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STABILITY CRITERION FOR A SYSTEM OF

DELAY‐DIFFERENTIAL EQUATIONS

YOSHIHIRO UEDA

ABSTRACT. We analyze a system of linear differential equations with delays and es‐
tablish necessary and sufficient conditions concerned with the absolutely stable for the
system.

1. INTRODUCTION

Consider a system of ordinary differential equations with delay effect described by

(1.1) u_{j}'(t)+ \sum_{k=1}^{n}\{a_{jk}u_{k}(t)+b_{jk}u_{k}(t-\tau_{jk})\}=0
for  1\leq j\leq n . Here,  u(t)=(u_{1} . , u_{n})^{T}(t) denotes unknown functions for  t\underline{\supset}0 , the
coefficients  a_{jk} and  b_{jk} are real numbers, and time delay  \tau_{jk} is a nonnegative numbers
for  1\leq j,  k\leq n.

Our purpose is constructing the condition to derive the asymptotic stability for the
system (1.1). The stability phenomenon of the system (1.1) is determined completely
by the roots of the associated characteristic equations. The characteristic equation for
the system (1.1) is expressed by

(1.2)  \det G(\lambda)=0
with

 G(\lambda):=\begin{array}{llll}
\lambda+d_{11}   d_{12}   \cdots   d_{1n}
d_{2l}   \lambda+d_{22}   \cdots   d_{2n}
      \ddots   
d_{n1}   d_{n2}   \cdots   \lambda+d_{nn}
\end{array},
where  d_{jk}  :=a_{jk}+b_{jk}e^{-\lambda\tau_{jk}} for  1\leq j,  k\leq n . Then,  \lambda\in \mathbb{C} denotes a corresponding
characteristic root called an eigenvalue. It is well known that the solution of the system
(1.1) is asymptotically stable if and only if all of our eigenvalues lie in the left half
of the complex plane (see, e.g., [2, 3, 8]). Consequently, our main goal is to establish
the necessary and sufficient conditions that the real parts of all of the eigenvalues are
negative.

Here, we define the absolute stability and the conditional stability introduced by
Ruan [7].

Definition 1.1. The equilibrium point of the system (1.1) is said to be absolutely stable
if it is locally asymptotically stable for all delays  \tau_{jk} for  j,  k with  1\leq j,  k\leq n . Further‐
more, the equilibrium point of the system (1.1) is said to be conditionally stable if it is
locally asymptotically stable for  \tau_{jk} for  j,  k with  1\leq j,  k\leq n in some intervals, but not
necessarily for all delays.
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1. Introduction

Consider a system of ordinary differential equations with delay effect described by

(1.1) u′
j(t) +

n∑

k=1

{ajkuk(t) + bjkuk(t− τjk)} = 0

for 1 ≤ j ≤ n. Here, u(t) = (u1, · · · , un)
T (t) denotes unknown functions for t ≥ 0, the

coefficients ajk and bjk are real numbers, and time delay τjk is a nonnegative numbers
for 1 ≤ j, k ≤ n.
Our purpose is constructing the condition to derive the asymptotic stability for the

system (1.1). The stability phenomenon of the system (1.1) is determined completely
by the roots of the associated characteristic equations. The characteristic equation for
the system (1.1) is expressed by

(1.2) detG(λ) = 0

with

G(λ) :=

⎛
⎜⎜⎝

λ+ d11 d12 · · · d1n
d21 λ+ d22 · · · d2n
...

...
. . .

...
dn1 dn2 · · · λ+ dnn

⎞
⎟⎟⎠ ,

where djk := ajk + bjke
−λτjk for 1 ≤ j, k ≤ n. Then, λ ∈ C denotes a corresponding

characteristic root called an eigenvalue. It is well known that the solution of the system
(1.1) is asymptotically stable if and only if all of our eigenvalues lie in the left half
of the complex plane (see, e.g., [2, 3, 8]). Consequently, our main goal is to establish
the necessary and sufficient conditions that the real parts of all of the eigenvalues are
negative.
Here, we define the absolute stability and the conditional stability introduced by

Ruan [7].

Definition 1.1. The equilibrium point of the system (1.1) is said to be absolutely stable

if it is locally asymptotically stable for all delays τjk for j, k with 1 ≤ j, k ≤ n. Further-
more, the equilibrium point of the system (1.1) is said to be conditionally stable if it is

locally asymptotically stable for τjk for j, k with 1 ≤ j, k ≤ n in some intervals, but not

necessarily for all delays.
1

37



38

We introduce the necessary and sufficient condition for the absolute stability of the
system (1.1). To this end, we prepare some notations. For  n\cross n square matrix  X=

 (x_{jk})_{1\leq j,k\leq n} , we define the matrices  \hat{X} and  \overline{X} as

 \hat{X}:=(\begin{array}{llll}
x_{l1}   -|x_{12}|   \cdots   -|x_{ln}|
-|x_{21}|   x_{22}   \cdots   -|x_{2n}|
\vdots   \vdots   \ddots   \vdots
-|x_{n1}|   -|x_{n2}|   \cdots   x_{nn}
\end{array}) ,  \overline{X}:=(\begin{array}{lll}
|x_{11}|   \cdots   |x_{1n}|
\vdots   \ddots   
|x_{n1}|   \cdots   |x_{nn}|
\end{array})
Furthermore, to mention Stability Condition, we define principal minors (cf. Leslie [4]).

Definition 1.2. Let  M be a  n\cross n square matrix. Let  \mu be a nonempty set of row indices
and  \nu a nonempty set of column indices. A submatrix of  M is a matrix  M[\mu, \nu] obtained
by choosing the entries of  M , which lie in rows  \mu and columns  \nu. A principal submatrix
of  M is a submatrix of the form  M[\mu, \mu]. A principal minor is the determinant of a
principal submatrix.

