for any unbounded time scale \mathbb{T} , $0 < a \in \mathbb{T}$, and $a < t \in \mathbb{T}$, because $\int_a^t ds/s = \log(t/a) \to \infty$ as $t \to \infty$.

Suppose that there exist an unbounded time scale \mathbb{T}_0 , $\varepsilon_0 > 0$, $0 < a_0 \in \mathbb{T}_0$, and $a_0 < t_0 \in \mathbb{T}_0$ such that

$$\int_{a_0}^{t_0} \frac{ds}{s} > \int_{a_0}^{t_0} \frac{\Delta s}{s} + \varepsilon_0$$

Then, in view of the definition of the delta Riemann type integral (see [3, Chapter 5]), there exists a discrete time scale $\tilde{\mathbb{T}}$ containing a_0 and t_0 such that

$$\left|\int_{a_0}^{t_0} \frac{\tilde{\Delta}s}{s} - \int_{a_0}^{t_0} \frac{\Delta s}{s}\right| < \frac{\varepsilon_0}{2},$$

where $\int_{a_0}^{t_0} \tilde{\Delta}s/s$ is the delta integral with respect to $\tilde{\mathbb{T}}$. Since

$$\int_{a_0}^{t_0} \frac{\tilde{\Delta}s}{s} = \sum_{s \in [a_0, t_0)_{\tilde{\mathbb{T}}}} \frac{\tilde{\mu}(s)}{s},$$

it is clear that $\int_{a_0}^{t_0} \frac{ds}{s} \leq \int_{a_0}^{t_0} \frac{\tilde{\Delta s}}{s}$, where $\tilde{\mu}$ stands for the graininess associated to $\tilde{\mathbb{T}}$. Hence, we have

$$\int_{a_0}^{t_0} \frac{\Delta s}{s} + \varepsilon_0 < \int_{a_0}^{t_0} \frac{ds}{s} \le \int_{a_0}^{t_0} \frac{\tilde{\Delta} s}{s} < \int_{a_0}^{t_0} \frac{\Delta s}{s} + \frac{\varepsilon_0}{2},$$

which is a contradiction.

Lemma 2.2. Assume (1.2) and (1.6). Suppose that equation (1.1) has a positive solution x(t). Then the solution x(t) is increasing for $t \in [t_0, \infty)_{\mathbb{T}}$ sufficiently large and it tends to ∞ as $t \to \infty$.

Proof. By the assumption, there exists $t_1 \in \mathbb{T}$ such that x(t) > 0 for $t \in [t_1, \infty)_{\mathbb{T}}$. Hence, in view of (1.2) and (1.6), we have

$$x^{\Delta\Delta}(t) = -p(t)f(x(t)) < 0$$
(2.1)

for $t \in [t_1, \infty)_{\mathbb{T}}$.

We first show that $x^{\Delta}(t) > 0$ for $t \in [t_1, \infty)_{\mathbb{T}}$. By way of contradiction, we suppose that there exists $t_2 \in [t_1, \infty)_{\mathbb{T}}$ such that $x^{\Delta}(t_2) \leq 0$. Then, by (2.1), we have $x^{\Delta}(t) < x^{\Delta}(t_2) \leq 0$ for $t \in (t_2, \infty)_{\mathbb{T}}$. Therefore, we can find $t_3 \in (t_2, \infty)_{\mathbb{T}}$ such that $x^{\Delta}(t_3) < 0$. Integrating both sides of (2.1), we get $x^{\Delta}(t) \leq x^{\Delta}(t_3) < 0$ for $t \in [t_3, \infty)_{\mathbb{T}}$. Hence, we obtain $x(t) \leq x^{\Delta}(t_3)(t-t_3) + x(t_3) \to -\infty$ as $t \to \infty$. This contradicts the assumption that x(t) is positive for $t \in [t_1, \infty)_{\mathbb{T}}$. Thus x(t) is increasing for $t \in [t_1, \infty)_{\mathbb{T}}$.

