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1 Introduction

In this article we present what the speaker of the lecture with the same title wrote on
the black board together with his explanations and answers to questions raised during
the lecture, which was held from 11:00 to 11:50, July 2nd, 2018, in Room 111, RIMS,
Kyoto University. We intend not to explain far more than the lecture. This is because we
believe that the parallel statements would be good review of the lecture and those who
want full explanations should read the original papers [9], [10]. However, we also plan
to present some different information from the lecture. This is because he gave a few
incorrect explanations which need correction.

The contents of this article as well as the lecture are based on the papers [9], [10]. We
will state a theorem and lemmas without proofs. The proofs are found in these papers.

2 The BCS model

We study a many‐electron system governed by the BCS model, which was proposed by
Bardeen, Cooper and Schrieffer in 1957 ([2]). Let us start by defining the model. Let d,  L

be positive integers. Imposing periodic boundary conditions, we define the spatial lattice
 \Gamma by  \Gamma  :=(\mathbb{Z}/L\mathbb{Z})^{d} . Though there are many ways to generalize, let us focus on a simple
free Hamiltonian which describes free electrons hopping between nearest‐neighbor sites.

 H_{0}:= \sum_{x\in\Gamma}\sum_{\sigma\in\{\uparrow,\downarrow\}}(\sum_{j=1}^{d}
(\psi_{x\sigma}^{*}\psi_{x+e_{j},\sigma}+\psi_{x\sigma}^{*}\psi_{x-e_{j},\sigma}
)-\mu\psi_{x\sigma}^{*}\psi_{x\sigma}) , (2.1)
where  e_{j}  (j=1 , d) are the standard basis of  \mathbb{R}^{d},  \mu(\in \mathbb{R}) is chemical potential and
 \psi_{x\sigma}^{*},  \psi_{x\sigma} are Fermionic creation operator, annihilation operator, respectively. On the
other hand, the interacting part of the whole Hamiltonian is defined by

 V:= \frac{U}{L^{d}}\sum_{x,y\in\Gamma}\psi_{x\uparrow}^{*}\psi_{x\downarrow}
^{*}\psi_{y\downarrow}\psi_{y\uparrow},
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where  U is a real negative parameter controlling the strength of long range attraction
between Cooper pairs. Since it is simply a product of 2 Cooper pair operators, the
operator  V is sometimes called the reduced BCS interaction. The BCS model  H is
defined by  H  :=H_{0}+V , which is a self‐adjoint operator on the Fermionic Fock space
 F_{f}(L^{2}(\Gamma\cross\{\uparrow, \downarrow\})) . Since it has the reduced BCS interaction, the Hamiltonian  H is
sometimes called the reduced BCS model.

Our aim is to prove existence of superconducting phase transition. Let us recall two
canonical characteristics of superconducting phase. In the following  \beta(\in \mathbb{R}_{>0}) denotes
inverse temperature.

Definition 2.1. We say that Spontaneous Symmetry Breaking (SSB) occurs in the system
if for any  x\in \mathbb{Z}^{d}

  \lim_{\gamma\searrow 0}1\dot{{\imath}}m\frac{Tr(e^{-\beta(H+F)}
\psi_{x\uparrow}^{*}\psi_{x\downarrow}^{*})}{Tre^{-\beta(H+F)}}\gamma\in RL\in 
\mathbb{N}Larrow\infty
converges to a non‐zero value. Here the operator  F is defined by

 F:= \gamma\sum_{x\in\Gamma}(\psi_{x\uparrow}^{*}\psi_{x\downarrow}^{*}+
\psi_{x\downarrow}\psi_{x\uparrow}) , \gamma\in \mathbb{R}.
Definition 2.2. We say that Off‐Diagonal Long Range Order (ODLRO) occurs in the
system if

  \Vert x-y\Vert_{\mathbb{R}^{darrow\infty^{Larrow\infty}}}1\dot{{\imath}}m\lim_
{L\in \mathbb{N}}\frac{Tr(e^{-\beta H}\psi_{x\uparrow}^{*}\psi_{x\downarrow}^{*}
\psi_{y\downarrow}\psi_{y\uparrow})}{Tre^{-\beta H}}
converges to a non‐zero value. Here for a function  f :  \mathbb{Z}^{d}\cross \mathbb{Z}^{d}arrow \mathbb{C} and  c\in \mathbb{C} we write