Now, we define the constant matrices  A and  B as

 A=(\begin{array}{lll}
a_{11}   \cdots   a_{1n}
\vdots   \ddots   
a_{n1}   \cdots   a_{nn}
\end{array}) , B=(\begin{array}{lll}
b_{11}   \cdots   b_{1n}
\vdots   \ddots   
b_{n1}   \cdots   b_{nn}
\end{array}),
and introduce Stability Condition (SC) as follows.

Stability Condition (SC): The coefficient matrices of (1.1) satisfy the following
conditions.

(i)  \det(A+B)\neq 0,
(ii)  a_{jj}-|b_{jj}|>0 or  a_{jj}=b_{jj}>0 for all  j with  1\leq j\leq n,

(iii) all principal minors of Â—B‐ are nonnegative definite.
Since Stability Condition (SC), we derive the following theorem.

Theorem 1.3. If the system (1.1) satisfies Stability Condition (SC), then the equilib‐
rium point is absolutely stable.

Furthermore, under the condition that the matrix  A in (1.1) is diagonal, that is,
 A=diag  (a_{11}, \cdots , a_{nn}) , we also obtain the following theorem.

Theorem 1.4. Suppose  A=diag  (a_{11}, \cdots , a_{nn}) . If the equilibrium point of the system
(1.1) is absolutely stable, then the system (1.1) satisfies Stability Condition (SC).

Consequently, the simple combination of Theorem 1.3 and Theorem 1.4 gives the
following corollary.

Corollary 1.5. Suppose  A=diag  (a_{11}, \cdots , a_{nn}) . The system (1.1) satisfies Stability
Condition (SC) if and only if the equilibrium point is absolutely stable.

2. SUFFICIENT CONDITION

To prove Theorem 1.3, we start from the definition of the irreducible matrix (cf.
Lancaster and Tismenetsky [6]),

We introduce the necessary and sufficient condition for the absolute stability of the
system (1.1). To this end, we prepare some notations. For n × n square matrix X =

(xjk)1≤j,k≤n, we define the matrices X̂ and X̃ as

X̂ :=

⎛
⎜⎜⎝

x11 −|x12| · · · −|x1n|
−|x21| x22 · · · −|x2n|

...
...

. . .
...

−|xn1| −|xn2| · · · xnn

⎞
⎟⎟⎠ , X̃ :=

⎛
⎝

|x11| · · · |x1n|
...

. . .
...

|xn1| · · · |xnn|

⎞
⎠ .

Furthermore, to mention Stability Condition, we define principal minors (cf. Leslie [4]).

Definition 1.2. Let M be a n×n square matrix. Let µ be a nonempty set of row indices

and ν a nonempty set of column indices. A submatrix of M is a matrix M [µ, ν] obtained
by choosing the entries of M , which lie in rows µ and columns ν. A principal submatrix

of M is a submatrix of the form M [µ, µ]. A principal minor is the determinant of a

principal submatrix.

Now, we define the constant matrices A and B as

A =

⎛
⎝

a11 · · · a1n
...

. . .
...

an1 · · · ann

⎞
⎠ , B =

⎛
⎝

b11 · · · b1n
...

. . .
...

bn1 · · · bnn

⎞
⎠ ,

and introduce Stability Condition (SC) as follows.

Stability Condition (SC): The coefficient matrices of (1.1) satisfy the following
conditions.
(i) det(A+B) �= 0,

(ii) ajj − |bjj| > 0 or ajj = bjj > 0 for all j with 1 ≤ j ≤ n,

(iii) all principal minors of Â− B̃ are nonnegative definite.

Since Stability Condition (SC), we derive the following theorem.

Theorem 1.3. If the system (1.1) satisfies Stability Condition (SC), then the equilib-

rium point is absolutely stable.

Furthermore, under the condition that the matrix A in (1.1) is diagonal, that is,
A = diag(a11, · · · , ann), we also obtain the following theorem.

Theorem 1.4. Suppose A = diag(a11, · · · , ann). If the equilibrium point of the system

(1.1) is absolutely stable, then the system (1.1) satisfies Stability Condition (SC).

Consequently, the simple combination of Theorem 1.3 and Theorem 1.4 gives the
following corollary.

Corollary 1.5. Suppose A = diag(a11, · · · , ann). The system (1.1) satisfies Stability

Condition (SC) if and only if the equilibrium point is absolutely stable.

2. Sufficient condition

To prove Theorem 1.3, we start from the definition of the irreducible matrix (cf.
Lancaster and Tismenetsky [6]),
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Definition 2.1. Let  M be a  n\cross n square matrix. The matrix  M is said to be reducible
if there is an permutation matrix  P of order  n such that

(2.1)  P^{-1}MP=(\begin{array}{ll}
M_{11}   O
M_{21}   M_{22}
\end{array}) ,

where  M_{11} and  M_{22} are square matrices of order less than  n and  O is a zero matrix. If
no such  P exists, then  M is irreducible.

We introduce the following two lemmas to show Theorem 1.3.

Lemma 2.2. (cf. Fiedler [5]) Let  M be a  n\cross n real matrix whose off‐liagonal entries
are nonpositive and all principal minors are nonnegative. If  M is irreducible, then there
is a vector  v>0 such that  Mv\geq 0.

Here,  v>0 or  v\geq 0 means that all components of the vector  v are positive or
nonnegative, respectively.

