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Anticipating Quantum Stochastic Integrals for Basic
Quantum Martingales

Un Cig Ji
Department of Mathematics, Chungbuk National University

1 Introduction

Since the quantum stochastic integrals of adapted quantum stochastic processes have
been introduced by Hudson and Parthasarathy [10] as a quantum extension of the Itô
(stochastic) integral, the quantum stochastic calculus has been studied extensively with
wide applications (see [28, 32]).

The Hudson‐Parthasarathy quantum stochastic integrals has been extended to the
quantum stochastic integrals of nonadapted quantum stochastic processes by Belavkin
[3], Lindsay [24] and Attal & Lindsay [2]. Since then the nonadapted quantum stochastic
integral has been studied systematically in terms of quantum stochastic gradients by Ji
& Obata [16, 18]. Based on the quantum white noise theory [12], the notion of quantum
white noise derivatives has been introduced by Ji & Obata (see [14, 15, 16, 17, 19, 20]).
The explicit formulas [16] of integrands for quantum stochastic integral representation
of quantum martingales [11] has been derived in terms of the quantum white noise
derivatives. Also, the notion of quantum stochastic gradients [18] has been introduced
based on the notion of the quantum white noise derivatives. Recently, Ji & Sinha [21]
studied the quantum stochastic integrals for quadratic quantum noises.

On the other hand, based on the white noise theory [8, 22, 30] introduced by Hida,
Kuo & Russek [23] studied anticipating (classical) stochastic integrals by applying the
quantum decomposition of a Brownian motion.

In this paper, we study some regularity properties of the quantum Hitsuda‐Skorohod
integrals as anticipating quantum stochastic integrals. Also, motivated by the results
in [23], we discuss new types of anticipating quantum stochastic integrals in terms of
pointwisely defined quantum white noise derivatives.

2 Admissible Generalized Operators

2.1 Admissible Rigging of Fock Space

We now review a construction of admissible rigging of Fock space which provides the
basic structure of this paper. Let H=L^{2}(\mathbb{R}_{+}, dt) be the Hilbert space of complex valued
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square integrable functions on  \mathbb{R}_{+}=[0, \infty ) with respect to the Lebesque measure  dt and
let  \Gamma(H) be the Fock space over  H defined by

  \Gamma(H)=\{\phi=(f_{n})_{n=0}^{\infty};f_{n}\in H^{\otimes n}\wedge, \sum_{n=
0}^{\infty}n!|f_{n}|^{2}<\infty\},
where   H^{\otimes n}\wedge is the  n‐fold symmetric tensor product of  H and  | .  | is the Hilbertian norm
on  H and   H^{\otimes n}\wedge . For  p\geq 0 , we set

  \mathcal{G}_{p}=\{\phi=(f_{n})_{n=0}^{\infty}\in\Gamma(H);\Vert|\phi\Vert|_{p}
^{2}=\sum_{n=0}^{\infty}n!e^{2pn}|f_{n}|^{2}<\infty\}
and  \mathcal{G}_{-p} to be the completion of  \Gamma(H) with respect to the norm  \Vert|\cdot\Vert|_{-p} defined by

  \Vert|\phi\Vert|_{-p}^{2}=\sum_{n=0}^{\infty}n!e^{-2pn}|f_{n}|^{2}
Then  \{\mathcal{G}_{p};p\in \mathbb{R}\} forms a chain of weighted Fock spaces and so we have

 \mathcal{G}= proj  \lim \mathcal{G}_{p}\subset \mathcal{G}_{p}\subset \mathcal{G}_{0}=\Gamma(H)
parrow\infty\subset \mathcal{G}_{-p}\subset \mathcal{G}^{*}\cong ind\lim 
\mathcal{G}_{-p}parrow\infty
for  p\geq 0 , where the strong dual space  \Gamma(H)^{*} of  \Gamma(H) is identified with  \Gamma(H) , and
the strong dual space  \mathcal{G}^{*} of  \mathcal{G} is topologically isomorphic to the inductive limit space
ind   \lim_{parrow\infty}\mathcal{G}_{-p} . The canonical  \mathbb{C}‐bilinear form  \langle\langle\cdot,  \cdot\rangle\rangle on  \mathcal{G}^{*}\cross \mathcal{G} takes the form:

  \langle\langle\Phi, \phi\rangle\rangle=\sum_{n=0}^{\infty}n!\langle f_{n}, 
g_{n}\rangle, \Phi=(f_{n})\in \mathcal{G}^{*}, \phi=(g_{n})\in \mathcal{G},
where  \langle f_{n},   g_{n}\rangle is the canonical  \mathbb{C}‐bilinear form on  H^{\otimes n}\cross H^{\otimes n} . Note that  \mathcal{G} is a countable

Hilbert space but not necessarily a nuclear space. An element in  \mathcal{G} is said to be admissible
or regular.