  \lim_{\Vert x-y\Vert_{\mathbb{R}^{darrow\infty}}}f(x, y)=c if

 \forall\varepsilon\in \mathbb{R}_{>0}\exists M\in \mathbb{R}_{>0}(x, y\in 
\mathbb{Z}^{d}\wedge\Vert x-y\Vert_{\mathbb{R}^{d}}\geq Marrow|f(x, y)-
c|<\varepsilon)

One fundamental question we face is the following. Do SSB and ODLRO occur in
the BCS model? It is still a fair remark that we have not achieved a consensus on this

question. Despite a long history of mathematical research around the BCS model, we can
hardly find a paper answering this question at a rigorous level. Let us refer to [4] where
SSB and ODLRO are proved in the BCS model without hopping, so‐called the strong
coupling limit of the BCS model, by a  C^{*}‐algebraic approach. We find that there are
many papers on quasi‐spin formulations of the BCS model, which are reduction of the
BCS model into quantum spin systems. See e.g. the review article [5] for the preceding
papers on the quasi‐spin formulations. Another active mathematical approach to the
BCS theory is analysis of the BCS energy functional, which is a functional of generalized
one‐particle density matrices. Let us refer to the review article [6] by the developers of
this approach. However, we should add that equivalence between SSB and ODLRO in a
quasi‐spin formulation or in the minimizer of the BCS energy functional and those in the
BCS model is not rigorously established yet. There are a few papers studying BCS‐type
interactions in Grassmann integral formulation ([12], [13]). In these papers the reduced
BCS interaction is approximated at the level of Grassmann algebra and thus the results
do not directly imply SSB and ODLRO in the BCS model. Though we consider a different
model, our analysis is also based on Grassmann integral formulation.
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3 The BCS model with imaginary magnetic field

Let us consider the operator  H+i\theta S_{z} , where  \theta\in \mathbb{R} and  S_{z} is the  z‐component of the spin
operator defined by

 S_{z}:= \frac{1}{2}\sum_{x\in\Gamma}(\psi_{x\uparrow}^{*}\psi_{x\uparrow}-\psi_
{x\downarrow}^{*}\psi_{x\downarrow}) .

The operator  H+i\theta S_{z} should be formally considered as the BCS model interacting with
an imaginary magnetic field. Though it is not trivial, by symmetries and periodicity we
may assume that  \theta\in[0,2\pi/\beta] without losing generality. The following theorem is a part
of the main theorem of [10].

Theorem 3.1. Assume that  \theta\in[0,2\pi/\beta ),  d=3,4,  \mu=2d and  \beta\geq 1 . Then there
exists a constant  c\in \mathbb{R}_{>0} independent of any parameter such that (i), (ii) hold for any
 U\in(-c, 0) .

(i) There exists  L_{0}\in \mathbb{N} such that

Tr  e^{-\beta(H+i\theta S_{z}+F)}\in \mathbb{R}_{>0},  (\forall L\in \mathbb{N} with L\geq L_{0}, \gamma\in[0,1]) .

(ii) There exists  \delta(U, \beta)\in \mathbb{R}_{>0} depending only on  U,  \beta such that if  |\theta/2-\pi/\beta|<\delta(U, \beta) ,
then SSB and ODLRO occur in the system governed by  H+i\theta S_{z} , i.e. for any  w\in \mathbb{Z}^{d}

 1 \dot{{\imath}}m1\dot{{\imath}}m\frac{Tr(e^{-\beta(H+i\theta S_{z}+F)}
\psi_{w\uparrow}^{*}\psi_{w\downarrow}^{*})}{Tre^{-\beta(H+x\theta S_{z}+F)}}
\gamma\searrow 0Larrow\infty\gamma\in RL\in N,
  \lim_{\Vert x-y\Vert_{\mathbb{R}^{darrow\infty}}}\lim_{L\in \mathbb{N}}
\frac{Tr(e^{-\beta(H+\theta S_{z})}\dot{i}\psi_{x\uparrow}^{*}\psi_{x\downarrow}
^{*}\psi_{y\downarrow}\psi_{y\uparrow})}{Tre^{-\beta(H+i\theta S_{z})}}
Larrow\infty

converge to non‐zero values.

Remark 3.2. Since  H+i\theta S_{z}+F is not self‐adjoint, the claim (i) is not trivial.