Lemma 2.3. Let  Q=(\alpha_{jk}+\beta_{jk})_{1\leq j,k\leq n} be a  n\cross n square matrix, where  \alpha_{jk} and  \beta_{jk}
are complex numbers for  1\leq j,  k\leq n . Then every eigenvalue of  Q lies in at least one
of the disks

(2.2)   \{z\in \mathbb{C} ; |z-\alpha_{jj}|\leq\sum_{k=1,k\neq j}^{n}|\alpha_{jk}|+
\sum_{k=1}^{n}|\beta_{jk}|\}
for  1\leq j\leq n in the complex  z‐plane.

Proof. Let  \lambda be an eigenvalue of  Q with the associated eigenvector  w with  w=  (w_{1}, \cdots , w_{n})^{T}.
Since  Qw=\lambda w , we have

  \sum_{k=1}^{n}(\alpha_{jk}+\beta_{jk})w_{k}=\lambda w_{j}
for  1\leq j\leq n . This means

 ( \lambda-\alpha_{jj})w_{j}=\sum_{k=1,k\neq j}^{n}\alpha_{\dot{J}^{k}}w_{k}+
\sum_{k=1}^{n}\beta_{jk}w_{k}.
Let  p be a natural number which satisfies  |w_{p}|= \max_{j}|w_{j}| . Then the p‐th equation
gives

 | \lambda-\alpha_{pp}||w_{p}|=|\sum_{k=1,k\neq p}^{n}\alpha_{pk}w_{k}+\sum_{k=
1}^{n}\beta_{pk}w_{k}|
  \leq\sum_{k=1,k\neq p}^{n}|\alpha_{pk}||w_{k}|+\sum_{k=1}^{n}|\beta_{pk}
||w_{k}|
  \leq(\sum_{k=1,k\neq p}^{n}|\alpha_{pk}|+\sum_{k=1}^{n}|\beta_{pk}|)|w_{p}|.

Because of  w\neq 0 , we have  |w_{p}|\neq 0 . Consequently, we obtain

 | \lambda-\alpha_{pp}|\leq\sum_{k=1,k\neq p}^{n}|\alpha_{pk}|+\sum_{k=1}^{n}
|\beta_{pk}|,
and this estimate gives the conclusion of Lemma 2.3.  \square 

Definition 2.1. Let M be a n×n square matrix. The matrix M is said to be reducible

if there is an permutation matrix P of order n such that

(2.1) P−1MP =

(
M11 O
M21 M22

)
,

where M11 and M22 are square matrices of order less than n and O is a zero matrix. If

no such P exists, then M is irreducible.

We introduce the following two lemmas to show Theorem 1.3.

Lemma 2.2. (cf. Fiedler [5]) Let M be a n× n real matrix whose off-diagonal entries

are nonpositive and all principal minors are nonnegative. If M is irreducible, then there

is a vector v > 0 such that Mv ≥ 0.

Here, v > 0 or v ≥ 0 means that all components of the vector v are positive or
nonnegative, respectively.

Lemma 2.3. Let Q = (αjk + βjk)1≤j,k≤n be a n × n square matrix, where αjk and βjk

are complex numbers for 1 ≤ j, k ≤ n. Then every eigenvalue of Q lies in at least one

of the disks

(2.2)
{
z ∈ C ; |z − αjj| ≤

n∑

k=1,k �=j

|αjk|+
n∑

k=1

|βjk|
}

for 1 ≤ j ≤ n in the complex z-plane.

Proof. Let λ be an eigenvalue ofQ with the associated eigenvector w with w = (w1, · · · , wn)
T .

Since Qw = λw, we have
n∑

k=1

(αjk + βjk)wk = λwj

for 1 ≤ j ≤ n. This means

(λ− αjj)wj =
n∑

k=1,k �=j

αjkwk +
n∑

k=1

βjkwk.

Let p be a natural number which satisfies |wp| = maxj |wj|. Then the p-th equation
gives

|λ− αpp||wp| =
∣∣∣

n∑

k=1,k �=p

αpkwk +
n∑

k=1

βpkwk

∣∣∣

≤

n∑

k=1,k �=p

|αpk||wk|+
n∑

k=1

|βpk||wk|

≤
( n∑

k=1,k �=p

|αpk|+
n∑

k=1

|βpk|
)
|wp|.

Because of w �= 0, we have |wp| �= 0. Consequently, we obtain

|λ− αpp| ≤

n∑

k=1,k �=p

|αpk|+
n∑

k=1

|βpk|,

and this estimate gives the conclusion of Lemma 2.3. �
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Remark 1. If we suppose that  \beta_{jk}=0 for  1\leq j,  k\leq n in Lemma 2.3, this lemma
becomes Geršgorin’s theorem (cf. Lancaster and Tismenetsky [6]).

Proof of Theorem 1.3. We suppose that Â—B‐ is irreducible. By employing Theorem
2.2, for an irreducible matrix Â—B‐ whose off‐diagonal entries are nonpositive and all
principal minors are nonnegative, there is a vector  v>0 such that (Â—B‐)v  \geq 0.

Namely, there exists  v_{j}>0 such that

(2.3)  -a_{jj}v_{j}+ \sum_{k=1,k\neq j}^{n}|a_{\dot{J}^{k}}|v_{k}+\sum_{k=1}^{n}
|b_{jk}|v_{k}\leq 0
for  1\leq j\leq n.

We suppose that there exists a root  \lambda_{0} of (1.2) satisfying  {\rm Re}\lambda_{0}\geq 0 . Then, we
introduce the square matrix  E  :=-(a_{jk}+b_{jk}e^{-\lambda_{0}\tau_{jk}})_{1\leq j,k\leq n} . We remark that  \lambda_{0} is
an eigenvalue of  E because of (1.2). On the other hand, we define  F  :=-(v_{j}^{-1}(a_{jk}+
 b_{jk}e^{-\lambda_{0}\tau_{jk}})v_{k})_{1\leq j,k\leq n} . Then, every eigenvalue of  E is equivalent to every eigenvalue of
 F . Indeed, since  F=V^{-1}EV , where  V  :=diag  (v_{1}, \cdots , v_{n}) , we obtain

 \det(\lambda I-F)=\det(\lambda I-V^{-1}EV)=\det(V^{-1})\det(\lambda I-E)\det V=
\det(\lambda I-E) .