We next suppose that x(t) is bounded from above. Then there exists K > 0 such that $\lim_{t\to\infty} x(t) = K$. Since f(x) is continuous on \mathbb{R} , we have $\lim_{t\to\infty} f(x(t)) = f(K)$, and therefore, there exists $t_4 \in [t_1, \infty)_{\mathbb{T}}$ such that 0 < f(K)/2 < f(x(t)) for $t \in [t_4, \infty)_{\mathbb{T}}$. Integrating both sides of (2.1) from t to 2t and using (1.6), we have

$$x^{\Delta}(t) = x^{\Delta}(2t) + \int_{t}^{2t} p(s)f(x(s))\Delta s > \frac{f(K)}{2} \int_{t}^{2t} \frac{\Delta s}{s\sigma(s)} = \frac{f(K)}{4t}$$

for $t \in [t_4, \infty)_{\mathbb{T}}$, and therefore, we obtain

$$x(t) \ge x(t_4) + \frac{f(K)}{4} \int_{t_4}^t \frac{\Delta s}{s} \to \infty$$

as $t \to \infty$ by Lemma 2.1. This contradicts the assumption that x(t) is bounded from above. Thus we conclude that $\lim_{t\to\infty} x(t) = \infty$.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let $t_0 \in \mathbb{T}$ be a large number satisfying (1.6) for $t \in [t_0, \infty)_{\mathbb{T}}$ and let R > 0 be a large number such that (1.7) is satisfied for $|x| \ge R$.

The proof is by contradiction. Suppose that equation (1.1) has a nonoscillatory solution x(t). Then, without loss of generality, we may assume that x(t) is eventually positive. By Lemma 2.2, there exists $t_1 \in [t_0, \infty)_{\mathbb{T}}$ such that $x(t) \ge R$ and $x^{\Delta}(t) > 0$ for $t \in [t_1, \infty)_{\mathbb{T}}$.

We define

$$w(t) = \frac{x^{\Delta}(t)}{x(t)}.$$

Then w(t) is positive and satisfies

$$\begin{split} w^{\Delta}(t) &= \frac{x^{\Delta\Delta}(t)x(t) - (x^{\Delta}(t))^2}{x(t)x^{\sigma}(t)} = \frac{x^{\Delta\Delta}(t)x(t) + (\mu(t)x^{\Delta\Delta}(t) - (x^{\Delta}(t))^{\sigma})x^{\Delta}(t)}{x(t)x^{\sigma}(t)} \\ &= \frac{(x(t) + \mu(t)x^{\Delta}(t))x^{\Delta\Delta}(t) - (x^{\Delta}(t))^{\sigma}x^{\Delta}(t)}{x(t)x^{\sigma}(t)} \end{split}$$

$$=\frac{x^{\Delta\Delta}(t)}{x(t)} - w(t)w^{\sigma}(t) = -\frac{p(t)f(x(t))}{x(t)} - w(t)w^{\sigma}(t)$$
$$\leq -\frac{\lambda}{t\sigma(t)} - w(t)w^{\sigma}(t)$$
(2.2)

for $t \in [t_1, \infty)_{\mathbb{T}}$ by (1.6) and (1.7).

We will show that $\lim_{t\to\infty} w(t) = 0$. Since $w^{\Delta}(t) < 0$ on $[t_1, \infty)_{\mathbb{T}}$, we see that $w(t) \searrow \alpha \in [0, \infty)$ as $t \to \infty$. Assume that $\alpha > 0$. Then, from (2.2), we have

$$\left(-\frac{1}{w(t)}\right)^{\Delta} = \frac{w^{\Delta}(t)}{w(t)w^{\sigma}(t)} \le -\frac{\lambda}{t\sigma(t)w(t)w^{\sigma}(t)} - 1 < -1.$$

Hence, using $w(t) \ge \alpha > 0$, we get

$$\frac{1}{w(t_1)} - \frac{1}{\alpha} \le \frac{1}{w(t_1)} - \frac{1}{w(t)} \le -t + t_1 \to \infty$$

as $t \to \infty$. This is a contradiction. Hence, we obtain $\alpha = 0$.

Integrating both sides of (2.2) from t to s, we have

$$\int_{t}^{s} \left(\frac{\lambda}{\tau \sigma(\tau)} + w(\tau) w^{\sigma}(\tau) \right) \Delta \tau \le w(t) - w(s) \le w(t)$$