Remark 3.3. We have to assume that  \theta\neq 2\pi/\beta , which is a loss of generality. For  \theta=

  2\pi/\beta the free partition function may vanish (see (4.1)) and accordingly the denominator
of the free covariance may be zero. Since the free covariance is a central object in this
approach, we have to ensure its well‐definedness and thus exclude this case.

Remark 3.4. In [10] the same results are proved for many other free Hamiltonians in‐
cluding the nearest‐neighbor hopping model on the honeycomb lattice with zero chemical
potential. Degeneracy of free Fermi surface, which is equal to zero set of free dispersion re‐
lation, is one particular property that these models have in common. Also, in [10] SSB and
ODLRO are proved for  \beta\in(0,1) . However, in this case an additional  (\beta, \theta) ‐dependent
condition must be imposed on  |U| . On the other hand, in [9] the free Hamiltonian is de‐
fined as in (2.1) and SSB and ODLRO are proved for any  d\in \mathbb{N},  \mu\in(-2d, 2d) . Though
the free Fermi surface is naturally non‐degenerate in this case, we have to impose complex
 (\beta, \theta) ‐dependent restrictions on  |U| instead.

Remark 3.5. During the talk the speaker did not mention the dependency of  \delta ” on  \beta
in the claim (ii). In fact it does depend on  \beta and for this reason we cannot prove SSB
and ODLRO for  \theta=0 , i.e. in the BCS model without imaginary magnetic field. The
claim (ii) guarantees that for any  U\in(-c, 0),  \beta\geq 1 we can choose  \theta\in[0,2\pi/\beta ) so that
 |\theta/2-\pi/\beta|<\delta(U, \beta) and thus SSB and ODLRO occur.
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4 Grassmann integral formulation

Let us assume that  \theta\in[0,2\pi/\beta ) in the following. The theorem is proved by analyzing
Grassmann Gaussian integral formulation of the thermal expectations. Let us review
basic notions of finite‐dimensional Grassmann Gaussian integral. Take  h\in(2/\beta)\mathbb{N} and
set

 [0,  \beta)_{h}:=\{0, \frac{1}{h}, \frac{2}{h}, \cdot\cdot\cdot \beta-\frac{1}
{h}\}.
The set  [0, \beta)_{h} is a discretization of  [0, \beta ) with the mesh size  1/h . Moreover, set

 I_{0}:=\{1 , 2\} \cross\Gamma\cross[0, \beta)_{h}, I:=I_{0}\cross\{1, -1\}.

The finite set  I is the index set of Grassmann algebra on which our model is formulated.
Let  W be the complex vector space spanned by the abstract basis  \{\psi_{X}\}_{X\in I} . For  n\in \mathbb{N} let
 \wedge^{n}W denote the  n‐fold anti‐symmetric tensor product of  W and set  \wedge^{0}W  :=\mathbb{C} . Then
we set

  \wedge W:=\bigoplus_{n=0}^{\# I}\wedge Wn.
We call it Grassmann algebra generated by  \{\psi_{X}\}_{X\in I} . For a covariance  C :  I_{0}^{2}arrow \mathbb{C} the
Grassmann Gaussian integral   \int\cdot d\mu_{C}(\psi) is a linear functional  on\wedge W defined by

  \int 1d\mu_{C}(\psi):=1,

  \int\overline{\psi}_{X_{1}}\cdots\overline{\psi}_{X_{m}}\psi_{Y_{n}}
\cdots\psi_{Y_{1}}d\mu_{C}(\psi):=\{\begin{array}{ll}
\det(C(X_{i}, Y_{j}))_{1\leq x\leq m}1\leq j\leq m   if m=n,
0   else,
\end{array}
 (\forall X_{1} X_{m}, Y_{1}, \cdots, Y_{n}\in I_{0})

and by linearity and anti‐symmetry. Here we set  \overline{\psi}_{X}  :=\psi_{(X,1)},  \psi_{X}  :=\psi_{(X,-1)} for  X\in I_{0}.
To present our Grassmann Gaussian integral formulation of the normalized partition

function, we need to prepare some more notations. The momentum lattice  \Gamma^{*} is defined
by  \Gamma^{*}  :=  ( \frac{2\pi}{L}\mathbb{Z}/2\pi \mathbb{Z})^{d} . The free dispersion relation  e(\cdot) :  \mathbb{R}^{d}arrow \mathbb{R} is given by

 e( k):=2\sum_{j=1}^{d}\cos k_{j}-\mu, k=(k_{1} , k_{d})\in \mathbb{R}^{d}.
Define the Grassmann polynomials  \hat{V}_{s}(\psi),\hat{V}_{v}(\psi),\hat{V}(\psi)\in\wedge W by