Namely,  \lambda_{0} is an eigenvalue of  F.

We apply Lemma 2.3 to the matrix  F and derive the following. For every eigenvalue
of  F , there exists  p such that the eigenvalue lies within the disk

 D_{p}:= \{z\in \mathbb{C};|z+a_{pp}|\leq\sum_{k=1,k\neq p}^{n}|a_{pk}
|\frac{v_{k}}{v_{p}}+\sum_{k=1}^{n}|b_{pk}e^{-\lambda_{0}\tau_{pk}}|\frac{v_{k}}
{v_{p}}\}.
From  {\rm Re}\lambda_{0}\geq 0 and (2.3), we compute

  \sum^{n} |a_{pk}|\frac{v_{k}}{v_{p}}+\sum^{n}|b_{pk}e^{-\lambda_{0}\tau_{pk}}|
\frac{v_{k}}{v_{p}}= \sum^{n} |a_{jk}|\frac{v_{k}}{v_{p}}+\sum^{n}|b_{pk}|e^{-
{\rm Re}\lambda_{0}\tau_{pk}}\frac{v_{k}}{v_{p}} k=1,k\neq p k=1 k=1,k\neq p k=1

  \leq \sum^{n} |a_{jk}|\frac{v_{k}}{v_{p}}+\sum^{n}|b_{pk}|\frac{v_{k}}{v_{p}}
\leq a_{pp}. k=1,k\neq p k=1

This estimate gives that  D_{p}\subseteq\{z\in \mathbb{C};|z+a_{pp}|\leq a_{pp}\} . Therefore, we conclude
that, for every eigenvalue of  F , there is  p such that the eigenvalue lies within the disk
 \{z\in \mathbb{C};|z+a_{pp}|\leq a_{pp}\}.

Consequently, there exists the natural number  p such that  \lambda_{0}\in\{z\in \mathbb{C};|z+a_{pp}|\leq
 a_{pp}\} . Furthermore, the assumption  {\rm Re}\lambda_{0}\geq 0 gives  \lambda_{0}=0 . However, since  \det(A+B)\neq
 0,  \lambda_{0} must satisfy  \lambda_{0}\neq 0 . Eventually, this fact is a contradiction and we conclude that
the real part of the eigenvalues of (1.2) must be negative under Stability Condition
(SC).

In the case of a reducible matrix Â—B‐, we can rewrite Â—B‐ into a lower block
triangular matrix with irreducible blocks along the diagonal similar to (2.1) by using a
suitable permutation matrix. Furthermore, this translation does not affect the principal
minors of Â—B‐. Thus, the result follows by applying the previous argument to each
irreducible diagonal block.  \square 

Remark 1. If we suppose that βjk = 0 for 1 ≤ j, k ≤ n in Lemma 2.3, this lemma

becomes Gers̆gorin’s theorem (cf. Lancaster and Tismenetsky [6]).

Proof of Theorem 1.3. We suppose that Â − B̃ is irreducible. By employing Theorem

2.2, for an irreducible matrix Â− B̃ whose off-diagonal entries are nonpositive and all

principal minors are nonnegative, there is a vector v > 0 such that (Â − B̃)v ≥ 0.
Namely, there exists vj > 0 such that

(2.3) −ajjvj +
n∑

k=1,k �=j

|ajk|vk +
n∑

k=1

|bjk|vk ≤ 0

for 1 ≤ j ≤ n.
We suppose that there exists a root λ0 of (1.2) satisfying Reλ0 ≥ 0. Then, we

introduce the square matrix E := −(ajk + bjke
−λ0τjk)1≤j,k≤n. We remark that λ0 is

an eigenvalue of E because of (1.2). On the other hand, we define F := −(v−1

j (ajk +

bjke
−λ0τjk)vk)1≤j,k≤n. Then, every eigenvalue of E is equivalent to every eigenvalue of

F . Indeed, since F = V −1EV , where V := diag(v1, · · · , vn), we obtain

det(λI − F ) = det(λI − V −1EV ) = det(V −1) det(λI − E) detV = det(λI − E).

Namely, λ0 is an eigenvalue of F .
We apply Lemma 2.3 to the matrix F and derive the following. For every eigenvalue

of F , there exists p such that the eigenvalue lies within the disk

Dp :=
{
z ∈ C ; |z + app| ≤

n∑

k=1,k �=p

|apk|
vk
vp

+
n∑

k=1

|bpke
−λ0τpk |

vk
vp

}
.

From Reλ0 ≥ 0 and (2.3), we compute

n∑

k=1,k �=p

|apk|
vk
vp

+
n∑

k=1

|bpke
−λ0τpk |

vk
vp

=
n∑

k=1,k �=p

|ajk|
vk
vp

+
n∑

k=1

|bpk|e
−Reλ0τpk

vk
vp

≤

n∑

k=1,k �=p

|ajk|
vk
vp

+
n∑

k=1

|bpk|
vk
vp

≤ app.

This estimate gives that Dp ⊆ {z ∈ C; |z + app| ≤ app}. Therefore, we conclude
that, for every eigenvalue of F , there is p such that the eigenvalue lies within the disk
{z ∈ C; |z + app| ≤ app}.
Consequently, there exists the natural number p such that λ0 ∈ {z ∈ C; |z + app| ≤

app}. Furthermore, the assumption Reλ0 ≥ 0 gives λ0 = 0. However, since det(A+B) �=
0, λ0 must satisfy λ0 �= 0. Eventually, this fact is a contradiction and we conclude that
the real part of the eigenvalues of (1.2) must be negative under Stability Condition
(SC).