Letting $s \to \infty$, we get

$$w(t) \ge \frac{\lambda}{t} + \int_{t}^{\infty} w(s)w^{\sigma}(s)\,\Delta s \tag{2.3}$$

for $t \in [t_1, \infty)_{\mathbb{T}}$. Define the sequence $\{u_k\}$ as follows:

$$u_0(t) = \frac{\lambda}{t}, \quad u_k(t) = u_0(t) + \int_t^\infty u_{k-1}(s) u_{k-1}^\sigma(s) \,\Delta s \tag{2.4}$$

for $t \in [t_1, \infty)_T$, $k = 0, 1, 2, \dots$ Note that the sequence $\{u_k\}$ is well defined. In fact, we have $u_0(t) \le w(t)$, and therefore, from (2.3), we obtain

$$u_{1}(t) = u_{0}(t) + \int_{t}^{\infty} u_{0}(s)u_{0}^{\sigma}(s) \,\Delta s \le u_{0}(t) + \int_{t}^{\infty} w(s)w^{\sigma}(s) \,\Delta s \le w(t),$$

for $t \in [t_1, \infty)_{\mathbb{T}}$. By induction, we obtain $0 < u_k(t) \le w(t)$ and $u_k(t) \le u_{k+1}(t)$ for $t \in [t_1, \infty)_{\mathbb{T}}$, $k = 0, 1, 2, \ldots$. Hence, $\{u_k\}$ is monotone and bounded from above, thus there exists the limit $\lim_{k\to\infty} u_k(t) = u(t)$ for $t \in [t_1, \infty)_{\mathbb{T}}$. Applying the Lebesgue monotone convergence theorem on time scales (see e.g., [1]) to (2.4), we find that u satisfies the equation

$$u(t) = \frac{\lambda}{t} + \int_{t}^{\infty} u(s)u^{\sigma}(s) \,\Delta s.$$

Differentiating both sides of the equality, we have

$$u^{\Delta}(t) = -\frac{\lambda}{t\sigma(t)} - u(t)u^{\sigma}(t).$$

Define $y(t) = e_u(t, t_1) > 0$. Then, since $u(t) = y^{\Delta}(t)/y(t)$, we have

$$u^{\Delta}(t) = \frac{y^{\Delta\Delta}(t)}{y(t)} - u(t)u^{\sigma}(t),$$

and therefore, y(t) is a positive solution of equation (1.3). Hence, we see that equation (1.3) has a nonoscillatory solution y(t). However, since $\lambda > 1/4$, all nontrivial solutions of equation (1.3) are oscillatory by Proposition 1.1. This is a contradiction. The proof is now complete.

3 Proof of nonoscillation criteria

To prove Theorem 1.2, we require some lemmas.

Lemma 3.1. Let $0 < a \in \mathbb{T}$. Then $\int_a^{\infty} \Delta t / \sigma(t) = \infty$.

Proof. Let $I = \{t \in \mathbb{T} : \mu(t) \ge t\}$. Suppose that I is bounded from above. Then there exists $a \le t_1 \in \mathbb{T}$ such that $\mu(t) < t$ for $t \in [t_1, \infty)_{\mathbb{T}}$. Hence, we have

$$\int_{a}^{\infty} \frac{\Delta t}{\sigma(t)} \ge \int_{t_1}^{\infty} \frac{\Delta t}{\sigma(t)} = \int_{t_1}^{\infty} \frac{\Delta t}{t + \mu(t)} \ge \int_{t_1}^{\infty} \frac{\Delta t}{2t} = \infty$$

by Lemma 2.1. On the contrary, if I is unbounded from above, we obtain

$$\int_{a}^{\infty} \frac{\Delta t}{\sigma(t)} \ge \sum_{t \in I} \int_{t}^{\sigma(t)} \frac{\Delta s}{\sigma(s)} = \sum_{t \in I} \frac{\mu(t)}{\sigma(t)} = \sum_{t \in I} \frac{\mu(t)}{t + \mu(t)} \ge \sum_{t \in I} \frac{1}{2} = \infty.$$

The proof is now complete.

We next present a comparison lemma.

Lemma 3.2. Assume that g(t, x) is a continuous function such that

$$x \mapsto x + \mu(t)g(t, x)$$
 is nondecreasing for each fixed t. (3.1)

If φ and ψ satisfy $\psi(a) \ge \varphi(a)$, $\varphi^{\Delta} = g(t, \varphi(t))$, $\psi^{\Delta}(t) > g(t, \psi(t))$ for $t \in [a, b]_{\mathbb{T}}^{\kappa}$ then

$$\psi(t) \ge \varphi(t) \tag{3.2}$$

for $t \in [a, b]_{\mathbb{T}}$.