  \hat{V}_{s}(\psi):=-\frac{U}{L^{d}h}\sum_{x\in\Gamma}\sum_{s\in[0,\beta)_{h}}
\overline{\psi}_{1xs}\psi_{1xs},
  \hat{V}_{v}(\psi):=-\frac{U}{L^{d}h^{2}}\sum_{x,y\in\Gamma}\sum_{s,t\in[0,
\beta)_{h}}(h1_{s=t}-\frac{1}{\beta})\overline{\psi}_{1xs}\psi_{2xs}
\overline{\psi}_{2yt}\psi_{1yt},
 \hat{V}(\psi):=\hat{V}_{s}(\psi)+\hat{V}_{v}(\psi) ,
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where for a proposition  P,  1_{P}  :=1 if  P is true,  1_{P}  :=0 otherwise. For  \phi\in \mathbb{C} the
parameterized covariance  C(\phi) :  I_{0}^{2}arrow \mathbb{C} is defined by

 C( \phi)(\rho xs, \eta yt):=\frac{1}{\beta L^{d}}\sum_{k\in\Gamma^{*}}
\sum_{\omega\in M_{h}}e^{i\langle k,x-y\rangle+i\omega(s-t)}h^{-1}(I_{2}-e^{-
\frac{i}{h}(\omega-\frac{\theta}{2})+\frac{1}{h}E(\phi)(k)})^{-1}(\rho, \eta) ,

where  M_{h} is a finite subset of the Matsubara frequencies defined by

 M_{h}:= \{\omega\in\frac{\pi}{\beta}(2\mathbb{Z}+1)||\omega|<\pi h\},
 I_{2} denotes the  2\cross 2 unit matrix and

 E(\phi)(k):=(\begin{array}{ll}
e(k)   \overline{\phi}
\phi   -e(k)
\end{array}) .

We need Grassmann integral formulation of the thermal expectations to prove SSB and
ODLRO. However, we only state the formulation of the partition function for conciseness.
The thermal expectations are formulated in a similar way.

Lemma 4.1.

  \frac{Tre^{-\beta(H+i\theta S_{z})}}{Tre^{-\beta(H_{0+\dot{i}}\theta S_{z})}}=
\frac{\beta L^{d}}{\pi|U|}\int_{\mathbb{R}^{2}}d\phi_{1}d\phi_{2}e^{-\frac{\beta
L^{d}}{|U|}|\phi|^{2}}\prod_{k\in\Gamma^{*}}(\cos(\beta\theta/2)+
\cosh(\beta\sqrt{e(k)^{2}+|\phi|^{2}}))  \prod_{k\in\Gamma^{*}}(\cos(\beta\theta/2)+\cosh(\beta e(k)))

 h \in(2/\beta)\mathbb{N}\lim_{harrow\infty}\int e^{\hat{V}(\psi)}d\mu_{C(\phi)}
(\psi) ,

where  \phi  :=\phi_{1}+i\phi_{2}\in \mathbb{C},  |\phi|  :=\sqrt{\phi_{1}^{2}+\phi_{2}^{2}}.

Remark 4.2. For well‐definedness we have to know that Tr  e^{-\beta(H_{0}+i\theta S_{z})}\neq 0 . This is true,
since

Tr  e^{-\beta(H_{0}+i\theta S_{z})}=e^{-\beta\Sigma_{k\in\Gamma^{*}}e(k)}2^{L^{d}} 
\prod_{k\in\Gamma^{*}}(\cos(\frac{60}{2})+\cosh(\beta e(k))) (4.1)

and  \theta\in[0,2\pi/\beta) .