In the case of a reducible matrix Â − B̃, we can rewrite Â − B̃ into a lower block
triangular matrix with irreducible blocks along the diagonal similar to (2.1) by using a
suitable permutation matrix. Furthermore, this translation does not affect the principal

minors of Â − B̃. Thus, the result follows by applying the previous argument to each
irreducible diagonal block. �
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3. NECESSARY CONDITION

Next, we show Theorem 1.4. To prove this theorem, we derive three lemmas. For
this purpose, we prepare the following theorem (cf. Bellman and Cooke [1]).

Theorem 3.1. (Rouché’s theorem) If  f(z) and  g(z) are analytic inside and on a closed
contour  C , and  |f(z)|>|g(z)| for each point on  C , then  f(z) and  f(z)+g(z) have the
same number of zeros inside  C.

Then we will obtain the following lemmas.

Lemma 3.2. Suppose  \det(A+B)=0 . Then, (1.2) has a zero eigenvalue.

Lemma 3.3. Suppose  a_{pp}<|b_{pp}| or  a_{pp}=b_{pp}=0 for some  p with  1\leq p\leq n , Then,
there exist  \tau_{jk}(1\leq j, k\leq n) such that (1.2) has a root  \lambda with  {\rm Re}\lambda>0.

Lemma 3.4. Suppose that  a_{jj}>0 for any  j with  1\leq j\leq n and some principal minors

of  A-\overline{B} is negative. Then, there exist  \tau_{jk}(1\leq j, k\leq n) such that (1.2) has a root  \lambda

with  {\rm Re}\lambda>0.

From these lemmas, it is easy to prove Theorem 1.4. At the rest of this section, we
give a proof of Lemma 3.2, 3.3 and 3.4.

Proof of Lemma 3.2. Because of  \det(A+B)=0,  \lambda=0 satisfies (1.2) and we complete
the proof.  \square 

Proof of Lemma 3.3. We introduce the matrix

 G_{11}^{l}(\lambda):=(\begin{array}{llll}
\lambda+d_{ll}   b_{ll+1}e^{-\lambda\tau\iota l+1}      b_{ln}e^{-
\lambda\tau_{ln}}
b_{l+1l}e^{-\lambda\tau_{l+l\iota}}   \lambda+d_{l+1l+1}   \cdots   b_{l+1n}e^{-
\lambda\tau\iota+ln}
\vdots   \vdots   .   
b_{nl}e^{-\lambda\tau_{nl}}   b_{nl+1}e^{-\lambda\tau_{nl+1}}      \lambda+
d_{nn}
\end{array})
for  1\leq l\leq n-1 , where  d_{jj}=a_{jj}+b_{jj}e^{-\lambda\tau_{jj}} for  1\leq j\leq n . Then, because of
 A=diag  (a_{11} . , a_{nn}) , we have  G(\lambda)=G_{11}^{1}(\lambda) . Applying the cofactor expansion to
 \det G(\lambda) , we obtain

(3.1)   \det G(\lambda)=(\lambda+d_{11})\det G_{11}^{2}(\lambda)+\sum_{j=2}^{n}(-1)^{j
-1}b_{j1}e^{-\lambda\tau_{j1}}\det G_{j1}^{2}(\lambda) ,

where  G_{\dot{J}^{k}}^{2}(\lambda) is a submatrix of  G(\lambda) obtained by removeing  j ‐th row and k‐th column
from  G(\lambda) . Similarly, we apply the cofactor expansion to  \det G_{11}^{h}(\lambda) , and get

(3.2)   \det G_{11}^{l}(\lambda)=(\lambda+d_{ll})\det G_{11}^{l+1}(\lambda)+\sum_{j=l+
1}^{n}(-1)^{j-l}b_{jl}e^{-\lambda\tau_{J}\prime\iota}\det G_{j-l+11}^{l+1}
(\lambda)
for  1\leq l\leq n-1 , where  G_{jk}^{l+1}(\lambda) is also a submatrix of  G_{11}^{l}(\lambda) obtained by striking out
j‐th row and k‐th column from  G_{11}^{l}(\lambda) . Therefore, using (3.1) and (3.2), we obtain the

3. Necessary condition

Next, we show Theorem 1.4. To prove this theorem, we derive three lemmas. For
this purpose, we prepare the following theorem (cf. Bellman and Cooke [1]).

Theorem 3.1. (Rouché’s theorem) If f(z) and g(z) are analytic inside and on a closed

contour C, and |f(z)| > |g(z)| for each point on C, then f(z) and f(z) + g(z) have the

same number of zeros inside C.

Then we will obtain the following lemmas.

Lemma 3.2. Suppose det(A+B) = 0. Then, (1.2) has a zero eigenvalue.

Lemma 3.3. Suppose app < |bpp| or app = bpp = 0 for some p with 1 ≤ p ≤ n, Then,
there exist τjk (1 ≤ j, k ≤ n) such that (1.2) has a root λ with Reλ > 0.

Lemma 3.4. Suppose that ajj > 0 for any j with 1 ≤ j ≤ n and some principal minors

of A− B̃ is negative. Then, there exist τjk (1 ≤ j, k ≤ n) such that (1.2) has a root λ
with Reλ > 0.

From these lemmas, it is easy to prove Theorem 1.4. At the rest of this section, we
give a proof of Lemma 3.2, 3.3 and 3.4.