Proof. We use the following abbreviations: Id for left-dense, rd for right-dense, ls for left-scattered, and rs for right-scattered. Let

$$A_{\mathbb{T}} = \{t_n \in [a, b]_{\mathbb{T}} : t_n \text{ is Id and rs or } t_n = a \text{ or } t_n = b, n \in \mathbb{N}\}$$

with $t_n < t_{n+1}$. Then $t_1 = a$ and A_T is at most countable. Indeed, every (real) interval (t_n, t_{n+1}) can be represented by a rational number which is contained in it, and these intervals are pairwise disjoint.

We will show that

$$\psi(t) > \varphi(t) \text{ for } t \in (t_n, t_{n+1})_{\mathbb{T}}, \text{ and } \psi(t_n) \ge \varphi(t_n) \text{ for all } n,$$
 (3.3)

which then implies (3.2).

Assume that a is rd. We claim that there is a right neighborhood U of a (more precisely, $U = (a, a + \varepsilon) \cap \mathbb{T}$ with some $\varepsilon > 0$) such that $\psi(t) > \varphi(t)$ for $t \in U$. Indeed, if $\psi(a) > \varphi(a)$, then the existence of U clearly follows from the continuity of ψ and φ ; note that ψ, φ are continuous thanks to their Δ -differentiability, see [2, Theorem 1.16]. If $\psi(a) = \varphi(a)$, then $\psi^{\Delta}(a) > g(a, \psi(a)) = g(a, \varphi(a)) = \varphi^{\Delta}(a)$. Hence, $(\varphi - \psi)^{\Delta}(a) < 0$, which implies $(\varphi - \psi)(t) < 0$ for $t \in U$ by [3, Theorem 1.9].

If a is rs, then $\psi(\sigma(a)) > \psi(a) + \mu(a)g(a, \psi(a)) \ge \varphi(a) + \mu(a)g(a, \varphi(a)) = \varphi(\sigma(a))$, and so $\psi(\sigma(a)) > \varphi(\sigma(a))$.

Suppose that there exists $c \in (t_1, t_2) = (a, t_2)$ such that $\psi(t) > \varphi(t)$ for $t \in (a, c)_{\mathbb{T}}$ and $\psi(c) \le \varphi(c)$. Then, in view of $\psi(t) > \varphi(t)$ for $t \in (a, c)_{\mathbb{T}}$ and the continuity of ψ, φ , we see that the strict inequality in $\psi(c) \le \varphi(c)$ cannot happen when c is ld. Assume that cis ld. Then $\psi(c) = \varphi(c)$, and so

$$\psi^{\Delta}(c) > g(c, \psi(c)) = g(c, \varphi(c)) = \varphi^{\Delta}(c).$$
(3.4)

On the other hand, since $c \notin A_{\mathbb{T}}$, we see that c is ld and rd, and so

$$\psi^{\Delta}(c) \le \varphi^{\Delta}(c), \tag{3.5}$$

which contradicts (3.4). To see (3.5), note that

$$\lim_{t \to c-} \frac{\psi(c) - \psi(t)}{c - t} \le \lim_{t \to c-} \frac{\varphi(c) - \varphi(t)}{c - t},$$

in view of $\psi > \varphi$ on $(a, c)_{\mathbb{T}}$, and

$$\varphi^{\Delta}(c) = \lim_{t \to c} \frac{\varphi(c) - \varphi(t)}{c - t}, \ \psi^{\Delta}(c) = \lim_{t \to c} \frac{\psi(c) - \psi(t)}{c - t}$$

which follows from [2, Theorem 1.16]. Assume now that *c* is ls. Then we see that $\rho(c) < c$, and therefore, $\sigma(\rho(c)) = c$. Hence, from $\psi(\rho(c)) > \varphi(\rho(c))$ and

$$\begin{aligned} \varphi(c) &= \varphi(\sigma(\rho(c))) = \varphi(\rho(c)) + \mu(\rho(c))g(\rho(c),\varphi(\rho(c))), \\ \psi(c) &= \psi(\sigma(\rho(c))) > \psi(\rho(c)) + \mu(\rho(c))g(\rho(c),\psi(\rho(c))), \end{aligned}$$

we get $\psi(c) > \varphi(c)$, again contradiction with $\psi(c) \le \varphi(c)$. Therefore, $\psi(t) > \varphi(t)$ for $t \in (a, t_2)_{\mathbb{T}}$. This implies $\psi(t_2) \ge \varphi(t_2)$ since t_2 is ld and ψ, φ are continuous.