Remark 2.1 Let  E_{\mathbb{R}}\subset H_{\mathbb{R}}\subset E_{\mathbb{R}}^{*} be a Gelfand triple, i.e.  E_{\mathbb{R}} is a nuclear space, where
 H_{\mathbb{R}}=L_{\mathbb{R}}^{2}(\mathbb{R}_{+}, dt) is the Hilbert space of real valued square integrable functions on  \mathbb{R}_{+}
with respect to  dt . Then for the standard Gaussian measure  \mu on  E_{\mathbb{R}}^{*} characterized by

  \int_{E_{\mathbb{R}}^{*}}e^{i\langle x,\xi\rangle}d\mu(x)=e^{-\frac{1}{2}
|\xi|^{2}} \xi\in E_{\mathbb{R}},
where  \langle\cdot,  \cdot\rangle is the canonical bilinear form on  E_{\mathbb{R}}^{*}\cross E_{\mathbb{R}} again, by the Wiener‐Itô‐Segal
isomorphism,  \Gamma(H) is unitarily equivalent with the Hilbert space  L^{2}(E_{\mathbb{R}}^{*}, \mu) of complex
valued square integrable functions on  E_{\mathbb{R}}^{*} with respect to the Gaussian measure  \mu . In
this sense, the elements of  \mathcal{G} are considered as admissible Gaussian functionals. The
spaces  \mathcal{G} and  \mathcal{G}^{*} were introduced by Belavkin [3] and have appeared along with classical
and quantum stochastic analysis, see e.g., [1, 4, 7, 11, 13, 14, 24, 25, 26, 33, 34].

square integrable functions on R+ = [0,∞) with respect to the Lebesque measure dt and
let Γ(H) be the Fock space over H defined by

Γ(H) =

{
φ = (fn)

∞
n=0 ; fn ∈ H⊗̂n,

∞∑

n=0

n!|fn|2 < ∞
}
,

where H⊗̂n is the n-fold symmetric tensor product of H and | · | is the Hilbertian norm

on H and H⊗̂n. For p ≥ 0, we set

Gp =

{
φ = (fn)

∞
n=0 ∈ Γ(H) ; |||φ |||2p =

∞∑

n=0

n!e2pn|fn|2 < ∞
}

and G−p to be the completion of Γ(H) with respect to the norm ||| · |||−p defined by

|||φ |||2−p =
∞∑

n=0

n!e−2pn|fn|2.

Then {Gp ; p ∈ R} forms a chain of weighted Fock spaces and so we have

G = proj lim
p→∞

Gp ⊂ Gp ⊂ G0 = Γ(H) ⊂ G−p ⊂ G∗ ∼= ind lim
p→∞

G−p

for p ≥ 0, where the strong dual space Γ(H)∗ of Γ(H) is identified with Γ(H), and
the strong dual space G∗ of G is topologically isomorphic to the inductive limit space
ind limp→∞ G−p. The canonical C-bilinear form 〈〈·, ·〉〉 on G∗ × G takes the form:

〈〈Φ, φ〉〉 =
∞∑

n=0

n! 〈fn, gn〉 , Φ = (fn) ∈ G∗, φ = (gn) ∈ G,

where 〈fn, gn〉 is the canonical C-bilinear form on H⊗n×H⊗n. Note that G is a countable
Hilbert space but not necessarily a nuclear space. An element in G is said to be admissible
or regular.

Remark 2.1 Let ER ⊂ HR ⊂ E∗
R
be a Gelfand triple, i.e. ER is a nuclear space, where

HR = L2
R
(R+, dt) is the Hilbert space of real valued square integrable functions on R+

with respect to dt. Then for the standard Gaussian measure µ on E∗
R
characterized by

∫

E∗

R

ei〈x, ξ〉 dµ(x) = e−
1
2
|ξ|2 , ξ ∈ ER,

where 〈·, ·〉 is the canonical bilinear form on E∗
R
× ER again, by the Wiener-Itô-Segal

isomorphism, Γ(H) is unitarily equivalent with the Hilbert space L2(E∗
R
, µ) of complex

valued square integrable functions on E∗
R
with respect to the Gaussian measure µ. In

this sense, the elements of G are considered as admissible Gaussian functionals. The
spaces G and G∗ were introduced by Belavkin [3] and have appeared along with classical
and quantum stochastic analysis, see e.g., [1, 4, 7, 11, 13, 14, 24, 25, 26, 33, 34].
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2.2 Multiplications of Admissible Gaussian Functionals

Let  \phi=(f_{n}),  \psi=(g_{n})\in \mathcal{G} be given. Suppose that  f_{n}=0 and  g_{m}=0 except for finite
numbers of  n and  m . Then the Wiener product (or pointwise multiplication)  \phi\psi\in \mathcal{G} of
 \phi and  \psi is defined by

 \phi\psi=(h_{n}) ,  h_{n}= \sum_{l+m=n}\sum_{k=0}^{\infty}k!  (\begin{array}{ll}
l+   k
k   
\end{array})(\begin{array}{l}
m+k
k
\end{array})  f_{l+k^{\wedge}}\otimes_{k}g_{m+k} , (2.1)

where  f_{l}+k^{\wedge}\otimes_{k}g_{m+k} is the  k‐contraction of  f_{l+k} and  g_{m+k} , see [30].
The following lemma is useful to study the continuities of Wiener product of admis‐

sible Gaussian functionals and similar estimates can be found in [25] (see also [30, 33]).