5 Analysis

As the title indicates, the main aim of this article as well as the lecture is to describe
essential parts of the proof of the theorem. Above all we have to prove that the function

 U \mapsto\log(\int e^{\hat{V}(\psi)}d\mu_{C(\phi)}(\psi)) (5.1)

can be analytically continued into a domain

 \{U\in \mathbb{C}||U|<c\} , (5.2)

15



16

where  c is a positive constant independent of any parameter. Since

  \int e^{\hat{V}(\psi)}d\mu_{C(\phi)}(\psi)
is a polynomial of  U whose constant term is 1, the function (5.1) is analytic in a neigh‐
borhood of the origin. If we follow a routine of single‐scale analysis, we can prove that
the function (5.1) can be analytically continued into a domain

  \{U\in \mathbb{C}||U|<c(\beta)|\frac{\theta}{2}-\frac{\pi}{\beta}|^{d+1}\} , (5.3)

where  c(\beta)(\in \mathbb{R}_{>0}) depends on  \beta , does not depend on  \theta . In order to prove SSB and
ODLRO, we have to guarantee that the gap equation governing the order parameter
admits a positive solution for  U(\in \mathbb{R}_{<0}) belonging to a domain into which the function
(5.1) is analytically continued. Since the gap equation has no positive solution for  U

belonging to the domain (5.3), all we can prove as a result of the routine is non‐existence
of SSB and ODLRO. On the contrary, the gap equation can have a positive solution for
 U belonging to the domain (5.2). Therefore SSB and ODLRO follow if the function (5.1)
is analytically continued into (5.2).

Set

  \bigwedge_{even}W:=\bigoplus_{n=1}^{2}\wedge W\# I/2n,
which is a subspace of  \wedge W . Observe that for any  f( \psi)\in\bigwedge_{even}W there uniquely exist
anti‐symmetric functions  f_{m}:I^{m}arrow \mathbb{C}  (m=2,4, \cdots , \# I) such that

 f( \psi)=\sum_{m=2}^{\# I}1_{m\in 2\mathbb{N}}(\frac{1}{h})^{m}\sum_{(X_{1},
\cdots,X_{m})\in I^{m}}f_{m}(X_{1}, \cdots, X_{m})\psi_{X_{1}}\cdots\psi_{X_{m}}
.
Let us define the norm  \Vert\cdot\Vert on   \bigwedge_{even}W as follows.

  \Vert f\Vert:=\sum_{m=2}^{\# I}1_{m\in 2\mathbb{N}}\sup_{x_{0\in I}}(\frac{1}
{h})^{m-1}\sum_{X\in I^{m-1}}|f_{m}(X_{0}, X)|.
The norm  \Vert\cdot\Vert and its variant have been considered convenient in the recent development
of multi‐scale analysis of many‐Fermion systems. We can compute  \Vert\hat{V}_{s}\Vert as follows. The
anti‐symmetric kernel function of  \hat{V}_{s}(\psi) is that

 (( \rho, x, s, \xi), (\eta, y, t, \zeta))\mapsto\frac{-Uh}{2L^{d}}1_{(\rho,x,s)
=(\eta,y,t)}1_{\rho=1}(1_{(\xi,\zeta)=(1,-1)}-1_{(\xi,\zeta)=(-1,1)}) .

Thus

  \Vert\hat{V}_{s}\Vert=\sup_{(\rho,x,s,\xi)\in I}\frac{|U|}{2L^{d}}\sum_{(\eta,
y,t,\zeta)\in I}1_{(\rho,x,s)=(\eta,y,t)}1_{\rho=1}|1_{(\xi,\zeta)=(1,-1)}-
1_{(\xi,\zeta)=(-1,1)}|=\frac{|U|}{2L^{d}} . (5.4)
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It is helpful that  \Vert\hat{V}_{s}\Vert is bounded by  L^{-d} , which is negligibly small as we eventually send
  Larrow\infty . On the other hand, the norm  \Vert\hat{V}_{v}\Vert cannot be bounded by  L^{-d} . Instead, it has
a particular vanishing property that

  \int\hat{V}_{v}(\psi)f(\psi)d\mu_{C}(\psi)=0 (5.5)

for any  f(\psi)\in\wedge W and  C:I_{0}^{2}arrow \mathbb{C} satisfying that

 C(\rho xs, \eta yt)=C(\rho x0, \eta y0) , (\forall(\rho, x, s), (\eta, y, t)\in
I_{0}) . (5.6)

The property (5.5) can be confirmed as follows.

  \int\hat{V}_{v}(\psi)f(\psi)d\mu_{C}(\psi)=-\frac{U}{L^{d}h^{2}}\sum_{x,
y\in\Gamma}\sum_{s,t\in[0,\beta)_{h}}(h1_{s=t}-\frac{1}{\beta})
\int\overline{\psi}_{1x0}\psi_{2x0}\overline{\psi}_{2y0}\psi_{1y0}d\mu_{C}(\psi)
 =0.