Similarly we prove that $\psi(t_n) \ge \varphi(t_n)$ implies $\psi(t) > \varphi(t)$ for $t \in (t_n, t_{n+1})_{\mathbb{T}}$ and $\psi(t_{n+1}) \ge \varphi(t_{n+1})$ for all *n*. Thus, by induction, (3.3) follows.

Let x(t) be a solution of equation (1.1) and put $y(t) = tx^{\Delta}(t) - x(t)$. Then we can transform equation (1.1) into the system

$$tx^{\Delta} = y + x, \qquad ty^{\Delta} = -t\sigma(t)p(t)f(x). \tag{3.6}$$

For simplicity, put

$$D_1 = \{(x, y) \in \mathbb{R}^2 : x > 0, y \ge -x\}, \quad D_2 = \{(x, y) \in \mathbb{R}^2 : x > 0, y < -x\}.$$

Then we have the following lemma.

Lemma 3.3. Let (x(t), y(t)) be a solution of (3.6) which corresponds to a nontrivial oscillatory solution of equation (1.1). If $t_0 \in \mathbb{T}$ satisfies $(x(t_0), y(t_0)) \in D_1$, then there exists $t_1 \in \mathbb{T}$ such that $(x(t), y(t)) \in D_1$ on $[t_0, t_1)_{\mathbb{T}}$ and $(x(t_1), y(t_1)) \in D_2$.

Proof. Since x(t) is oscillatory, there exists $\tilde{t} \in \mathbb{T}$ such that x(t) > 0 on $[t_0, \tilde{t}]_{\mathbb{T}}$ and $x(\tilde{t}) \leq 0$.

Let \tilde{t} be left-scattered. Then we have $x(\rho(\tilde{t})) > 0$, and therefore, $(x(\rho(\tilde{t})), y(\rho(\tilde{t})))$ is either in D_1 or D_2 . Suppose that $(x(\rho(\tilde{t})), y(\rho(\tilde{t}))) \in D_1$. Then we see that

$$\rho(\tilde{t})x^{\Delta}(\rho(\tilde{t})) = y(\rho(\tilde{t})) + x(\rho(\tilde{t})) \ge 0.$$

Hence, we have $x(\tilde{t}) = x(\sigma(\rho(\tilde{t}))) \ge x(\rho(\tilde{t})) > 0$, which is a contradiction. Thus we obtain $(x(\rho(\tilde{t})), y(\rho(\tilde{t}))) \in D_2$, that is, there exists $t_1 \in (t_0, \rho(\tilde{t})]_{\mathbb{T}}$ such that $(x(t), y(t)) \in D_1$ on $[t_0, t_1)_{\mathbb{T}}$ and $(x(t_1), y(t_1)) \in D_2$.

Let \tilde{t} be left-dense. Then there is a left neighborhood $U \subset [t_0, \tilde{t})_{\mathbb{T}}$ of \tilde{t} such that x(t) > 0 for $t \in U$. Suppose that $(x(t), y(t)) \in D_1$ for $t \in U$. Since $tx^{\Delta}(t) = y(t) + x(t) \ge 0$, in view of [3, Corollary 1.20] and the continuity of x, we have $x(\tilde{t}) = \lim_{t \to \tilde{t}_-} x(t) > 0$, which is a contradiction. Thus there exists $t_2 \in U$ such that $(x(t_2), y(t_2)) \in D_2$, that is, the assertion of this lemma holds.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. We prove only the case that condition (1.9) is satisfied for x > 0 sufficiently large, because the other case can be proved in the same manner. Let R > 0 be a number such that (1.9) is satisfied for $x \ge R$. Moreover, we suppose that there exists $T \in \mathbb{T}$ such that p(t) satisfies (1.8) for $t \in [T, \infty)_{\mathbb{T}}$.

