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1 Introduction

Consider second-order nonlinear dynamic equations on time scales of the form
e 4 p(t) f(x) =0, € [ty, 00)r C (0,00), (1.1

where a time scale T is assumed to be unbounded from above, 2 is the delta-derivative
of x, p(t) is an rd-continuous function on [ty, c0), and f(z) is a continuous function on R
satisfying

zf(x) >0 if x#0. (1.2)

Here, for simplicity, we use the notation It = I N T for the interval / C R. Moreover,
we use the following notation concerning time scales calculus: o, p, u, 27, fabg(s) As,
Cra(I), and e,(t, s), with the standard meaning, i.e., forward jump operator, backward
Jjump operator, graininess, x o o, delta integral, the set of rd-continuous functions, and
generalized exponential function, respectively (for these definitions, see [2, 3]).

A function z is said to be a solution of equation (1.1) if z € C?([to,00)r) and =
satisfies equation (1.1) for all ¢ € [ty, 00)r. Throughout this paper, we assume that all
solutions of equation (1.1) exist in the future. Then we can discuss the oscillatory behavior
of solutions of equation (1.1) as ¢ — oco. Here a solution z(¢) of equation (1.1) is said to
be nonoscillatory if it is either eventually positive or eventually negative, otherwise it is
said to be oscillatory.

Equation (1.1) naturally includes the Euler-Cauchy dynamic equation

A

AA

y =0. telt 1.3

Y +to(t)y ;1€ [tg,00)r (1.3)

as a special case, where A > 0. It is known that equation (1.3) has the general solution
Klez/t(t, to) + ng(lfz)/ﬂt, to) if A 75 ]./4:7

y(t) = L2 .
61/(2t) (t, to) Kg + K4 mAS lf )\ = 1/4,

to

where K1, Ky, K3, K4 are arbitrary constants and z is the root of the characteristic equation
22— 24+ 2=0.

Hence, we have the following result (for the proof, see [6]).



Proposition 1.1. Equation (1.3) can be classified into two types as follows:
(i) if X > 1/4, then all nontrivial solutions of equation (1.3) are oscillatory;
(ii) if 0 < X\ < 1/4, then all nontrivial solutions of equation (1.3) are nonoscillatory.

Thus, we see that the constant 1/4 is the critical value for the oscillation of equation
(1.3). Such a value is generally called an oscillation constant.
When T = R, equation (1.3) becomes the linear differential equation

A
y"+f—2y=07 t € [to, ). (1.4)

It is known that the oscillation constant for equation (1.4) plays an important role in prov-
ing (non)oscillation criteria for equation (1.1) with T = R, i.e., the nonlinear differential

equation
" +p(t)f(x) =0, t € [to, 00). (1.5)

For example, these results can be found in [4, 5, 7, 8, 9] and the references cited therein.
Especially, Sugie and Kita [8] gave (non)oscillation criteria for equation (1.5) which can
be applied even to the critical case f(x)/x ~\ 1/4 as |z| — occ.

On the other hand, the author [10, 11] discussed the oscillation problem for equation
(1.1) with T = N, i.e., the nonlinear difference equation

A?x(t) + p(t) f(x(t) =0, ¢ € [to, 00)n,

where A is the forward difference operator, and gave (non)oscillation criteria which can
be regarded as counterparts of the results of Sugie and Kita [8].

In this paper, we intend to unify these results. For this purpose, we give a pair of an
oscillation theorem and a nonoscillation theorem for equation (1.1). Our main results are
stated as follows.

Theorem 1.1. Assume (1.2). Suppose that p(t) satisfies
to(t)p(t) > 1 (1.6)
fort € [to, 0o)1 sufficiently large, and that there exists a A € R with A\ > 1/4 such that

J@)

—_— 2
T

(1.7)
for |x| sufficiently large. Then all nontrivial solutions of equation (1.1) are oscillatory.
Theorem 1.2. Assume (1.2). Suppose that p(t) satisfies

to(t)p(t) < 1 (1.8)
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fort € [ty, 00)t sufficiently large, and that
fa) _ 1
rx ~ 4

forx > 0orx < 0, |z| sufficiently large. Then equation (1.1) has a nonoscillatory

(1.9)
solution.

2 Proof of oscillation criteria

To begin with we prepare some lemmas which are useful for proving Theorem 1.1.
Lemma 2.1. Let 0 < a € T. Then, [ At/t = o

Proof. To complete the proof, it suffices to show that,

/tds /tAe
_S -
a S a

holds for any unbounded time scale T, 0 < @ € T, and a < t € T, because fat ds/s =
log(t/a) — oo ast — oo.
Suppose that there exist an unbounded time scale Ty, g > 0, 0 < ay € Tg, and

ag < tg € Ty such that
/to ds /to As
— + 0.

