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STABILITY CRITERION FOR A SYSTEM OF
DELAY-DIFFERENTIAL EQUATIONS

YOSHIHIRO UEDA

ABSTRACT. We analyze a system of linear differential equations with delays and es-
tablish necessary and sufficient conditions concerned with the absolutely stable for the
system.

1. INTRODUCTION

Consider a system of ordinary differential equations with delay effect described by
(1.1) wi(t)+ Y {amun(t) + bipus(t — ;1) } =0
k=1

for 1 < j < n. Here, u(t) = (u1,- -+ ,u,)T(t) denotes unknown functions for ¢ > 0, the
coefficients a;;, and bj are real numbers, and time delay 7j; is a nonnegative numbers
for 1 < j,k<n.

Our purpose is constructing the condition to derive the asymptotic stability for the
system (1.1). The stability phenomenon of the system (1.1) is determined completely
by the roots of the associated characteristic equations. The characteristic equation for
the system (1.1) is expressed by

(1.2) detG(A\) =0
with
A+dy dio e din
Gy | B AT ]
d;zl d;ﬂ . A +l dnn

where djj, := aj; + bjre % for 1 < j,k < n. Then, A\ € C denotes a corresponding
characteristic root called an eigenvalue. It is well known that the solution of the system
(1.1) is asymptotically stable if and only if all of our eigenvalues lie in the left half
of the complex plane (see, e.g., [2, 3, 8]). Consequently, our main goal is to establish
the necessary and sufficient conditions that the real parts of all of the eigenvalues are
negative.

Here, we define the absolute stability and the conditional stability introduced by
Ruan [7].

Definition 1.1. The equilibrium point of the system (1.1) is said to be absolutely stable
if it is locally asymptotically stable for all delays 7j, for 7,k with 1 < j, k < n. Further-
more, the equilibrium point of the system (1.1) is said to be conditionally stable if it is
locally asymptotically stable for T, for j, k with 1 < j,k < n in some intervals, but not
necessarily for all delays.
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We introduce the necessary and sufficient condition for the absolute stability of the
system (1.1). To this end, we prepare some notations. For n x n square matrix X =
(%k)1<jk<n, We define the matrices X and X as

i —lre| o =l
—~ _|x21| 29 e _|$2’I’L| . “/Ell‘ ‘m1n|
X = . . . X = oo
—|Zp1| —|Tn2| + Tam |Zaa| - [T
Furthermore, to mention Stability Condition, we define principal minors (cf. Leslie [4]).

Definition 1.2. Let M be a nxn square matrix. Let j1 be a nonempty set of row indices
and v a nonempty set of column indices. A submatriz of M is a matriz M[u, v] obtained
by choosing the entries of M, which lie in rows p and columns v. A principal submatriz
of M is a submatriz of the form M[u,u]. A principal minor is the determinant of a
principal submatriz.

Now, we define the constant matrices A and B as

aip - Qip by -+ bin
B =
(€57 R ¢ 79) bnl e bnn

and introduce Stability Condition (SC) as follows.

A:

Stability Condition (SC): The coefficient matrices of (1.1) satisfy the following
conditions.
(i) det(A + B) # 0,
(ii) a;; — |bj;] > 0 or aj; = b;; > 0 for all j with 1 < j <mn,
(i) all principal minors of A — B are nonnegative definite.
Since Stability Condition (SC), we derive the following theorem.

Theorem 1.3. If the system (1.1) satisfies Stability Condition (SC), then the equilib-
rium point is absolutely stable.

Furthermore, under the condition that the matrix A in (1.1) is diagonal, that is,
A = diag(ayy, -+, anp), we also obtain the following theorem.

Theorem 1.4. Suppose A = diag(ayy,- -+ ,ann). If the equilibrium point of the system
(1.1) is absolutely stable, then the system (1.1) satisfies Stability Condition (SC).

Consequently, the simple combination of Theorem 1.3 and Theorem 1.4 gives the
following corollary.