The proof is by contradiction. Suppose that all nontrivial solutions of equation (1.1) are oscillatory. Let (x(t), y(t)) be the solution of system (3.6) satisfying the initial condition

$$(x(t_0), y(t_0)) = \left(R, \left(-\frac{1}{2} + \frac{1}{2l(t_0)}\right)R\right) \in D_1,$$

where $t_0 \in [T, \infty)_{\mathbb{T}}$ and the function l(t) is positive and satisfies $l^{\Delta}(t) = 2/(t + \sigma(t))$ on $[t_0, \infty)_{\mathbb{T}}$. Note that $l(t) \to \infty$ as $t \to \infty$ because of Lemma 3.1. By Lemma 3.3, there exists $t_1 \in \mathbb{T}$ such that

$$(x(t), y(t)) \in D_1$$
 on $[t_0, t_1)_{\mathbb{T}}$ and $(x(t_1), y(t_1)) \in D_2$

Note that $x(t) \ge R$ on $[t_0, t_1]^{\kappa}_{\mathbb{T}}$ because $tx^{\Delta}(t) = y(t) + x(t) > 0$ on $[t_0, t_1)_{\mathbb{T}}$.

Define $\psi(t) = y(t)/x(t)$. Then $\psi(t)$ satisfies

$$\psi(t_0) = \frac{y(t_0)}{x(t_0)} = -\frac{1}{2} + \frac{1}{2l(t_0)}, \quad \text{and} \quad \psi(t_1) = \frac{y(t_1)}{x(t_1)} < -1.$$
(3.7)

Moreover, using (1.8) and (1.9), we easily see that $\psi(t)$ satisfies

$$\begin{split} \psi^{\Delta}(t) &= \frac{y^{\Delta}(t)x(t) - y(t)x^{\Delta}(t)}{x(t)x^{\sigma}(t)} = \frac{x(t)}{tx^{\sigma}(t)} \left(\frac{ty^{\Delta}(t)}{x(t)} - \frac{y(t)tx^{\Delta}(t)}{x^{2}(t)}\right) \\ &= \frac{x(t)}{tx^{\sigma}(t)} \left(-\frac{t\sigma(t)p(t)f(x(t))}{x(t)} - \frac{y(t)(y(t) + x(t))}{x^{2}(t)}\right) \\ &\geq \frac{x(t)}{tx^{\sigma}(t)} \left\{-\frac{1}{4} - \left(\frac{y(t)}{x(t)}\right)^{2} - \frac{y(t)}{x(t)}\right\} = -\frac{x(t)}{tx^{\sigma}(t)} \left(\psi^{2}(t) + \psi(t) + \frac{1}{4}\right) \\ &= -\frac{1}{\mu(t)\psi(t) + \sigma(t)} \left(\psi(t) + \frac{1}{2}\right)^{2} \\ &> -\frac{1}{\mu(t)\psi(t) + \sigma(t)} \left\{\left(\psi(t) + \frac{1}{2}\right)^{2} + \frac{1}{4l(t)l^{\sigma}(t)}\right\} \end{split}$$

Note that

$$\mu(t)\psi(t) + \sigma(t) = \mu(t)(\psi(t) + 1) + t = \mu(t)\left(\frac{tx^{\Delta}(t) - x(t)}{x(t)} + 1\right) + t$$
$$= \mu(t)\frac{tx^{\Delta}(t)}{x(t)} + t = \frac{t(\mu(t)x^{\Delta}(t) + x(t))}{x(t)} = \frac{tx^{\sigma}(t)}{x(t)} > 0$$

for $t \in [t_0, t_1]^{\kappa}_{\mathbb{T}^*}$

We compare the function $\psi(t)$ with the function

$$\varphi(t) = -\frac{1}{2} + \frac{1}{2l(t)}.$$
(3.8)

Note that φ is a solution of the equation

$$\varphi^{\Delta}(t) = -\frac{1}{\mu(t)\varphi(t) + \sigma(t)} \left\{ \left(\varphi(t) + \frac{1}{2}\right)^2 + \frac{1}{4l(t)l^{\sigma}(t)} \right\}.$$