This implies that if the covariance  C satisfies (5.6),

  \int e^{\hat{V}(\psi)}d\mu_{C}(\psi)=\int e^{\hat{V}_{s}(\psi)}d\mu_{C}(\psi) .

Moreover, by the norm bound (5.4) the function

 U \mapsto\log(\int e^{\hat{V}_{s}(\psi)}d\mu_{C}(\psi))
can be analytically continued into a domain of the form (5.2). This is because possibly
very heavy contribution from  C is absorbed by  L^{-d} , not by  |U| . It is clear that we should
make use of this mechanism. However, the same argument as above does not immediately
apply, since the actual covariance  C(\phi) does not satisfy (5.6). We overcome the problem
by decomposing  C(\phi) . We define  C_{j} :  I_{0}^{2}arrow \mathbb{C}(j=1,2) by

 C_{1}(\rho xs, \eta yt)

 := \frac{1}{\beta L^{d}}\sum_{k\in\Gamma^{*}}\sum_{\omega\in M_{h}\backslash \{
\pi/\beta\}}e^{i\langle k,x-y\rangle+z(\omega-\frac{\pi}{\beta})(s-t)}h^{-1}
(I_{2}-e^{-\frac{i}{h}(\omega-\frac{\theta}{2})+\frac{1}{h}E(\phi)(k)})^{-1}
(\rho, \eta) ,

 C_{2}( \rho xs, \eta yt):=\frac{1}{\beta L^{d}}\sum_{k\in\Gamma^{*}}e^{i\langle
k,x-y\rangle}h^{-1}(I_{2}-e^{-\frac{\dot{i}}{h}(\frac{\pi}{\beta}-\frac{\theta}
{2})+\frac{1}{h}E(\phi)(k)})^{-1}(\rho, \eta) .

Observe that

 C(\phi)(\rho xs, \eta yt)=e^{i\frac{\pi}{\beta}(s-t)}(C_{1}(\rho xs, \eta yt)+
C_{2}(\rho xs, \eta yt)) ,  ((\rho, x, s), (\eta, y, t)\in I_{0})

and  C_{2} satisfies (5.6). If  |U| is sufficiently small, the following transformation is justified.

  \int e^{\hat{V}(\psi)}d\mu_{C(\phi)}(\psi)=\int e^{\hat{V}(\psi)}d\mu_{C_{1}+
C_{2}}(\psi)=\int\int e^{\hat{V}(\psi+\psi^{1})}d\mu_{C_{1}}(\psi^{1})
d\mu_{C_{2}}(\psi) (5.7)

 = \int e^{R(\psi)}d\mu_{C_{2}}(\psi) ,
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 R( \psi):=\log(\int e^{\hat{V}(\psi+\psi^{1})}d\mu_{C_{1}}(\psi^{1})) .

In the first equality we used the fact that  \hat{V}(\psi) is invariant under the transform

 \psi_{(\rho,x,s,\xi)}arrow e^{-i\xi\frac{\pi}{\beta}s}\psi_{(\rho,x,s,\xi)}, ((
\rho, x, s, \xi)\in I) .

Though it is not at all a trivial procedure, we can decompose  R(\psi) as follows.  R(\psi)=
 R_{0}+R_{s}(\psi)+R_{v}(\psi) , where  R_{0}\in \mathbb{C},  R_{s}(\psi),  R_{v}( \psi)\in\bigwedge_{even}W,

 |R_{0}|\leq c(\beta, \theta)|U| , \Vert R_{s}\Vert\leq c(\beta, \theta)|U|L^{-
d}

and  R_{v}(\psi) satisfies (5.5). Therefore,

  \int e^{R(\psi)}d\mu_{C_{2}}(\psi)=e^{R_{0}}\int e^{R_{s}(\psi)}d\mu_{C_{2}}
(\psi) .

In fact the covariance  C_{2} has an intense infrared singularity. However, its heavy contri‐
bution is absorbed by the factor  L^{-d} binding  \Vert R_{s}\Vert . As the result, the function

 U \mapsto R_{0}+\log(\int e^{R_{s}(\psi)}d\mu_{C_{2}}(\psi))
is shown to be analytically continued into a domain of the form (5.2). Going back to
the equality (5.7), we reach the desired conclusion on the function (5.1). We should add
that these are largely simplified explanations of the proof of the theorem. The full proof
requires many but finite slices of the covariance  C(\phi) and iteration of the above argument
over all the sliced covariances.