Lemma 2.2 Let  \phi=(f_{n}),  \psi=(g_{n})\in \mathcal{G} be given. Suppose that  f_{n}=0 and  g_{m}=0
except for a finite numbers of  n and  m . Then for any  p,  r,  s\in \mathbb{R} with  r+s>0 and

 (n+1)( \frac{e^{(s-3r)/2}+e^{(r-3s)/2}}{e^{-2p}(r+s)})^{n}\leq c^{n} (2.2)

for some  0<c<1 , it holds that

  \Vert|\phi\psi\Vert|_{p}^{2}\leq\frac{1}{1-c}\Vert|\phi\Vert|_{r}^{2}
\Vert|\psi\Vert|_{s}^{2} . (2.3)

PROOF. For given  h_{n} as in (2.1), we obtain that

 n!|h_{n}|^{2}=n!( \sum_{l+m=n}\sum_{k=0}^{\infty}k! (\begin{array}{ll}
l+   k
k   
\end{array}) (\begin{array}{l}
m+k
k
\end{array})|f_{l+k}||g_{m+k}|)^{2}
  \leq n!(\sum_{l+m=n}\sum_{k=0}^{\infty}M_{l,m,k}\sqrt{(l+k)!}e^{r(l+k)}|f_{l+
k}|\sqrt{(m+k)!}e^{s(m+k)}|g_{m+k}|)^{2} (2.4)

where

 M_{l,m,k}= \frac{e^{-rl-sm}}{l!m!}\frac{\sqrt{(l+k)!(m+k)!}}{k!}e^{-(r+s)k}\leq
\frac{e^{-rl-sm}}{l!m!}\sqrt{C_{lm,r+s}},
where

  C_{l,m,q}= \sup_{n\geq 0}\{\frac{(l+n)!}{n!}(n+m)!_{e^{-2qn}\}}n!\leq e^{q}l^{
\iota}m^{m}(\frac{e^{q/2}}{eq})^{l+m}<\infty (2.5)

for  q>0 (see e.g., [30]: Section 4.1). Therefore, for any  r\in \mathbb{R} and  s\in \mathbb{R} with  r+s>0,
from (2.4), by applying Cauchy‐Schwarz inequality we obtain that

 n!|h_{n}|^{2} \leq n!(\sum_{l+m=n}\frac{e^{-rl-sm}}{l!m!}\sqrt{C_{lmr+s}})^{2}
\Vert|\phi\Vert|_{r}^{2}\Vert|\psi\Vert|_{s}^{2}
  \leq(\sum_{l+m=n}\frac{\sqrt{n!}}{l!m!}e^{-rl-sm}\sqrt{C_{l,mr+s}})^{2}
\Vert|\phi\Vert|_{r}^{2}\Vert|\psi\Vert|_{s}^{2} . (2.6)

2.2 Multiplications of Admissible Gaussian Functionals

Let φ = (fn), ψ = (gn) ∈ G be given. Suppose that fn = 0 and gm = 0 except for finite
numbers of n and m. Then the Wiener product (or pointwise multiplication) φψ ∈ G of
φ and ψ is defined by

φψ = (hn), hn =
∑

l+m=n

∞∑

k=0

k!

(
l + k

k

)(
m+ k

k

)
fl+k⊗̂kgm+k, (2.1)

where fl+k⊗̂kgm+k is the k-contraction of fl+k and gm+k, see [30].
The following lemma is useful to study the continuities of Wiener product of admis-

sible Gaussian functionals and similar estimates can be found in [25] (see also [30, 33]).

Lemma 2.2 Let φ = (fn), ψ = (gn) ∈ G be given. Suppose that fn = 0 and gm = 0
except for a finite numbers of n and m. Then for any p, r, s ∈ R with r + s > 0 and

(n+ 1)

(
e(s−3r)/2 + e(r−3s)/2

e−2p(r + s)

)n

≤ cn (2.2)

for some 0 < c < 1, it holds that

|||φψ |||2p ≤
1

1− c
|||φ |||2r |||ψ |||2s . (2.3)

Proof. For given hn as in (2.1), we obtain that

n!|hn|2 = n!