Then, in view of the definition of the delta Riemann type integral (see [3, Chapter 5]),
there exists a discrete time scale T containing ag and %, such that

/to As /to As
agn S ao S

where f;g As/s is the delta integral with respect to T. Since

to Abi u
L2

s€(ao,to)y

€o

2 )

it is clear that fatg % < fjg %, where /i stands for the graininess associated to T. Hence,

to ds to As b As g
—+€0 5 +3,

which is a contradlctlon. O

we have

Lemma 2.2. Assume (1.2) and (1.6). Suppose that equation (1.1) has a positive solution
x(t). Then the solution x(t) is increasing for t € [to, 001 sufficiently large and it tends to
oo ast — oo.
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Proof. By the assumption, there exists ¢; € T such that z(¢) > 0 for ¢ € [t;, c0)r. Hence,
in view of (1.2) and (1.6), we have

#B8(t) = —p(t) f(z(t)) < 0 2.1)

for t € [ty, 00)r.

We first show that z2(¢) > 0 for ¢ € [t;,00)7. By way of contradiction, we suppose
that there exists to € [t1,00)7 such that z2(ty) < 0. Then, by (2.1), we have (1) <
12 (ty) < 0fort € (ta,00)7. Therefore, we can find t3 € (t5, 00)7 such that 72 (¢3) < 0.
Integrating both sides of (2.1), we get z2(t) < x2(t3) < 0 for t € [t3,00)r. Hence, we
obtain z(t) < 22 (t3)(t — t3) + x(t3) — —oo as t — oo. This contradicts the assumption
that (1) is positive for ¢ € [t;, 00)r. Thus x(t) is increasing for ¢ € [t1, 00)r.

We next suppose that z(¢) is bounded from above. Then there exists X > 0 such that
lim; o x(t) = K. Since f(x) is continuous on R, we have lim,_,, f(x(t)) = f(K), and
therefore, there exists ¢4 € [t1,00)r such that 0 < f(K)/2 < f(z(t)) for t € [ty, 00)T.
Integrating both sides of (2.1) from ¢ to 2¢ and using (1.6), we have

f(K)/% As _ f(K)

wA (1) = 28(20) + / p(s)f(x(s)As > =3 so(s) 4t

for t € [t4, 00)r, and therefore, we obtain

z(t) > z(ty) +

@/t As

4 .S

as t — oo by Lemma 2.1. This contradicts the assumption that z(¢) is bounded from
above. Thus we conclude that lim;_,, () = co. O

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let ty € T be a large number satisfying (1.6) for ¢ € [ty, oo)r and
let R > 0 be a large number such that (1.7) is satisfied for |z| > R.

The proof is by contradiction. Suppose that equation (1.1) has a nonoscillatory solution
x(t). Then, without loss of generality, we may assume that z(¢) is eventually positive. By
Lemma 2.2, there exists ¢, € [tg, 00)7 such that x(t) > R and 22 (t) > 0 for t € [t1, 00)7.

We define
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r22(1) p(t)f(x(t))
= —w(t)w’(t) = — —w(t)w(t
() = ~HLE ey
A
< — —— —w(t)w(t 2.2
<~ wu () 2
for t € [t1, 00)r by (1.6) and (1.7).
We will show that lim; ,., w(t) = 0. Since w®(t) < 0 on [t;,00)T, we see that
w(t) \y a € [0,00) as t — oo. Assume that v > 0. Then, from (2.2), we have
1\* At
B W (1) <_ A el
w(t) w(t)we(t) to(t)w(t)wo(t)
Hence, using w(t) > a > 0, we get
1 1 1

1
- < <4t
w(ty) o = w(ty)  w(t) — thmeo

as t — oo. This is a contradiction. Hence, we obtain o« = 0.

Integrating both sides of (2.2) from ¢ to s, we have

[ (L n w(ﬂw”(ﬂ) AT < w(t) = w(s) < wlt)

To(T)

Letting s — oo, we get

A o
w(t) > n +/ w(s)w’(s) As (2.3)
t
for t € [t1, 00)r. Define the sequence {uy} as follows:
A o0
u(t) = n ug(t) = uo(t) +/ up_1(s)uj_1(s) As (2.4)
t

fort € [t1,00)7, k = 0,1,2,.... Note that the sequence {uy} is well defined. In fact, we
have ug(t) < w(t), and therefore, from (2.3), we obtain

ur(t) = up(t) + /too uo(s)ud(s) As < ug(t) + /too w(s)w(s) As < w(t),

for t € [t1, 00)r. By induction, we obtain 0 < ug(t) < w(t) and ug(t) < ugy1(t) fort €
[t1,00)T, k = 0,1,2,.... Hence, {u} is monotone and bounded from above, thus there
exists the limit limy,_, o, ux(t) = u(t) for t € [t1,00)r. Applying the Lebesgue monotone
convergence theorem on time scales (see e.g., [1]) to (2.4), we find that u satisfies the

equation
A o0
u(t) = n -|-/ u(s)u’(s) As.
t
Differentiating both sides of the equality, we have
A
ut(t) = ——— —u(t)u’(t).