Corollary 1.5. Suppose A = diag(a1, - ,ann). The system (1.1) satisfies Stability
Condition (SC) if and only if the equilibrium point is absolutely stable.
2. SUFFICIENT CONDITION

To prove Theorem 1.3, we start from the definition of the irreducible matrix (cf.
Lancaster and Tismenetsky [6]),



Definition 2.1. Let M be a n X n square matriz. The matriz M is said to be reducible
if there is an permutation matriz P of order n such that

M 0]
2.1 P'MP = .
2.1) ( My Moo > ’

where My, and Mas are square matrices of order less than n and O is a zero matriz. If
no such P exists, then M is irreducible.

We introduce the following two lemmas to show Theorem 1.3.

Lemma 2.2. (cf. Fiedler [5]) Let M be a n x n real matriz whose off-diagonal entries
are nonpositive and all principal minors are nonnegative. If M is irreducible, then there
1s a vector v > 0 such that Mv > 0.

Here, v > 0 or v > 0 means that all components of the vector v are positive or
nonnegative, respectively.

Lemma 2.3. Let Q = (aji + Bjr)1<jk<n be a n X n square matriz, where aj, and Bjy
are complex numbers for 1 < j,k < mn. Then every eigenvalue of Q lies in at least one
of the disks

(2.2 reCifmalc ¥ |ajk|+2|m|}

k=1,k#j
for 1 < j <mn in the complex z-plane.

Proof. Let A be an eigenvalue of () with the associated eigenvector w with w = (wy, -+ - ,w,)T.

Since Quw = Aw, we have
n

>k + Biw)wr = A
k=1
for 1 < 57 < n. This means

(A — ajj)w Z Oé]kwk-i-Zngwk

k=1,k#j

Let p be a natural number which satisfies |w,| = max;|w;|. Then the p-th equation
gives

A= agplluy| = | ) apkwﬁzﬁpkwk\
k=1,k#p
n

Z || [wie| + Z | By | [wi|
k=1

k=1,k#p

( i ‘apk|+i|ﬁpk|)|wp].

k=1,k#p k=1
Because of w # 0, we have |w,| # 0. Consequently, we obtain

A — o] < Z |O‘pk|+Z|ﬁpk‘

k=1,ks#p
and this estimate gives the conclusion of Lemma 2.3. |
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Remark 1. If we suppose that B, = 0 for 1 < 5,k < n in Lemma 2.3, this lemma
becomes Gersgorin’s theorem (cf. Lancaster and Tismenetsky [6]).

Proof of Theorem 1.3. We suppose that A — B is irreducible. By employing Theorem
2.2, for an irreducible matrix A — B whose off-diagonal entries are nonpositive and all
principal minors are nonnegative, there is a vector v > 0 such that (ﬁ — E)v > 0.
Namely, there exists v; > 0 such that

(2.3) —a;;vj + Z |aji|vk + Z |bji|vx < 0
k=1,kj
for1 <j<n.
We suppose that there exists a root Ay of (1.2) satisfying Re\g > 0. Then, we
introduce the square matrix £ := —(a;, + bjk(i_/\OTjk)lsj7kSn. We remark that )\ is
an eigenvalue of F because of (1.2). On the other hand, we define F := —(v]-_l(ajk +

bjre 27 )ug)1<jk<n. Then, every eigenvalue of E is equivalent to every eigenvalue of
F. Indeed, since F' = V"'EV where V := diag(vy,- - ,v,), we obtain

det(M — F) = det(AM — V'EV) = det(V ") det(\ — E) det V = det(\ — E).

Namely, \g is an eigenvalue of F'.
We apply Lemma 2.3 to the matrix F' and derive the following. For every eigenvalue
of F, there exists p such that the eigenvalue lies within the disk

n

D, = {z €C; |z+ayl < Z |apk| + Z |bpke_A°TP’“\ }
Up

k=1,k#p

From Re)Ag > 0 and (2.3), we compute

n

n n
Uk —Xorpi | Uk ReloT,
— b 0Tpk | & — + b Upki
E , |apk‘v + § ,| pk € |U § |a3k| E ‘ 'pk ke v

k=1,k+p P k=1 P k=1 k;ep Up
< Z |a1k‘*+2|bpk| < Aypp-
k=1k#p Up

This estimate gives that D, C {z € C;|z + ay| < app}. Therefore, we conclude
that, for every eigenvalue of F', there is p such that the eigenvalue lies within the disk
{z € C; |z 4 apy| < app}-

Consequently, there exists the natural number p such that \g € {z € C;|z + a,p| <
app}. Furthermore, the assumption Relg > 0 gives Ay = 0. However, since det(A+B) #
0, Ag must satisfy A\g # 0. Eventually, this fact is a contradiction and we conclude that
the real part of the eigenvalues of (1.2) must be negative under Stability Condition
(SC).