Proof of Lemma 3.2. Because of det(A+B) = 0, λ = 0 satisfies (1.2) and we complete
the proof. �

Proof of Lemma 3.3. We introduce the matrix

Gl
11(λ) :=

⎛
⎜⎜⎝

λ+ dll bll+1e
−λτll+1 · · · blne

−λτln

bl+1le
−λτl+1l λ+ dl+1l+1 · · · bl+1ne

−λτl+1n

...
...

. . .
...

bnle
−λτnl bnl+1e

−λτnl+1 · · · λ+ dnn

⎞
⎟⎟⎠

for 1 ≤ l ≤ n − 1, where djj = ajj + bjje
−λτjj for 1 ≤ j ≤ n. Then, because of

A = diag(a11, · · · , ann), we have G(λ) = G1
11(λ). Applying the cofactor expansion to

detG(λ), we obtain

(3.1) detG(λ) = (λ+ d11) detG
2

11(λ) +
n∑

j=2

(−1)j−1bj1e
−λτj1 detG2

j1(λ),

where G2
jk(λ) is a submatrix of G(λ) obtained by removeing j-th row and k-th column

from G(λ). Similarly, we apply the cofactor expansion to detGh
11(λ), and get

(3.2) detGl
11(λ) = (λ+ dll) detG

l+1

11 (λ) +
n∑

j=l+1

(−1)j−lbjle
−λτjl detGl+1

j−l+11
(λ)

for 1 ≤ l ≤ n− 1, where Gl+1

jk (λ) is also a submatrix of Gl
11(λ) obtained by striking out

j-th row and k-th column from Gl
11(λ). Therefore, using (3.1) and (3.2), we obtain the
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expansion for  \det G(\lambda) that

  \det G(\lambda)=(\lambda+d_{11})(\lambda+d_{22})\det G_{11}^{3}(\lambda)+\sum_
{j=2}^{n}(-1)^{j-1}b_{j1}e^{-\lambda\tau_{j1}}\det G_{j1}^{2}(\lambda)
 +( \lambda+d_{22})\sum_{j=3}^{n}(-1)^{j-2}b_{j2}e^{-\lambda\tau_{j2}}\det G_{j-
11}^{3}(\lambda)

(3.3)

 = \prod_{j=1}^{n}(\lambda+d_{jj})+\sum_{j=2}^{n}(-1)^{j-1}b_{j1}e^{-
\lambda\tau_{j1}}\det G_{j1}^{2}(\lambda)
 + \sum_{k=2}^{n-1}\prod_{h=2}^{k}(\lambda+d_{\dot{j}j})\sum_{j=h+1}^{n}(-1)^{j-
h}b_{jh}e^{-\lambda\tau_{jh}}\det G_{j-h+11}^{h+1}(\lambda) .

Here, the last term in (3.5) is neglected if  n=2 . Summarizing the above, we define

 f( \lambda):=\prod_{j=1}^{n}(\lambda+a_{jj}+b_{jj}e^{-\lambda\tau_{jj}}) ,

(3.4)  g( \lambda) :=\sum_{j=2}^{n}e^{-\lambda\tau\prime}\det G_{j1}^{2}(\lambda)
 + \sum_{k=2}^{n-1}\prod_{h=2}^{k}(\lambda+a_{jj}+b_{jj}e^{-\lambda\tau_{\dot{0}
}}j)\sum_{j=h+1}^{n}(-1)^{j-h}b_{jh}e^{-\lambda\tau_{jh}}\det G_{j-h+11}^{h+1}
(\lambda) ,

and obtain  \det G(\lambda)=f(\lambda)+g(\lambda) .

Next, we consider  f(\lambda)=0 to indicate  f(\lambda) has the zero‐solution in the right half of
the complex plane. Because of  f(\lambda)=0 , we find the eigenvalue  \lambda which satisfies

(3.5)  \lambda+a_{pp}+b_{pp}e^{-\lambda\tau}=0,

where  \tau=\tau_{pp} . Now, we show that (3.5) has a purely imaginary root  \lambda=i\omega_{1} with some
delay term  \tau=\tau_{1} . Substituting  \lambda=i\omega with  \omega\geq 0 into (3.5) yields

 i\omega+a_{pp}+b_{pp}e^{-i\omega\tau}=0.

Then, we put  f_{1}(\omega)  :=i\omega+a_{pp} , and obtain  |f_{1}(0)|=|a_{pp}| and   \lim_{\omegaarrow\infty}|f_{1}(\omega)|arrow\infty.
Therefore, under the assumption  |a_{pp}|<|b_{pp}| , there is a positive number  \omega_{1} such that
 |f_{1}(\omega_{1})|=|b_{pp}| by the intermediate value theorem. This tells us that there exists a
positive number  \theta such that  f_{1}(\omega_{1})=-b_{pp}e^{-i\theta} , and we get

 i\omega_{1}+a_{pp}+b_{pp}e^{-i\theta}=0.

Thus, choosing  \tau_{1} such that  \omega_{1}\tau_{1}=\theta+2\pi m with  m\in \mathbb{N}_{0} , the pair  (\omega_{1}, \tau_{1}) satisfies
(3.5). We note that  \tau_{1} can be taken suitably large.

The next purpose is to show that (3.5) has a root  \lambda with  {\rm Re}\lambda>0 . We put  h(\lambda, \tau)  :=

 \lambda+a_{pp}+b_{pp}e^{-\lambda\tau} . Then, using (3.5), we have

 h_{\lambda}(\lambda, \tau)=1-b_{pp}\tau e^{-\lambda\tau}=1+\tau(\lambda+a_{pp}) ,

 h_{\tau}(\lambda, \tau)=-b_{pp}\lambda e^{-\lambda\tau}=\lambda(\lambda+a_{pp}) .

expansion for detG(λ) that

(3.3)

detG(λ) = (λ+ d11)(λ+ d22) detG
3

11(λ) +
n∑

j=2

(−1)j−1bj1e
−λτj1 detG2

j1(λ)

+ (λ+ d22)
n∑

j=3

(−1)j−2bj2e
−λτj2 detG3

j−11(λ)

=
n∏

j=1

(λ+ djj) +
n∑

j=2

(−1)j−1bj1e
−λτj1 detG2

j1(λ)

+
n−1∑

k=2

k∏

h=2

(λ+ djj)
n∑

j=h+1

(−1)j−hbjhe
−λτjh detGh+1

j−h+11
(λ).