to(t)



Define y(t) = e,(t,t1) > 0. Then, since u(t) = y*(t)/y(t), we have

and therefore, y(t) is a positive solution of equation (1.3). Hence, we see that equation
(1.3) has a nonoscillatory solution y(t). However, since A > 1/4, all nontrivial solutions
of equation (1.3) are oscillatory by Proposition 1.1. This is a contradiction. The proof is
now complete. Il

3 Proof of nonoscillation criteria

To prove Theorem 1.2, we require some lemmas.
Lemma3.1. Let 0 < a € T. Then [° At/o(t) = co.

Proof. Let I = {t € T : p(t) > t}. Suppose that I is bounded from above. Then there
exists a < t; € T such that (t) < t for ¢ € [t;, 00)r. Hence, we have

[aL A oA
a G-(t) N t1 J(t) t1 L+ l},(t) N t1 2t

by Lemma 2.1. On the contrary, if I is unbounded from above, we obtain

/ At Z/au) As _ &2: t+u Z‘

tel tel tel tel

The proof is now complete. O
We next present a comparison lemma.

Lemma 3.2. Assume that g(t, x) is a continuous function such that
x — &+ p(t)g(t, x) is nondecreasing for each fixed t. 3.1
If ¢ and ¢ satisfy (a) = @(a), ¢ = g(t, (1)), V2 () > g(t, (1)) for t € [a, b]f; then
P(t) = (t) (3.2)
fort € [a,blr.

Proof. We use the following abbreviations: Id for left-dense, rd for right-dense, Is for
left-scattered, and rs for right-scattered. Let

Ar = {t, € [a,b]r : t,isldandrsort, = aort, = b,n € N}
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with t,, < t,y1. Then t; = a and Ar is at most countable. Indeed, every (real) interval
(tn,tny1) can be represented by a rational number which is contained in it, and these
intervals are pairwise disjoint.

We will show that

P(t) > p(t) fort € (tn, tny1)r, and Y(t,) > p(t,) for all n, 3.3)

which then implies (3.2).

Assume that a is rd. We claim that there is a right neighborhood U of a (more precisely,
U = (a,a+ ) N'T with some £ > 0) such that ¢)(t) > ¢(t) for t € U. Indeed, if
(a) > ¢(a), then the existence of U clearly follows from the continuity of ¢ and ¢;
note that v, ¢ are continuous thanks to their A-differentiability, see [2, Theorem 1.16]. If
¥(a) = p(a), then Y2(a) > g(a, 1(a)) = g(a, ¢(a)) = ¢ (a). Hence, ( — 1) (a) < 0,
which implies (¢ — v)(t) < 0 for ¢ € U by [3, Theorem 1.9].

If ais rs, then $(0(a)) > ¥(a) + a(a)gla, ¥(a)) > (a) + p(@)g(ar 9(a)) = p(o(a)),
and so (o)) > ¢(o(a)).

Suppose that there exists ¢ € (f1,%2) = (a,t3) such that )(t) > ¢(t) for t € (a,c)r
and 7)(c) < p(c). Then, in view of ¢)(t) > ¢(t) for t € (a, ¢)r and the continuity of v, ¢,
we see that the strict inequality in ¢)(¢) < ¢(c) cannot happen when ¢ is 1d. Assume that ¢
is 1d. Then ¢)(c) = ¢(c), and so

U2 (e) > gle,9(e)) = g(e, ple)) = (). (3.4)
On the other hand, since ¢ &€ A, we see that ¢ is 1d and rd, and so
P2 (c) < *(c), (3.5)
which contradicts (3.4). To see (3.5), note that
o 20O _ - o6) — o(t)
t—rc— c—t t—c— c—1t
in view of ¢) > ¢ on (a, ¢)r, and
o8(0) = lim 2D =20 iy gy 91O =01
t—c c—1t t—c c—1

which follows from [2, Theorem 1.16]. Assume now that ¢ is Is. Then we see that p(c¢) < ¢,
and therefore, o(p(c)) = c. Hence, from ¢(p(c)) > ¢(p(c)) and

w(c) = (alp(c))) = e(p(e) + ulp(e))g(p(c), ¢ (p(c))),
b(e) = Plo(p(c)) > (p(e) + mlp(e))g(p(e), ¥(p(e))),
we get ¢¥(c) > ¢(c), again contradiction with ¢)(c) < ¢(c). Therefore, 1(t) > ¢(t) for
t € (a, ty)r. This implies ¢)(t2) > p(t2) since to is 1d and ), ¢ are continuous.
Similarly we prove that ¢(t,) > ¢(t,) implies ¥(t) > ¢(t) fort € (t,,tn41)r and
W(tni1) > @(tnaq) for all n. Thus, by induction, (3.3) follows. O



Let x(t) be a solution of equation (1.1) and put y(¢t) = tz*(t) — x(t). Then we can
transform equation (1.1) into the system

Soyta = —tolp(t)f (). (3.6)
For simplicity, put

Dy ={(z,y) eR*:2>0,y> -z}, Dy={(z,y) eR*:2>0, y<—x}.
Then we have the following lemma.

