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1 Preliminary

Let T be a topological space with Borel measure  dt and  H=L^{2}(T, dt) be a Hilbert space
equipped with a norm  | .  |_{0} . For a positive self‐adjoint operator  A on  H with Hilbert
Schmidt inverse and each  p\geq 0 , define

 E_{p}=\{\xi\in H:|\xi|_{p}=|A^{p}\xi|_{0}<\infty\}

and  E_{-p} by closure of  H with respect to a norm  |\xi|_{-p}  :=|A^{-p}\xi|_{0},  \xi\in H . Then we have
a chain of Hilbert spaces as

. . .  \subset E_{p}\subset H\subset E_{-p}\subset

By defining
 E= proj 1 \dot{{\imath}}mE_{p}parrow\infty,  E^{*}= ind\lim_{arrow p\infty}E_{-p}

the Gelfand triple is obtained:
 E\subset H\subset E^{*}

The canonical bilinear form on  E^{*}\cross E is denoted by  \langle\cdot,  \cdot\rangle . For each  p\geq 0 , the Boson
Fock spaces of  E_{p} given by

  \Gamma(E_{p})=\{\phi=(f_{n})_{n=0}^{\infty}:\Vert\phi\Vert_{p}=\sum_{n=0}
^{\infty}n!|f_{n}|_{p}<\infty, f_{n}\in E_{p}^{\otimes^{\wedge}n}\}
derive a chain of Fock spaces

 \subset\Gamma(E_{p})\subset\Gamma(H)\subset\Gamma(E_{-p})\subset 

Define

 (E)= proj 1 \dot{{\imath}}m\Gamma(E_{p})parrow\infty,  (E)^{*}= ind\lim_{arrow p\infty}\Gamma(E_{-p})
then we again have the Gelfand triple

 (E)\subset\Gamma(H)\subset(E)^{*}

In particular, it is known as Hida−Kubo−Takenaka space with the Wiener‐Itô‐Segal iso‐
morphism  L^{2}(E^{*}, \mu)\cong\Gamma(H) where  \mu is a standard Gaussian probability measure on
 E^{*} . Note that the set of exponential vectors

  \phi_{\xi}=(1, \xi, \cdots, \frac{1}{n!}\xi^{\otimes n}, \cdots) , \xi\in E
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spans a dense subspace of (E) . The topology of (E) is given by the norm

  \Vert\phi\Vert_{p}^{2}=\sum_{n=0}^{\infty}n!|f_{n}|^{2}, \phi=(f_{n})_{n=0}
^{\infty}, p\in \mathbb{R}.
Moreover, for  \Phi\in(E)^{*} , there exists  p\geq 0 such that  \Phi\in\Gamma(E_{-p}) , that is

  \Vert\Phi\Vert_{-p}^{2}=\sum_{n=0}^{\infty}n!|F_{n}|_{-p}^{2}<\infty, \Phi=(F_
{n})_{n=0}^{\infty}.
The canonical bilinear form on  (E)^{*}\cross(E) is given by

  \langle\langle\Phi, \phi\rangle\}=\sum_{n=0}^{\infty}n!\langle F_{n}, f_{n}\},
\Phi=(F_{n})_{n=0}^{\infty}, \phi=(f_{n})_{n=0}^{\infty}.
2 White Noise Operators

An operator  ---\in \mathcal{L}((E), (E)^{*}) is called a white noise operator where  \mathcal{L}((E), (E)^{*}) is the
space of continuous linear operator from (E) to  (E)^{*} For  x\in(E)^{*} , the annihilation
operator  a(x)\in \mathcal{L}((E), (E)) is given by

 a(x):\phi=(f_{n})_{n=0}^{\infty}\mapsto((n+1)x\otimes_{1}f_{n+1})_{n=0}
^{\infty}

where  x\otimes_{1}f_{n} is a contraction of tensor product. The adjoint of annihilation operator
 a^{*}(x)\in \mathcal{L}((E)^{*}, (E)^{*}) is called a creation operator, and its action is given by

 a^{*}(x):\phi=(f_{n})_{n=0}^{\infty}\mapsto(x\otimes f_{n-1})_{n=0}^{\infty}
\wedge.

For  \kappa\in(E^{\otimes(l+m)})^{*} and  \phi=(f_{n})_{n=0}^{\infty}\in(E) , we define a sequence  (g_{n})_{n=0}^{\infty} by

 g_{n}=0,0 \leq n<l, g_{l+n}=\frac{(n+m)!}{n!}\kappa\otimes_{m}f_{n+m}, n\geq 0.
The operator  \Xi_{l,m} defined by  \Xi_{l,m}\phi=(g_{n})_{n=0}^{\infty} is called the integral kernel operator with
kernel distribution  \kappa . The following theorem shows that each white noise operator has
unique infinite series expansion called a Fock expansion.