Here, the last term in (3.5) is neglected if n = 2. Summarizing the above, we define

(3.4)

f(λ) :=
n∏

j=1

(λ+ ajj + bjje
−λτjj),

g(λ) :=
n∑

j=2

(−1)j−1bj1e
−λτj1 detG2

j1(λ)

+
n−1∑

k=2

k∏

h=2

(λ+ ajj + bjje
−λτjj)

n∑

j=h+1

(−1)j−hbjhe
−λτjh detGh+1

j−h+11
(λ),

and obtain detG(λ) = f(λ) + g(λ).
Next, we consider f(λ) = 0 to indicate f(λ) has the zero-solution in the right half of

the complex plane. Because of f(λ) = 0, we find the eigenvalue λ which satisfies

(3.5) λ+ app + bppe
−λτ = 0,

where τ = τpp. Now, we show that (3.5) has a purely imaginary root λ = iω1 with some
delay term τ = τ1. Substituting λ = iω with ω ≥ 0 into (3.5) yields

iω + app + bppe
−iωτ = 0.

Then, we put f1(ω) := iω + app, and obtain |f1(0)| = |app| and limω→∞ |f1(ω)| → ∞.
Therefore, under the assumption |app| < |bpp|, there is a positive number ω1 such that
|f1(ω1)| = |bpp| by the intermediate value theorem. This tells us that there exists a
positive number θ such that f1(ω1) = −bppe

−iθ, and we get

iω1 + app + bppe
−iθ = 0.

Thus, choosing τ1 such that ω1τ1 = θ + 2πm with m ∈ N0, the pair (ω1, τ1) satisfies
(3.5). We note that τ1 can be taken suitably large.
The next purpose is to show that (3.5) has a root λ with Reλ > 0. We put h(λ, τ) :=

λ+ app + bppe
−λτ . Then, using (3.5), we have

hλ(λ, τ) = 1− bppτe
−λτ = 1 + τ(λ+ app),

hτ (λ, τ) = −bppλe
−λτ = λ(λ+ app).

6
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By the implicit function theorem, we obtain a solution  \lambda(\tau) of (3.5) around  \tau_{1} . Fur‐
thermore the equality

  \lambda'(\tau_{1})=-\frac{h_{\tau}(i\omega_{1},\tau_{1})}{h_{\lambda}(i\omega_
{1},\tau_{1})}=-\frac{i\omega_{1}(i\omega_{1}+a_{pp})}{1+\tau_{1}(i\omega_{1}+a_
{pp})}
gives us that

 {\rm Re} \lambda'(\tau_{1})=\frac{\omega_{1}^{2}}{(1+\tau_{1}a_{pp})^{2}+(\tau_
{1}\omega_{1})^{2}}>0.
Therefore there exists  \tau_{2}>\tau_{1} such that  {\rm Re}\lambda(\tau_{2})>0.

On the other hand, under the assumption  a_{pp}\leq-|b_{pp}| , we put  \lambda  :=x\in \mathbb{R} and find
the solution of

(3.6)  x+a_{pp}+b_{pp}e^{-x\tau}=0.

We put that  f_{1}(x)  :=x+a_{pp} and  f_{2}(x)  :=-b_{pp}e^{-x\tau} . We consider graphs of  y=f_{1}(x)
and  y=f_{2}(x) . Then there exists an intersection at  x>0 of these two graphs for
suitably large  \tau . Hence, (3.6) has positive solution for large  \tau.

Finally, we go back to (3.4) and apply Rouché’s theorem to  \det G(\lambda)=f(\lambda)+g(\lambda) .
We put  C  :=\{\lambda\in \mathbb{C};{\rm Re}\lambda>0\} and  C_{\varepsilon}  :=\{\lambda\in \mathbb{C};|\lambda-\lambda_{0}|<\varepsilon\} . Then, there exists
 \varepsilon_{0}>0 such that  \overline{C}_{\varepsilon_{0}}\subset C holds, where  \overline{C}_{\varepsilon} is a closure of  C_{\varepsilon} . Since all terms of  g(\lambda)
contain  e^{-\lambda\tau_{jk}} which  \tau_{jk} is not  \tau_{pp} , there exists  \tau_{0} such that  |f(\lambda)|>|g(\lambda)| on  \partial C_{\varepsilon_{0}}
provided  \tau_{jk}>\tau_{0} except for  \tau_{jk}=\tau_{pp} . Here,  \partial C_{\varepsilon} denotes a boundary of  C_{\varepsilon} . Therefore,
we can apply Rouché’s theorem and conclude that  f(\lambda)+g(\lambda)=0 has at least one
solution in  \overline{C}_{\varepsilon_{0}} . This means  \det G(\lambda)=0 has a root which real part is positive.

Furthermore, in the case that  a_{pp}=b_{pp}=0 for some  p with  1\leq p\leq n , we consider
the approximation and derive the desired result. Thus we complete the proof.  \square 

Proof of Lemma 3.4. We modify the proof of Lemma 3.3. Since some principal minors
of  A-B is negative, there exists  r with  1\leq r\leq n such that

(3.7)  \det  (\begin{array}{ll}
a_{rr}-|b_{rr}|   -|b_{rn}|
\vdots   
-|b_{nr}|   a_{nn}-|b_{nn}|
\end{array})  <0.