Lemma 3.3. Let (x(t), y(t)) be a solution of (3.6) which corresponds to a nontrivial oscil-
latory solution of equation (1.1). If tq € T satisfies (x(lo), y(to)) € Dy, then there exists
t1 € T such that (x(t),y(t)) € Dy on [ty, t1)1 and (z(t1),y(t1)) € Da.

Proof. Since z(t) is oscillatory, there exists # € T such that x(t) > 0 on [tg,#)r and
z(f) <0.

Let ¢ be left-scattered. Then we have z(p(f)) > 0, and therefore, (z(p()), y(p(?))) is
either in D; or Dy. Suppose that (z(p(1)), y(p(t))) € D;. Then we see that

p(D)x (p(L)) = y(p(D)) + x(p(L)) > 0.

Hence, we have z(t) = z(o(p(f))) > z(p(f)) > 0, which is a contradiction. Thus we
obtain (z(p(t)), y(p(t))) € Da, that is, there exists t; € (to, p(t)]r such that (z(t), y(t)) €
D on [ty t;)r and (z(t1),y(t1)) € Ds.

Let  be left-dense. Then there is a left neighborhood U C [to, f)r of £ such that z(t) >
0 for t € U. Suppose that (x(t),y(t)) € Dy fort € U. Since tz®(t) = y(t) + x(t) > 0,

in view of [3, Corollary 1.20] and the continuity of x, we have z(¢) = lim,_;_ z(¢) > 0,
which is a contradiction. Thus there exists to € U such that (x(ts),y(t2)) € Ds, that is,
the assertion of this lemma holds. O

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. We prove only the case that condition (1.9) is satisfied for z > 0
sufficiently large, because the other case can be proved in the same manner. Let R > 0
be a number such that (1.9) is satisfied for z > R. Moreover, we suppose that there exists
T € T such that p(t) satisfies (1.8) for t € [T', 00)1

The proof is by contradiction. Suppose that all nontrivial solutions of equation (1.1) are
oscillatory. Let (x(t), y(¢)) be the solution of system (3.6) satisfying the initial condition

(o) () = (2. (=3 + g ) &) € D
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where ¢, € [T, 00)r and the function [(¢) is positive and satisfies [*(t) = 2/(t + o(t)) on
[to, 00)1. Note that I(t) — oo as t — oo because of Lemma 3.1. By Lemma 3.3, there
exists t; € T such that

(z(t),y(t)) € Dy on [tg,t1)r and (z(t1),y(t1)) € Ds.

Note that z(t) > R on [tg, t;]% because tx® (t) = y(t) + x(t) > 0 on [to, t1)r-
Define () = y(t)/x(t). Then ¢ (t) satisfies

ylto) 1 1 y(t)

dﬁd:m@@_ 2 2 ’ :mm)

< -1 (3.7)

Note that

LA — X
(0 + o) =00 + 1)+ o = i) (0 1) Tt
. te(t) | tp)at() ()  ta’(t)
nO—g T @) @ 0
for t € [to, t1]5.
We compare the function ¢ (¢) with the function
ww=—§+j%a (3.8)



Indeed, by a direct computation, we have

1 1\? 1
R 070 + o0 { (#0+3) + 7wm }

ez o) et s
2

{

(-4 (563 3) e
(
(

p(t) t+o®)\ T (UE) +p®)rE) 1 1
+ ) a0 2> 10 (1)

p) | 1\ (0P i PO
@ mm) +1) s = ae =0

Since, with z such that p(t)x + o(t) # 0,

K2 T ONED OS A S S
d[ u<>r+a<f>{(“+2> +4z<>z”<>H
B pA(t) A 1 ) (1
‘”wma(tw{( *2) *41@)10@)} u(t)x+0(t)( +2>

D RO N SR AN K1)
‘{1 u(t)$+0(t)< +2>} O OO T0)

using Lemma 3.2, we have ¢(t) < ¢(t) on [to, t1]r because ¢ (ty) = ¢(ty). Hence,
together with (3.7) and (3.8), we have

—% < QD(tl) S /(/)(tl) < —1,

which is a contradiction. This completes the proof. O
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