Theorem 2.1 (Obata [12]) For each  ---\in \mathcal{L}((E), (E)^{*}) , there exists a unique family
of  \kappa_{l,m}\in(E^{\otimes(l+m)})^{*} such that

 ----(K_{l,m})

whenever the sum converges in  \mathcal{L}((E), (E)^{*}) .

For  S\in \mathcal{L}(E, E^{*}) associated distribution  \tau_{S}\in(E\otimes E)^{*} is given by

 \langle\tau_{S}, \xi\otimes\eta\rangle=\langle S\eta, \xi\}, \xi, \eta\in E.
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If  \langle S\eta,  \xi\rangle=\langle S\xi,  \eta\} , i.e.  S=S^{*} , then  S is called symmetric. If  \{e_{n}\}_{n=0}^{\infty} is an
orthonormal basis of  H , then  \tau_{S} has infinite series expansion

  \tau_{S}=\sum_{n=0}^{\infty}Se_{n}\otimes e_{n}.
The quadratic annihilation operator associated with  S is defined by  \triangle_{G}(S)=\Xi_{0,2}(\tau_{S}) .
Applying to the exponential vector  \phi_{\xi} of  \xi\in E , its action is understood by

 \triangle_{G}(S)\phi_{\xi}=\{S\xi, \xi\rangle\phi_{\xi}.

Moreover,  \triangle_{G}(S) has infinite series expansion

  \triangle_{G}(S)=\sum_{n=0}^{\infty}a(Se_{n})a(e_{n}) .

The dual of  \triangle_{G}(S) with respect to the canonical bilinear form is called the quadratic
creation operator

  \triangle_{G}^{*}(S)=\Xi_{2,0}(\tau_{S})=\sum_{n=0}^{\infty}a^{*}(Se_{n})a^{*}
(e_{n}) .

The conservation operator  \Lambda(S)\in \mathcal{L}((E), (E)^{*}) is defined by  \Lambda(S)=\Xi_{1,1}(\tau_{S}) , and its
infinite series expansion is obtained as

  \Lambda(S)=\sum_{n=0}^{\infty}a^{*}(Se_{n})a(e_{n}) .

The second quantization of  S is defined by

 \Gamma(S)\phi=(S^{\otimes n}f_{n})_{n=0}^{\infty}, \phi=(f_{n})

and is related to the conservation operator as

  \frac{d\Gamma(e^{tS})}{dt}|_{t=0}=\Lambda(S) .

 \Lambda(S) is also called the differential second quantization operator.

3 Quantum White Noise Differential Equations

For  \Xi\in \mathcal{L}((E), (E)^{*}) and  \zeta\in E , a commutator

 [a(\zeta), ---]=a(\zeta)_{--}^{--}---a(\zeta) , [a^{*}\zeta,---]=a^{*}(\zeta)_{
--}^{--}---a^{*}(\zeta)

are well‐defined by composition since  a(\zeta)\in \mathcal{L}((E), (E))\cap \mathcal{L}((E)^{*}, (E)^{*}) and   a^{*}(\zeta)\in
 \mathcal{L}((E)^{*}, (E)^{*})\cap \mathcal{L}((E), (E)) . Define

 D_{\zeta-}^{+-}-=[a(\zeta), ---], D_{\zeta^{-}}^{--}-=-[a^{*}\zeta, ---],
which are called the creation and annihilation derivatives respectively. Both together
are called quantum white noise derivatives.
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Theorem 3.1 (Ji‐Obata [6])  (\zeta, \Xi)\mapsto D_{\zeta}^{\pm}\Xi is a continuous bilinear map from   E\cross

 \mathcal{L}((E), (E)^{*}) to  \mathcal{L}((E), (E)^{*}) .

Example 3.2 (Ji‐Obata [8]) For  S\in \mathcal{L}(E, E^{*}) and  \zeta\in E we have

 D_{\zeta}^{+}\triangle_{G}(S)=0, D_{\zeta}^{-}\triangle_{G}(S)=a(S\zeta)+
a(S^{*}\zeta) ,

 D_{\zeta}^{+}\triangle_{G}^{*}(S)=a^{*}(S\zeta)+a^{*}(S^{*}\zeta) , D_{\zeta}^{
-}\triangle_{G}^{*}(S)=0,
 D_{\zeta}^{+}\Lambda(S)=a(S^{*}\zeta) , D_{\zeta}^{-}\Lambda(S)=a^{*}(S\zeta) .