To show that (1.2) has a root  \lambda with  {\rm Re}\lambda>0 , we consider the following function

 \gamma_{\kappa}(z):=\det  (\begin{array}{lll}
\kappa z+a_{rr}+b_{rr}e^{-z\eta_{rr}}   \cdots   b_{rn}e^{-z\eta_{rn}}
\vdots   \ddots   
b_{nr}e^{-z\eta_{nr}}   \cdots   \kappa z+a_{nn}+b_{nn}e^{-z\eta_{nn}}
\end{array}) ,

where

 \eta_{jk}:=\{\begin{array}{ll}
1/2   (b_{jk}\geq 0) ,
1   (b_{jk}<0) ,
\end{array}
for  r\leq j,  k\leq n . We show that  \gamma_{\kappa}(z)=0 has the zero‐solution in the right half of the
complex plane. For  z=x+2\pi i with  x\in \mathbb{R} , we obtain  \delta(x)  :=\gamma_{0}(x+2\pi i) and

 \delta(x)=\det  (\begin{array}{lll}
a_{rr}-|b_{rr}|e^{-x\eta_{rr}}   \cdots   -|b_{rn}|e^{-x\eta_{rn}}
   \ddots   
-|b_{nr}|e^{-x\eta_{nr}}   \cdots   a_{n}-|b_{nn}|e^{-x\eta_{nn}}
\end{array})

By the implicit function theorem, we obtain a solution λ(τ) of (3.5) around τ1. Fur-
thermore the equality

λ′(τ1) = −
hτ (iω1, τ1)

hλ(iω1, τ1)
= −

iω1(iω1 + app)

1 + τ1(iω1 + app)

gives us that

Reλ′(τ1) =
ω2
1

(1 + τ1app)2 + (τ1ω1)2
> 0.

Therefore there exists τ2 > τ1 such that Reλ(τ2) > 0.
On the other hand, under the assumption app ≤ −|bpp|, we put λ := x ∈ R and find

the solution of

(3.6) x+ app + bppe
−xτ = 0.

We put that f1(x) := x + app and f2(x) := −bppe
−xτ . We consider graphs of y = f1(x)

and y = f2(x). Then there exists an intersection at x > 0 of these two graphs for
suitably large τ . Hence, (3.6) has positive solution for large τ .
Finally, we go back to (3.4) and apply Rouché’s theorem to detG(λ) = f(λ) + g(λ).

We put C := {λ ∈ C; Reλ > 0} and Cε := {λ ∈ C; |λ − λ0| < ε}. Then, there exists
ε0 > 0 such that C̄ε0 ⊂ C holds, where C̄ε is a closure of Cε. Since all terms of g(λ)
contain e−λτjk which τjk is not τpp, there exists τ0 such that |f(λ)| > |g(λ)| on ∂Cε0

provided τjk > τ0 except for τjk = τpp. Here, ∂Cε denotes a boundary of Cε. Therefore,
we can apply Rouché’s theorem and conclude that f(λ) + g(λ) = 0 has at least one
solution in C̄ε0 . This means detG(λ) = 0 has a root which real part is positive.
Furthermore, in the case that app = bpp = 0 for some p with 1 ≤ p ≤ n, we consider

the approximation and derive the desired result. Thus we complete the proof. �

Proof of Lemma 3.4. We modify the proof of Lemma 3.3. Since some principal minors

of A− B̃ is negative, there exists r with 1 ≤ r ≤ n such that

(3.7) det

⎛
⎝

arr − |brr| · · · −|brn|
...

. . .
...

−|bnr| · · · ann − |bnn|

⎞
⎠ < 0.

To show that (1.2) has a root λ with Reλ > 0, we consider the following function

γκ(z) := det

⎛
⎝

κz + arr + brre
−zηrr · · · brne

−zηrn

...
. . .

...
bnre

−zηnr · · · κz + ann + bnne
−zηnn

⎞
⎠ ,

where

ηjk :=

{
1/2 (bjk ≥ 0),

1 (bjk < 0),

for r ≤ j, k ≤ n. We show that γκ(z) = 0 has the zero-solution in the right half of the
complex plane. For z = x+ 2πi with x ∈ R, we obtain δ(x) := γ0(x+ 2πi) and

δ(x) = det

⎛
⎝

arr − |brr|e
−xηrr · · · −|brn|e

−xηrn

...
. . .

...
−|bnr|e

−xηnr · · · an − |bnn|e
−xηnn

⎞
⎠ .
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Because of (3.7), we have  \delta(0)<0 . On the other hand, under the assumption  a_{jj}>0
for all  j with  1\leq j\leq n , we derive   \lim_{xarrow\infty}\delta(x)=a_{rr}\cdots a_{nn}>0 . Therefore, by
the intermediate value theorem, there exists  x_{0}>0 such that  \delta(x_{0})=0 . Namely,
 z_{0}=x_{0}+2\pi i is a solution of  \gamma_{0}(z) .

Because of this fact and similar argument as in Lemma 3.3, we prove Lemma 3.4 and
complete the proof.  \square 
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Because of (3.7), we have δ(0) < 0. On the other hand, under the assumption ajj > 0
for all j with 1 ≤ j ≤ n, we derive limx→∞ δ(x) = arr · · · ann > 0. Therefore, by
the intermediate value theorem, there exists x0 > 0 such that δ(x0) = 0. Namely,
z0 = x0 + 2πi is a solution of γ0(z).

Because of this fact and similar argument as in Lemma 3.3, we prove Lemma 3.4 and
complete the proof. �
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