(
∑

l+m=n

∞∑

k=0

k!

(
l + k

k

)(
m+ k

k

)
|fl+k||gm+k|

)2

≤ n!

(
∑

l+m=n

∞∑

k=0

Ml,m,k

√
(l + k)!er(l+k)|fl+k|

√
(m+ k)!es(m+k)|gm+k|

)2

, (2.4)

where

Ml,m,k =
e−rl−sm

l!m!

√
(l + k)!(m+ k)!

k!
e−(r+s)k ≤ e−rl−sm

l!m!

√
Cl,m;r+s,

where

Cl,m;q = sup
n≥0

{
(l + n)!

n!

(n+m)!

n!
e−2qn

}
≤ eqllmm

(
eq/2

eq

)l+m

< ∞ (2.5)

for q > 0 (see e.g., [30]: Section 4.1). Therefore, for any r ∈ R and s ∈ R with r+ s > 0,
from (2.4), by applying Cauchy-Schwarz inequality we obtain that

n!|hn|2 ≤ n!

(
∑

l+m=n

e−rl−sm

l!m!

√
Cl,m;r+s

)2

|||φ |||2r |||ψ |||2s

≤
(

∑

l+m=n

√
n!

l!m!
e−rl−sm

√
Cl,m;r+s

)2

|||φ |||2r |||ψ |||2s . (2.6)
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By applying a simple inequality  n^{n}\leq e^{n}n! , from (2.5) we see that

  \sqrt{C_{lmr+s}}\leq e^{(r+s)/2\sqrt{l^{l}m^{m}}}(\frac{e^{(r+s)/2}}{e(r+s)})^
{(l+m)/2}\leq e^{(r+s)/2}\sqrt{l!m!}(\frac{e^{(r+s)/2}}{r+s})^{(l+m)/2}
Therefore, for any  r\in \mathbb{R} and  s\in \mathbb{R} with  e^{r+s}\geq 2 , from (2.6) we obtain that

 n!|h_{n}|^{2} \leq(\sum_{l+m=n}\frac{\sqrt{n!}}{l!m!}e^{-rl-sm}\sqrt{C_{lmr+s}}
)^{2}\Vert|\phi\Vert|_{r}^{2}\Vert|\psi\Vert|_{s}^{2}
  \leq e^{r+s}(\sum_{l+m=n}\frac{\sqrt{n!}}{\sqrt{l!m!}}e^{-rl-sm}(\frac{e^{(r+
s)/2}}{r+s})^{(l+m)/2})^{2}\Vert|\phi\Vert|_{r}^{2}\Vert|\psi\Vert|_{\mathcal{S}
}^{2}
  \leq(n+1)(\sum_{l+m=n}\frac{n!}{l!m!}(\frac{e^{(s-3r)/2}}{r+s})^{l}
(\frac{e^{(r-3s)/2}}{r+s})^{m})\Vert|\phi\Vert|_{r}^{2}\Vert|\psi\Vert|^{2}
 =(n+1)( \frac{e^{(s-3r)/2}+e^{(r-3s)/2}}{r+s})^{n}\Vert|\phi\Vert|^{2}.
\Vert|\psi\Vert|^{2} . (2.7)

Therefore, from (2.1) and (2.7) we obtain that

  \Vert|\phi\psi\Vert 1_{p}^{2}=\sum_{n=0}^{\infty}n!e^{2pn}|h_{n}|^{2}
\leq[\sum_{n=0}^{\infty}(n+1)(\frac{e^{(s-3r)/2}+e^{(r-3s)/2}}{e^{-2p}(r+s)})
^{n}]11\phi\Vert 1_{r}^{2}11\psi\Vert 1_{s}^{2}
  \leq\frac{1}{1-c}\Vert 1\phi\Vert 1_{r}^{2}\Vert 1\psi\Vert 1^{2} (2.S)

for some  0<c<1 satisfying (2.3), which gives the proof.  \square 

The following two theorem are obvious consequences of Lemma 2.2.

Theorem 2.3 ([33]) The Wiener product of admissible Gaussian functionals is con‐
tinuous from  \mathcal{G}\cross \mathcal{G} (equipped with the product topology) onto  \mathcal{G} . In particular,  \mathcal{G} is an
algebra with respect to the Wiener product.

Theorem 2.4 The Wiener product of admissible white noise functionals is continuous
from  \mathcal{G}^{*}\cross \mathcal{G} (equipped with the product topology) onto  \mathcal{G}^{*}

Let  \phi=(f_{n}),  \psi=(g_{n})\in \mathcal{G} be given. Suppose that  f_{n}=0 and  g_{m}=0 except for
finite numbers of  n and  m . Then the Wick product (or normal‐ordered product)  \phi 0\psi
of  \phi and  \psi is defined by

  \phi 0\psi=(k_{n}) , k_{n}=\sum_{l+m=n}f_{l}\otimes g_{m}\wedge , (2.9)

see [6, 8, 22]
The following lemma is useful to study the continuities of Wick product of admissible

Gaussian functionals and similar estimates can be found in [33].