For  \Xi\in \mathcal{L}((E), (E)^{*}) , a function  ---\wedge on  E\cross E defined by

 ---(\xi, \eta)=\wedge\langle\langle\Xi\phi_{\xi}, \phi_{\eta}\rangle\rangle

is called the operator symbol of  \Xi . Note that the mapping  \Xi\mapsto-\wedge-- is injective.

Proposition 3.3 (Obata [11]) Let  \Theta be a function on  E\cross E with values on  \mathbb{C} . Then
there exists a continuous operator  ---\in \mathcal{L}((E), (E)^{*}) such that  \Theta=--\wedge- if and only if

(1)  \Theta is Gâteaux entire function;

(2) for any  p\geq 0 and  \epsilon>0 , there exist  C\geq 0 and  q\geq 0 such that

 |\Theta(\xi, \eta)|\leq C\exp\{\epsilon(|\xi|_{p+q}^{2}+|\eta|_{-p}^{2})\}, 
\xi, \eta\in E.

Let  \Xi_{1},  \Xi_{2}\in \mathcal{L}((E), (E)^{*}) . Then there exists a unique  \Xi\in \mathcal{L}((E), (E)^{*}) satisfying

 --(\xi, \eta)=e-(\xi, \eta)_{-2}^{-}(\xi, \eta)

where  -\wedge-- is an operator symbol of H Then : is called the Wick product of  --1- and  --2-

and denoted by  \Xi=\Xi_{1}0\Xi_{2} . For examples,

 a(x)\Diamond a(y)=a(x)a(y) , a^{*}(x)\circ a^{*}(y)=a^{*}(x)a^{*}(y) ,

 a(x)oa^{*}(y)=a^{*}(y)a(x) , a^{*}(x)oa(y)=a^{*}(x)a(y) .

The right hand sides of above examples are called the wick ordered form of given oper‐
ators. More generally, for  ---\in \mathcal{L}((E), (E)^{*}) one has

 a^{*}(x_{1})\cdots a^{*}(x_{2})\Xi a(y_{1})\cdots a(y_{m})=(a^{*}(x_{1})\cdots 
a^{*}(x_{2})a(y_{1})\cdots a(y_{m}))0\Xi.

Equipped with Wick product,  \mathcal{L}((E), (E)^{*}) becomes a commutative  *‐algebra. For   Y\in

 \mathcal{L}((E), (E)^{*}) the wick exponential of  Y is defined by

wexp  Y= \sum_{n=0}^{\infty}\frac{1}{n!}Y^{on}
whenever the series converges in  \mathcal{L}((E), (E)^{*}) .

A continuous map  \mathcal{D} :  \mathcal{L}((E), (E)^{*})arrow \mathcal{L}((E), (E)^{*}) satisfying

 \mathcal{D}(-0-)=(\mathcal{D}_{-1}^{---}-)\vartheta_{-2}^{-+_{-2}}-
a(\mathcal{D}_{-2}^{-}-)

is called a wick derivation.
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Theorem 3.4 (Ji‐Obata [8]) The creation and annihilation derivatives are wick deriva‐
tions.

According to wick derivation, Ji‐Obata [8] introduced first order homogeneous linear
differential equation of wick type.

Theorem 3.5 (Ji‐Obata [8]) Let  G\in \mathcal{L}((E), (E)^{*}) . If there is an operator   U\in

 \mathcal{L}((E), (E)^{*}) such that  \mathcal{D}U=G and wexp  U\in \mathcal{L}((E), (E)^{*}) ) then the solution of linear
differential equation:

 \mathcal{D}\Xi=GQ\Xi

is given by
 \Xi=Fo (wexp  U )

where the operator  F\in \mathcal{L}((E), (E)^{*}) satisfies  \mathcal{D}F=0.

For non‐homogeneous type, we refer [9].

Proposition 3.6 (Ji‐Obata [8]) Let  \Xi\in \mathcal{L}((E), (E)^{*}) .

(1)  D_{\zeta-}^{+-}-=0 for all  \zeta\in E if and only if − -- is of the form:

  \Xi=\sum_{m=0}^{\infty}\Xi_{0,m}(\kappa_{0,m}) .

(2)  D_{\zeta}^{-}\Xi=0 for all  \zeta\in E if and only if  \Xi is of the form:

 ----l,0-.

(3) If  \Xi satisfies  D_{\zeta}^{+}\Xi=D_{\zeta}^{-}\Xi=0 for all  \zeta\in E,then\Xi is a scalar operator.