In the case of a reducible matrix A — B , We can rewrite A — B into a lower block
triangular matrix with irreducible blocks along the diagonal similar to (2.1) by using a
suitable permutation matrix. Furthermore, this translation does not affect the principal
minors of A — B. Thus, the result follows by applying the previous argument to each
irreducible diagonal block. O



3. NECESSARY CONDITION

Next, we show Theorem 1.4. To prove this theorem, we derive three lemmas. For
this purpose, we prepare the following theorem (cf. Bellman and Cooke [1]).

Theorem 3.1. (Rouché’s theorem) If f(z) and g(z) are analytic inside and on a closed
contour C, and |f(2)| > |g(2)| for each point on C, then f(z) and f(z)+ g(2) have the
same number of zeros inside C.

Then we will obtain the following lemmas.
Lemma 3.2. Suppose det(A+ B) = 0. Then, (1.2) has a zero eigenvalue.

Lemma 3.3. Suppose a,, < |byp| or ap, = by, = 0 for some p with 1 < p < n, Then,
there exist 7;, (1 < j,k < n) such that (1.2) has a root A\ with ReX > 0.

Lemma 3.4. Suppose that a;; > 0 for any j with 1 < 7 < n and some principal minors

of A — B is negative. Then, there exist 75 (1 < j,k < n) such that (1.2) has a root A
with Re > 0.

From these lemmas, it is easy to prove Theorem 1.4. At the rest of this section, we
give a proof of Lemma 3.2, 3.3 and 3.4.

Proof of Lemma 3.2. Because of det(A+ B) = 0, A = 0 satisfies (1.2) and we complete
the proof. O

Proof of Lemma 3.3. We introduce the matrix

A+ dy bll+1€7>\m+1 . blnefATln
-\ —A
Gl (/\) . bl+1l€ Ti+11 by + dl+1l+1 e bl+1n€ Ti+1n
11 = . . .
bnle*ATnl bnl+1€7/\T7ll+l e )\ J'_ dnn

for 1 <1 < n—1, where dj; = a;; + bjje”\TJ'f for 1 < j < n. Then, because of
A = diag(ayi, -+ ,an,), we have G(\) = G},(A\). Applying the cofactor expansion to
det G(X), we obtain

(3.1) det G(A) = (A + dyy) det G2, (X Z )/l bje T det G2 (M),

where G%.()) is a submatrix of G()) obtained by removeing j-th row and k-th column
from G()). Similarly, we apply the cofactor expansion to det G7,()\), and get
(3.2) det Gy (A) = (A + du) det GETH(N) + D (=1 "be o det G, (V)

j=l+1

for 1 <1 <n-—1, where G;zl()\) is also a submatrix of G%;(\) obtained by striking out
j-th row and k-th column from G%;()). Therefore, using (3.1) and (3.2), we obtain the
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expansion for det G(X) that
det G(A) = (A + di1) (A + daz) det G3, (A) + ) (=1)bjre™ " det G ()
=2

+ (A +d) Z(_l)j_Qbﬂe_)\Tﬂ det G?—ll(/\)

j=3
=TI +dig) + D (=17 bjue ™™ det G5, (M)
j=1 =2

n—1 k n

Y T+ di) D (=1 e det GEELL (V).

k=2 h=2 j=h+1

Here, the last term in (3.5) is neglected if n = 2. Summarizing the above, we define

FO) =TT+ g+ byye ™),
j=1
(34) 90 =Y (1) b det G5, (A)
j=2
-1 k n
Z [T+ ag; + bize ) > (=1)"bjne ™ det GIF5 L (V)

k=2 h=2 j=h+1

and obtain det G(A) = f(A) + g(N).
Next, we consider f(A) = 0 to indicate f()A) has the zero-solution in the right half of
the complex plane. Because of f(\) =0, we find the eigenvalue A which satisfies

(3.5) A+ app + bype ™ =0,

where 7 = 7,,. Now, we show that (3.5) has a purely imaginary root A = iw; with some
delay term 7 = 7. Substltutlng A = iw with w > 0 into (3.5) yields

1w+ app + bppe’”” =0.