By applying a simple inequality nn ≤ enn!, from (2.5) we see that

√
Cl,m;r+s ≤ e(r+s)/2

√
llmm

(
e(r+s)/2

e(r + s)

)(l+m)/2

≤ e(r+s)/2
√
l!m!

(
e(r+s)/2

r + s

)(l+m)/2

Therefore, for any r ∈ R and s ∈ R with er+s ≥ 2, from (2.6) we obtain that

n!|hn|2 ≤
(

∑

l+m=n

√
n!

l!m!
e−rl−sm

√
Cl,m;r+s

)2

|||φ |||2r |||ψ |||2s

≤ er+s

(
∑

l+m=n

√
n!√
l!m!

e−rl−sm

(
e(r+s)/2

r + s

)(l+m)/2
)2

|||φ |||2r |||ψ |||2s

≤ (n+ 1)

(
∑

l+m=n

n!

l!m!

(
e(s−3r)/2

r + s

)l (
e(r−3s)/2

r + s

)m
)
|||φ |||2r |||ψ |||2s

= (n+ 1)

(
e(s−3r)/2 + e(r−3s)/2

r + s

)n

|||φ |||2r |||ψ |||2s . (2.7)

Therefore, from (2.1) and (2.7) we obtain that

|||φψ |||2p =
∞∑

n=0

n!e2pn|hn|2 ≤
[

∞∑

n=0

(n+ 1)

(
e(s−3r)/2 + e(r−3s)/2

e−2p(r + s)

)n
]
|||φ |||2r |||ψ |||2s

≤ 1

1− c
|||φ |||2r |||ψ |||2s (2.8)

for some 0 < c < 1 satisfying (2.3), which gives the proof. �

The following two theorem are obvious consequences of Lemma 2.2.

Theorem 2.3 ([33]) The Wiener product of admissible Gaussian functionals is con-
tinuous from G × G (equipped with the product topology) onto G. In particular, G is an
algebra with respect to the Wiener product.

Theorem 2.4 The Wiener product of admissible white noise functionals is continuous
from G∗ × G (equipped with the product topology) onto G∗.

Let φ = (fn), ψ = (gn) ∈ G be given. Suppose that fn = 0 and gm = 0 except for
finite numbers of n and m. Then the Wick product (or normal-ordered product) φ ⋄ ψ
of φ and ψ is defined by

φ ⋄ ψ = (kn), kn =
∑

l+m=n

fl⊗̂gm, (2.9)

see [6, 8, 22]
The following lemma is useful to study the continuities of Wick product of admissible

Gaussian functionals and similar estimates can be found in [33].
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Lemma 2.5 Let  \phi=(f_{n}),  \psi=(g_{n})\in \mathcal{G} be given. Suppose that  f_{n}=0 and  g_{m}=0
except for a finite numbers of  n and  m . Then for any  p,  r,  s\in \mathbb{R} satisfying that

 e^{2(p-r)}+e^{2(p-s)}<1 , (2.10)

it holds that

 \Vert|\phi 0\psi\Vert|_{p}^{2}\leq\Vert|\phi\Vert|_{r}^{2}\Vert|\psi\Vert|_{s}^
{2} . (2.11)

PROOF. For given  k_{n} as in (2.9), we obtain that

 n!|k_{n}|^{2}=n!( \sum_{l+m=n}|f_{l}||g_{m}|)^{2}
  \leq n!(\sum_{l+m=n}\frac{e^{-2rl-2sm}}{l!m!})(\sum_{l+m=n}l!e^{2rl}|f_{l}
|^{2}m!e^{2sm}|g_{m}|^{2})
  \leq(e^{-2r}+e^{-2s})^{n}(\sum_{l+m=n}l!e^{2rl}|f_{l}|^{2}m!e^{2sm}|g_{m}|^{2}
) , (2.12)

Therefore, for any  p,  r,  s\in \mathbb{R} satisfying (2.10), from (2.12) we obtain that

  \Vert|\phi 0\psi\Vert|_{p}^{2}=\sum_{n=0}^{\infty}n!e^{2pn}|k_{n}|^{2}
\leq\sum_{n=0}^{\infty}(e^{2(p-r)}+e^{2(p-s)})^{n}(\sum_{l+m=n}l!e^{2rl}|f_{l}|^
{2}m!e^{2sm}|g_{m}|^{2})
 \leq\Vert|\phi\Vert|_{r}^{2}\Vert|\psi\Vert|_{s}^{2},

which gives the proof.  \square 

The following theorem is an obvious consequence of Lemma 2.5.