Example 3.7 Let  \eta,  \zeta\in E and  S\in \mathcal{L}(E, E) . By solving wick type differential equa‐
tions, we can get the wick ordered form of : as following:

 e^{a(\zeta)}e^{a^{*}(\eta)}=e^{\langle\zeta,\eta\rangle}e^{a^{*}(\eta)}
e^{a(\zeta)} , (3.1)

 \Gamma(S)e^{a^{*}(\eta)}=e^{a^{*}(S\eta)}\Gamma(S) , (3.2)

 e^{a(\zeta)}\Gamma(S)=\Gamma(S)e^{a(S^{*}\zeta)} . (3.3)

Indeed, for (3.1), take creation and annihilation derivatives for  \xi\in E to  \Xi , then we have

 D_{\xi}^{+}\Xi=D_{\xi}^{+}e^{a(\eta)}e^{a^{*}(\zeta)}=e^{a(\eta)}(D_{\xi}^{+}e^
{a^{*}(\zeta)})
 =e^{a(\eta)}(D_{\xi}^{+}a^{*}(\zeta))e^{a^{*}(\zeta)}=\langle\xi, \zeta\rangle 
e^{a(\eta)}e^{a^{*}(\zeta)}=\langle\xi, \zeta\rangle I<\rangle---,

 D_{\xi}^{-}\Xi=D_{\xi}^{-}e^{a(\eta)}e^{a^{*}(\zeta)}=(D_{\xi}^{-}a(\eta))e^{a(
\eta)}e^{a^{*}(\zeta)}
 =\langle\eta, \xi\}e^{a(\eta)}e^{a^{*}(\zeta)}=\{\eta, \xi\rangle I_{\vartheta_
{-}^{-}}^{-}.

Let  Y satisfy  D_{\xi}^{+}Y=\langle\xi,  \zeta }  I and  D_{\xi}^{-}Y=\langle\eta,  \xi }  I . Then from creation derivative one
has

 Y=a^{*}(\zeta)+Y_{1}, D_{\xi}^{+}Y_{1}=0
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and from annihilation derivative we have

 D_{\xi}^{-}Y=D_{\xi}^{-}Y_{1}=\langle\eta, \xi\}

which implies that  Y_{1}=a(\eta)+Y_{2} where  D_{\xi}^{-}Y_{2}=0 . So  Y=a^{*}(\zeta)+a(\eta)+C for some
scalar operator  C . Then

 \Xi=C . wexp  Y=C\cdot e^{a^{*}(\zeta)}e^{a(\eta)}

and  C is obtained by

 C=\langle\langle\Xi\phi_{0}, \phi_{0}\rangle\rangle=\langle\langle e^{a^{*}
(\zeta)}\phi_{0}, e^{a^{*}(\eta)}\phi_{0}\rangle\rangle=e^{\langle\zeta,
\eta\rangle}.

Similarly we can get (3.2) and (3.3). Furthermore, the wick ordered form of white noise
operators including up to quadratic annihilation and creation operators are well known.
For more details see Ji‐Obata [9, 10].

4 One Parameter Group

Motivated from [10], we construct one parameter group involving annihilation, creation
and conservation operators. For a locally convex space  X , let  GL(X) be a group of
linear homomorphisms in  X . A one‐parameter family  \{T_{\theta}\}_{\theta\in \mathbb{R}} is called a group if

(1)  T_{0}=I ;

(2)  T_{\theta_{1}+\theta_{2}}=T_{\theta_{1}}T_{\theta_{2}} , for  \theta_{1},  \theta_{2}\in \mathbb{R}.

Let  \eta,  \zeta be differentiable functions from  \mathbb{R} with values on  E and  A be a differentiable

function from  \mathbb{R} to  \mathcal{L}(E, E) . Let  C be a differentiable function on  \mathbb{R} . For each  \theta\in \mathbb{R}

we put

 T_{\theta}=C(\theta)e^{a^{*}(\eta(\theta))}\Gamma(A(\theta))e^{a(\zeta(\theta))
}.
To satisfy the group conditions, we consider the compositions of  T_{\theta_{1}} and  T_{\theta_{2}}

 T_{\theta_{1}}T_{\theta_{2}}=C(\theta_{1})C(\theta_{2})e^{a^{*}(\eta(\theta_{1}
))}\Gamma(A(\theta_{1}))e^{a(\zeta(\theta_{1}))}e^{a^{*}(\eta(\theta_{2}))}
\Gamma(A(\theta_{2}))e^{a(\zeta(\theta_{2}))}
 =C(\theta_{1})C(\theta_{2})e^{\langle\zeta(\theta_{1}),\eta(\theta_{2})\rangle}
e^{a^{*}(\eta(\theta_{1})+A(\theta_{1})\eta(\theta_{2}))}\Gamma(A(\theta_{1})
A(\theta_{2}))e^{a(\zeta(\theta_{2})+A(\theta_{2})^{*}\zeta(\theta_{1}))}

by applying (3.1), (3.2) and (3.3). Then the group property  T_{\theta_{1}+\theta_{2}}=T_{\theta_{1}}T_{\theta_{2}} induces
following equations:

 \eta(\theta_{1}+\theta_{2})=\eta(\theta_{1})+A(\theta_{1})\eta(\theta_{2}) , (4.1)
 A(\theta_{1}+\theta_{2})=A(\theta_{1})A(\theta_{2}) , (4.2)

 \zeta(\theta_{1}+\theta_{2})=\zeta(\theta_{2})+A(\theta_{2})^{*}
\zeta(\theta_{1}) , (4.3)

 C(\theta_{1}+\theta_{2})=C(\theta_{1})C(\theta_{2})e^{\langle\zeta(\theta_{1}),
\eta(\theta_{2})\}} (4.4)

and initial values are obtained as  A(0)=I,  \eta(0)=\zeta(0)=0.
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Proposition 4.1 The one parameter family  \{T_{\theta}\}_{\theta\in \mathbb{R}} is a group if  E ‐valued functions
 \eta,  \zeta,  \mathcal{L}(E, E) ‐valued function  A and real valued function  C satisfy following differential
equations:

 \eta'(\theta)=A(\theta)\eta'(0) , (4.5)
 A'(\theta)=A(\theta)A'(0) , (4.6)
 \zeta'(\theta)=A(\theta)^{*}\zeta'(0) , (4.7)

 C'(\theta)=C'(0)C(\theta) . (4.8)

PROOF. Take  \theta_{1}=\theta and  \theta_{2}=h . Then from (4.2) we see

 A(\theta+h)-A(\theta)=A(\theta)[A(h)-I]

which shows (4.6). In the same way, by taking  \theta_{1}=\theta and  \theta=h , we get

 \eta(\theta+h)-\eta(\theta)=A(\theta)\eta(h) .

Thus (4.5) is obtained. Similarly we have (4.7). For (4.8), consider a function  f(x)=
 C(x)e^{\langle\zeta(\theta),\eta(x)\rangle} . Then  f is differentiable and

 f'(x)=C'(x)e^{\langle\zeta(\theta),\eta(x)\rangle}+C(x)\langle\zeta(\theta), 
\eta(x)\rangle e^{\langle\zeta(\theta),\eta(x)\}}
shows that  f'(0)=C'(0) . So

 C'( \theta)=C(\theta)\lim_{harrow 0}\frac{C(h)e^{\langle\zeta(\theta),\eta(h)
\rangle}}{h}=C(\theta)C'(0)
is obtained. I

Theorem 4.2 Let  \eta=\eta'(0),  \zeta=\zeta'(0)\in E,  A=A'(0)\in \mathcal{L}(E, E) and  c=C'(0)\in \mathbb{R}
be given. The solutions of (4.5)  -(4.8) are obtained as followings:

 A(\theta)=e^{\theta A}, C(\theta)=e^{c\theta}

  \eta(\theta)=\int_{0}^{\theta}e^{tA}\eta dt, \zeta(\theta)=\int_{0}^{\theta}e^
{tA^{*}}\zeta dt.
The proof is straightforward.

Theorem 4.3  \{T_{\theta}\}_{\theta\in \mathbb{R}} is  a one‐parameter group with the infinitesimal generator

  \frac{dT_{\theta}}{d\theta}|_{\theta=0}=cI+a^{*}(\eta)+\Lambda(A)+a(\zeta)
where  \eta=\eta'(0),  \zeta=\zeta'(0),  A=A'(0),  c=C'(0) .

PROOF. We can see by applying characterization theorem of operator symbol of
 T_{\theta} . I

Corollary 4.4 Let  A(\theta)=I for  \theta\in \mathbb{R} . Then one parameter family of

 T_{\theta}=C(\theta)e^{a^{*}(\eta(\theta))}e^{N}e^{a(\zeta(\theta))}
is a group with the infinitesimal generator  I+a^{*}(\eta)+N+a(\zeta) where  \eta=\eta'(0),  \zeta=\zeta'(0)
and  N=\Lambda(I) is a number operator. For more details, see [2].

As a general case, one parameter group with the infinitesimal generator which is
a linear combination of  a^{*}(\eta),  a(\zeta),  \Lambda(B),  \triangle_{G}(A) and  \triangle_{G}^{*}(C) is studied in [4], where
 A,  B,  C,  \eta,  \zeta satisfy certain conditions.
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