Remark 5.1. One natural question is whether the BCS model with imaginary magnetic
field has any relevance to contemporary physical research. At this stage the most relevant
interpretation is that loss of analyticity of the free energy density

  \lim_{Larrow\infty,L\in N}\frac{1}{L^{d}}\log(Tre^{-\beta H+itS_{z}}) (5.8)

with the real parameter  t is an indication of dynamical phase transition at finite temper‐
ature. The function Tr  e^{-\beta H+itS_{z}}/Tre^{-\beta H} is a finite‐temperature analogue of the overlap
amplitude  \langle\psi_{0},   e^{itS_{z}}\psi_{0}\rangle , where  \psi_{0} is the ground state of  H . Loss of analyticity of the
function

 t \mapsto Larrow\infty 1\dot{{\imath}}m\frac{1}{L^{d}}\log|\{\psi_{0}, 
e^{itS_{z}}\psi_{0}\}|^{2}L\in \mathbb{N}
has been interpreted as indication of Dynamical Quantum Phase Transition (DQPT)
since the proposal in [8]. Non‐analyticity of the function (5.8) with  t can be seen as a
straightforward generalization of DQPT to finite temperatures. We can refer to the recent
physical articles [1], [3], [7], [14], [15] and so on for dynamical phase transitions at finite
temperature. We should add that the free energy density (5.8) is explicitly computed in
[9], [10] and its non‐analyticity with  t directly follows from the results in [10, Section 2].
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Remark 5.2. Extending the external magnetic field into complex plane has been an
important subject of mathematical physics since the pioneering study by Lee and Yang
([11], [16]). Observe that for any  w\in \mathbb{C}

Tr  e^{-\beta(H+wS_{z})}=e^{\frac{\beta L^{d}}{2}w} \sum_{n=0}^{2L^{d}}(Tr_{(n-
L^{d})/2}e^{-\beta H})(e^{-\frac{\beta}{2}w})^{n} , (5.9)

where for  m\in\{-L^{d}, -L^{d}+1, , L^{d}\},  Tr_{m/2}e^{-\beta H} denotes the trace of  e^{-\beta H} over the

eigenspace of  S_{z} associated with the eigenvalue  m/2 . The Lee‐Yang zeros for the BCS
model are defined as zeros of the polynomial

  \sum_{n=0}^{2L^{d}}(Tr_{(n-L^{d})/2}e^{-\beta H})z^{n}.
Complete determination of the Lee‐Yang zeros is beyond what this article can offer in‐
stantly. At least the equalities (4.1), (5.9) tell us that if  U=0,  \theta=2\pi/\beta+4\pi m/\beta
 (m\in \mathbb{Z}) and  e(k) vanishes at some  k\in\Gamma^{*},

 0= Tr  e^{-\beta(H+i\theta S_{z})}=(-1)^{L^{d}} \sum_{n=0}^{2L^{d}} (Tr  (n-L^{d})/2e^{-\beta H} )  (-1)^{n}.

Thus,  z=-1 is a Lee‐Yang zero. Note that  \{z\in \mathbb{C}||z|=1, z\neq-1\}=\{e^{i\beta\theta/2},  e^{-i\beta\theta/2}|
 \theta\in[0,2\pi/\beta)\} . Thus there is no Lee‐Yang zero in  \{z\in \mathbb{C}||z|=1, z\neq-1\} in the case
 U=0 . We can also extract some information from Theorem 3.1 (i) about the case  U\neq 0.
Assume that  d,  \mu,  \beta and  U satisfy the same conditions as in Theorem 3.1. Then for any
 \theta\in[0,2\pi/\beta) there exists  L_{0}\in \mathbb{N} such that

Tr  e^{-\beta(H+i\theta S_{z})}=Tre^{-\beta(H-i\theta S_{z})}>0 , (  \forall L\in \mathbb{N} with  L\geq L_{0} ).

Thus it follows from (5.9) that for any  z\in \mathbb{C}\backslash \{-1\} with  |z|=1 there exists  L_{0}\in \mathbb{N} such
that  z is not a Lee‐Yang zero for any  L\in \mathbb{N} with  L\geq L_{0}.
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