Theorem 2.6 ([33]) The Wick product is continuous from  \mathcal{G}\cross \mathcal{G} (equipped with the
product topology) onto  \mathcal{G} , and from  \mathcal{G}^{*}\cross \mathcal{G}^{*} onto  \mathcal{G}^{*} In particular,  \mathcal{G} and  \mathcal{G}^{*} are
algebras under the Wick product.

3 Admissible Generalized Operators

We denote by  \mathcal{L}(\mathfrak{X}, \mathfrak{Y}) the space of all continuous linear operators from a locally convex
space  \mathfrak{X} into another locally convex space  \mathfrak{Y} equipped with the topology of bounded
convergence. An operator in  \mathcal{L}(\mathcal{G}, \mathcal{G}^{*}) is called an admissible generalized operator [14]
or simply admissible operator.

3.1 Integral Kernel Operators

Let  l,  m be non‐negative integers. Let  K_{l,m}\in \mathcal{L}(H^{\otimes m}, H^{\otimes l}) and  \Phi=(f_{n})_{n=0}^{\infty}\in \mathcal{G}^{*} For
each  n\geq 0 , we put

 g_{l+n}= \frac{(n+m)!}{n!}(K_{l,m}\otimes I^{\otimes n}f_{n+m})_{sym} . (3.1)

Lemma 2.5 Let φ = (fn), ψ = (gn) ∈ G be given. Suppose that fn = 0 and gm = 0
except for a finite numbers of n and m. Then for any p, r, s ∈ R satisfying that

e2(p−r) + e2(p−s) < 1, (2.10)

it holds that
|||φ ⋄ ψ |||2p ≤ |||φ |||2r |||ψ |||2s . (2.11)

Proof. For given kn as in (2.9), we obtain that

n!|kn|2 = n!

(
∑

l+m=n

|fl||gm|
)2

≤ n!

(
∑

l+m=n

e−2rl−2sm

l!m!

)(
∑

l+m=n

l!e2rl|fl|2m!e2sm|gm|2
)

≤
(
e−2r + e−2s

)n
(

∑

l+m=n

l!e2rl|fl|2m!e2sm|gm|2
)
, (2.12)

Therefore, for any p, r, s ∈ R satisfying (2.10), from (2.12) we obtain that

|||φ ⋄ ψ |||2p =
∞∑

n=0

n!e2pn|kn|2 ≤
∞∑

n=0

(
e2(p−r) + e2(p−s)

)n
(

∑

l+m=n

l!e2rl|fl|2m!e2sm|gm|2
)

≤ |||φ |||2r |||ψ |||2s ,

which gives the proof. �

The following theorem is an obvious consequence of Lemma 2.5.

Theorem 2.6 ([33]) The Wick product is continuous from G × G (equipped with the
product topology) onto G, and from G∗ × G∗ onto G∗. In particular, G and G∗ are
algebras under the Wick product.

3 Admissible Generalized Operators

We denote by L(X,Y) the space of all continuous linear operators from a locally convex
space X into another locally convex space Y equipped with the topology of bounded
convergence. An operator in L(G,G∗) is called an admissible generalized operator [14]
or simply admissible operator.

3.1 Integral Kernel Operators

Let l,m be non-negative integers. Let Kl,m ∈ L(H⊗m, H⊗l) and Φ = (fn)
∞
n=0 ∈ G∗. For

each n ≥ 0, we put

gl+n =
(n+m)!

n!
(Kl,m ⊗ I⊗nfn+m)sym. (3.1)
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Then from Lemma 4.1 in [11], for any  p\in \mathbb{R} and  q>0 , we obtain that

  \sum_{n=0}^{\infty}(l+n)!e^{2p(l+n)}|g_{l+n}|^{2}\leq\Vert K_{l,m}\Vert^{2}
\sum_{n=0}^{\infty}(n+m)!\frac{(l+n)!}{n!}e^{2p(l+n)}(n+m)!n!|f_{n+m}|^{2}
 \leq\Vert K_{l,m}\Vert^{2}e^{2(pl-(p+q)m)}C_{l,m,q}\Vert|\phi\Vert|_{p+q}^{2} , (3.2)

where  \Vert K_{l,m}\Vert is the operator norm and  C_{l,m;q} is given as in (2.5). Therefore, we define
an linear operator  \Xi_{l,m}(K_{l,m}) on  \mathcal{G}^{*} by

 \Xi_{l,m}(K_{l,m})\Phi=(g_{l+n})_{n=0}^{\infty} , \Phi=(f_{n})_{n=0}^{\infty}
\in \mathcal{G}^{*} , (3.3)

where  g_{l+n} is given as in (3.1). Then for any  p\in \mathbb{R} and  q>0 it holds that

 \Vert|_{-l,m}^{-}-(K_{l,m})\Phi\Vert|_{p}\leq\Vert K_{l,m}\Vert e^{(pl-(p+q)m)}
\sqrt{C_{lm,q}}\Vert|\Phi\Vert|_{p+q}, \Phi\in \mathcal{G}^{*} , (3.4)

which implies that  \Xi_{l,m}(K_{l,m})\in \mathcal{L}(\mathcal{G}_{p+q}, \mathcal{G}_{p}) . The operator  \Xi_{l,m}(K_{l,m}) is called the
integral kernel operator with kernel  K_{l,m} (see [13, 9, 22, 30]).