Indeed, by a direct computation, we have

$$\begin{split} &\frac{1}{\mu(t)\varphi(t)+\sigma(t)} \left\{ \left(\varphi(t)+\frac{1}{2}\right)^2 + \frac{1}{4l(t)l^{\sigma}(t)} \right\} \\ &= \left\{ \mu(t)\left(-\frac{1}{2}+\frac{1}{2l(t)}\right) + \sigma(t) \right\}^{-1} \left\{ \frac{1}{4l^2(t)} + \frac{1}{4l(t)l^{\sigma}(t)} \right\} \\ &= \left(\frac{\mu(t)}{2l(t)} + \frac{2\sigma(t)-\mu(t)}{2}\right)^{-1} \left(\frac{l^{\sigma}(t)}{2l(t)} + \frac{1}{2}\right) \frac{1}{2l(t)l^{\sigma}(t)} \\ &= \left(\frac{\mu(t)}{2l(t)} + \frac{t+\sigma(t)}{2}\right)^{-1} \left(\frac{l(t)+\mu(t)l^{\Delta}(t)}{2l(t)} + \frac{1}{2}\right) \frac{1}{2l(t)l^{\sigma}(t)} \\ &= \left(\frac{\mu(t)}{2l(t)} + \frac{1}{l^{\Delta}(t)}\right)^{-1} \left(\frac{\mu(t)l^{\Delta}(t)}{2l(t)} + 1\right) \frac{1}{2l(t)l^{\sigma}(t)} = \frac{l^{\Delta}(t)}{2l(t)l^{\sigma}(t)} = -\varphi^{\Delta}(t). \end{split}$$

Since, with x such that $\mu(t)x + \sigma(t) \neq 0$,

$$\begin{aligned} &\frac{d}{dx} \left[x - \frac{\mu(t)}{\mu(t)x + \sigma(t)} \left\{ \left(x + \frac{1}{2} \right)^2 + \frac{1}{4l(t)l^{\sigma}(t)} \right\} \right] \\ &= 1 + \frac{\mu^2(t)}{(\mu(t)x + \sigma(t))^2} \left\{ \left(x + \frac{1}{2} \right)^2 + \frac{1}{4l(t)l^{\sigma}(t)} \right\} - \frac{2\mu(t)}{\mu(t)x + \sigma(t)} \left(x + \frac{1}{2} \right) \\ &= \left\{ 1 - \frac{\mu(t)}{\mu(t)x + \sigma(t)} \left(x + \frac{1}{2} \right) \right\}^2 + \frac{\mu^2(t)}{4l(t)l^{\sigma}(t)(\mu(t)x + \sigma(t))^2} \ge 0, \end{aligned}$$

using Lemma 3.2, we have $\varphi(t) \leq \psi(t)$ on $[t_0, t_1]_{\mathbb{T}}$ because $\psi(t_0) = \varphi(t_0)$. Hence, together with (3.7) and (3.8), we have

$$-\frac{1}{2} < \varphi(t_1) \le \psi(t_1) < -1,$$

which is a contradiction. This completes the proof.

References

- B. Aulbach and L. Neidhart, *Integration on measure chains*, Proceedings of the Sixth International Conference on Difference Equations, 239–252, CRC, Boca Raton, FL, 2004.
- [2] M. Bohner and A. Peterson, *Dynamic Equations on Time Scales*. An introduction with applications, Birkhäuser Boston, 2001.
- [3] M. Bohner and A. Peterson, *Advances in Dynamic Equations on Time Scales*, Birkhäuser Boston, 2003.

- [4] Z. Došlá and N. Partsvania, Oscillatory properties of second order nonlinear differential equations, Rocky Mountain J. Math., 40 (2010) 445–470.
- [5] O. Došlý and N. Yamaoka, Oscillation constants for second-order ordinary differential equations related to elliptic equations with p-Laplacian, Nonlinear Anal. 113 (2015) 115–136.
- [6] P. Řehák and N. Yamaoka, Oscillation constants for second-order nonlinear dynamic equations of Euler type on time scales, J. Difference Equ. Appl., 23 (2017) 1884– 1900.
- [7] J. Sugie and T. Hara, Nonlinear oscillations of second order differential equations of Euler type, Proc. Amer. Math. Soc., 124 (1996) 3173–3181.
- [8] J. Sugie and K. Kita, Oscillation criteria for second order nonlinear differential equations of Euler type, J. Math. Anal. Appl., **253** (2001) 414–439.
- J. S. W. Wong, Oscillation theorems for second-order nonlinear differential equations of Euler type, Methods Appl. Anal., 3 (1996) 476–485.
- [10] N. Yamaoka, Oscillation criteria for second-order nonlinear difference equations of Euler type, Adv. Difference Equ., 218 (2012) 14pp.
- [11] N. Yamaoka, Oscillation and nonoscillation criteria for second-order nonlinear difference equations of Euler type, Proc. Amer. Math. Soc., 147 (2018) 2069–2081.

Department of Mathematical Sciences Osaka Prefecture University Sakai 599-8531 Japan E-mail address: yamaoka@ms.osakafu-u.ac.jp

大阪府立大学・大学院理学系研究科 山岡 直人