Then, we put fi(w) := iw + a,y, and obtain |f1(0)| = |ay,| and lim, . | f1(w)| = oo.
Therefore, under the assumption |a,,| < |b,p|, there is a positive number w; such that
|fi(w1)| = |bpp| by the intermediate value theorem. This tells us that there exists a
positive number 6 such that fi(w;) = —b,e~?, and we get

iwy + apy + bype ? = 0.

Thus, choosing 71 such that w7y = 6 + 27mm with m € Ny, the pair (wy, 1) satisfies
(3.5). We note that 7y can be taken suitably large.

The next purpose is to show that (3.5) has a root A with ReA > 0. We put h(\, 7) :=
A+ ayp + bype 7. Then, using (3.5), we have

hx(A, 1) =1-— bppTe_” =1+7(A+ay),
he(\,T) = —bppre ™ = M\ + ayp).



By the implicit function theorem, we obtain a solution A(7) of (3.5) around 7;. Fur-
thermore the equality

’ hT (iwl, 7'1) iwl (iw1 + app)
)\ (7—1) = — N = — -
h(iwy, 1) 14 7 (iwy + app)
gives us that
wi
Re)N () = > 0.

(14 T1am)* + (T1w1)?
Therefore there exists 7 > 7 such that ReA(mz) > 0.

On the other hand, under the assumption a,, < —|b,,|, we put A := z € R and find
the solution of

(3.6) T+ appy + bppe™ " = 0.

We put that fi(z) := x4 a,p and fo(z) := —b,pe 7. We consider graphs of y = f1(z)
and y = fo(x). Then there exists an intersection at x > 0 of these two graphs for
suitably large 7. Hence, (3.6) has positive solution for large 7.

Finally, we go back to (3.4) and apply Rouché’s theorem to det G(A) = f(A) + g(A).
We put C' := {X € C;ReX > 0} and C. := {) € C;|X — Xo| < €}. Then, there exists
g9 > 0 such that C., C C holds, where C. is a closure of C.. Since all terms of g(\)
contain e~7* which 7;; is not 7, there exists 7o such that |f(\)| > |g(A)] on 9C.,
provided 7, > Ty except for 7, = 7,,. Here, OC. denotes a boundary of C,. Therefore,
we can apply Rouché’s theorem and conclude that f(A) 4+ g(A) = 0 has at least one
solution in C,,. This means det G()\) = 0 has a root which real part is positive.

Furthermore, in the case that a,, = b,, = 0 for some p with 1 < p < n, we consider
the approximation and derive the desired result. Thus we complete the proof. D

Proof of Lemma 3.4. We modify the proof of Lemma 3.3. Since some principal minors
of A — B is negative, there exists r with 1 < r < n such that
Qpyp — |br'r| _|brn|
(3.7) det : : < 0.
_|bnr‘ App — ‘bnn|
To show that (1.2) has a root A with ReA > 0, we consider the following function
KZ + Qpp + bppe™ 20 e bype=m
Vi (2) := det : : )
bpe e coe KZ A Qpy + by e
where
12 (bjx 2 0),
Njk =
1 (bjk < 0)7
for r < j,k < n. We show that ,(z) = 0 has the zero-solution in the right half of the
complex plane. For z = z 4 2mi with z € R, we obtain d(z) := 7yo(z + 27i) and

Apy — ‘b”|€—ﬁfﬂw e _|brn|€_m7rn
0(x) = det : :

_|bnr|€7mnnr o Qp — ‘bnn|67mnnn
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Because of (3.7), we have 6(0) < 0. On the other hand, under the assumption a;; > 0
for all j with 1 < j < n, we derive lim, ,o () = @pp -+ Gpy > 0. Therefore, by
the intermediate value theorem, there exists zo > 0 such that 6(xy) = 0. Namely,
20 = To + 2mi is a solution of vg(2).

Because of this fact and similar argument as in Lemma 3.3, we prove Lemma 3.4 and
complete the proof. O
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