Now the following theorem is obvious.

Theorem 3.1 ([11]) Let  l,  m be non‐negative integers and let  K_{l,m}\in \mathcal{L}(H^{\otimes m}, H^{\otimes l}) .
Then it holds that

 \Xi_{l,m}(K_{l,m})\in \mathcal{L}(\mathcal{G}, \mathcal{G})\cap \mathcal{L}
(\mathcal{G}^{*}, \mathcal{G}^{*}) .

Let  \eta\in H and let  K_{\eta}\in \mathcal{L}(H, \mathbb{C}) be defined by  K_{\eta}(f)=\langle\eta,   f\rangle for any  f\in H . For
simple notation, we identify  \eta=K_{\eta}=K_{\eta}^{*} , where  K_{\eta}^{*} is the adjoint operator of  K_{\eta} with
respect to the canonical bilinear form  \langle\cdot,  \cdot\rangle , i.e.,   K_{\eta}^{*}(a)=a\eta for all  a\in \mathbb{C} . Then the
annihilation operator  a(\eta) and the creation operator  a^{*}(\eta) associated with  \eta are defined
by  a(\eta)=--0,1-(\eta) and  a^{*}(\eta)=--1,0-(\eta) , respectively, and then from Theorem 3.1, it holds
that

 a(\eta), a^{*}(\eta)\in \mathcal{L}(\mathcal{G}, \mathcal{G})\cap \mathcal{L}
(\mathcal{G}^{*}, \mathcal{G}^{*}) .

It is straightforward to verify the canonical commutation relation:

 [a(\xi), a(\eta)]=0,  [a^{*}(\xi), a^{*}(\eta)]=0,  [a( \xi), a^{*}(\eta)]=\int_{\mathbb{R}_{+}}\xi(t)\eta(t)dt=\langle\xi,  \eta\rangle (3.5)

for  \xi,  \eta\in H.
The exponential vector  \phi_{\xi} associated with  \xi\in H is defined by  \phi_{\xi}=(\xi^{\otimes n}/n!)_{n=0}^{\infty}.

Then  \{\phi_{\xi};\xi\in H\} spans a dense subspace of  \mathcal{G}.

Proposition 3.2 ([14, 5]) Let  \zeta\in H be given. Then it holds that

 a(\zeta)(\Phi\psi)=(a(\zeta)\Phi)\psi+\Phi(a(\zeta)\psi) , \Phi\in \mathcal{G}^
{*}, \psi\in \mathcal{G} , (3.6)
 a(\zeta)(\Phi 0\Psi)=(a(\zeta)\Phi)0\Psi+\Phi o(a(\zeta)\Psi) , \Phi, \Psi\in 
\mathcal{G}^{*} (3.7)

PROOF. (i) For any  \xi,  \eta\in H , we obtain that

 a(\zeta)(\phi_{\xi}\phi_{\eta})=a(\zeta)(\phi_{\xi+\eta})e^{\langle\xi,
\eta\rangle}=\langle\zeta, \xi+\eta\rangle\phi_{\xi+\eta}e^{\langle\xi,
\eta\rangle}=\langle\zeta, \xi+\eta\rangle\phi_{\xi}\phi_{\eta}
 =(a(\zeta)\phi_{\xi})\phi_{\eta}+\phi_{\xi}(a(\zeta)\phi_{\eta}) .

Then from Lemma 4.1 in [11], for any p ∈ R and q > 0, we obtain that

∞∑

n=0

(l + n)!e2p(l+n)|gl+n|2 ≤ ‖Kl,m‖2
∞∑

n=0

(n+m)!
(l + n)!

n!

(n+m)!

n!
e2p(l+n)|fn+m|2

≤ ‖Kl,m‖2e2(pl−(p+q)m)Cl,m;q |||φ |||2p+q , (3.2)

where ‖Kl,m‖ is the operator norm and Cl,m;q is given as in (2.5). Therefore, we define
an linear operator Ξl,m(Kl,m) on G∗ by

Ξl,m(Kl,m)Φ = (gl+n)
∞
n=0 , Φ = (fn)

∞
n=0 ∈ G∗, (3.3)

where gl+n is given as in (3.1). Then for any p ∈ R and q > 0 it holds that

|||Ξl,m(Kl,m)Φ |||p ≤ ‖Kl,m‖e(pl−(p+q)m)
√

Cl,m;q |||Φ |||p+q , Φ ∈ G∗, (3.4)

which implies that Ξl,m(Kl,m) ∈ L(Gp+q,Gp). The operator Ξl,m(Kl,m) is called the
integral kernel operator with kernel Kl,m (see [13, 9, 22, 30]).

Now the following theorem is obvious.

Theorem 3.1 ([11]) Let l,m be non-negative integers and let Kl,m ∈ L(H⊗m, H⊗l).
Then it holds that

Ξl,m(Kl,m) ∈ L(G,G) ∩ L(G∗,G∗).

Let η ∈ H and let Kη ∈ L(H,C) be defined by Kη(f) = 〈η, f〉 for any f ∈ H. For
simple notation, we identify η = Kη = K∗

η , where K
∗
η is the adjoint operator of Kη with

respect to the canonical bilinear form 〈·, ·〉, i.e., K∗
η(a) = aη for all a ∈ C. Then the

annihilation operator a(η) and the creation operator a∗(η) associated with η are defined
by a(η) = Ξ0,1(η) and a∗(η) = Ξ1,0(η), respectively, and then from Theorem 3.1, it holds
that

a(η), a∗(η) ∈ L(G,G) ∩ L(G∗,G∗).

It is straightforward to verify the canonical commutation relation:

[a(ξ), a(η)] = 0, [a∗(ξ), a∗(η)] = 0, [a(ξ), a∗(η)] =

∫

R+

ξ(t)η(t)dt = 〈ξ, η〉 (3.5)

for ξ, η ∈ H.
The exponential vector φξ associated with ξ ∈ H is defined by φξ = (ξ⊗n/n!)

∞
n=0.

Then {φξ ; ξ ∈ H} spans a dense subspace of G.

Proposition 3.2 ([14, 5]) Let ζ ∈ H be given. Then it holds that

a(ζ)(Φψ) = (a(ζ)Φ)ψ + Φ (a(ζ)ψ) , Φ ∈ G∗, ψ ∈ G, (3.6)

a(ζ)(Φ ⋄Ψ) = (a(ζ)Φ) ⋄Ψ+ Φ ⋄ (a(ζ)Ψ) , Φ,Ψ ∈ G∗. (3.7)

Proof. (i) For any ξ, η ∈ H, we obtain that

a(ζ)(φξφη) = a(ζ)(φξ+η)e
〈ξ, η〉 = 〈ζ, ξ + η〉φξ+ηe

〈ξ, η〉 = 〈ζ, ξ + η〉φξφη

= (a(ζ)φξ)φη + φξ (a(ζ)φη) .
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Therefore, by the continuity property  a(\zeta)\in \mathcal{L}(\mathcal{G}, \mathcal{G})\cap \mathcal{L}(\mathcal{G}^{
*}, \mathcal{G}^{*}) and the fact that
exponential vectors span a dense subspace of  \mathcal{G} and  \mathcal{G}^{*} , we complete the proof.

(ii) The proof is similar to the proof of (i). In fact, we obtain that

 a(\zeta)(\phi_{\xi}0\phi_{\eta})=a(\zeta)(\phi_{\xi+\eta})=\langle\zeta, \xi+
\eta\rangle\phi_{\xi+\eta}=\langle\zeta, \xi+\eta\rangle\phi_{\xi}0\phi_{\eta}
 =(a(\zeta)\phi_{\xi})0\phi_{\eta}+\phi_{\xi}o(a(\zeta)\phi_{\eta}) .

 \square 

Let  K\in \mathcal{L}(H, H) . Then from Theorem 3.1, it holds that

 \Lambda(K):=\Xi_{1,1}(K)\in \mathcal{L}(\mathcal{G}, \mathcal{G})\cap 
\mathcal{L}(\mathcal{G}^{*}, \mathcal{G}^{*}) .

The operator  \Lambda(K) is called the conservation operator. for any  p\in \mathbb{R} and  q>0 , from
(3.4) we obtain that

 \Vert|\Lambda(K)\Phi\Vert|_{p}\leq e^{-q}\sqrt{C_{11,q}}\Vert 
K\Vert\Vert|\Phi\Vert|_{p+q}, \Phi\in \mathcal{G}^{*} (3.8)

3.2 Multiplication Operators

Theorem 3.3 For any  \Phi\in \mathcal{G}^{*} and  \phi,  \psi\in \mathcal{G} , it holds that

 \langle\langle\Phi\phi, \psi\rangle\rangle=\langle\langle\Phi, 
\phi\psi\rangle\rangle . (3.9)

PROOF. For given  \Phi=(F_{n})\in \mathcal{G}^{*} and any  \xi,  \eta\in H , from (2.1) we obtain that

  \Phi\phi_{\xi}=(\sum_{l+m=n}\sum_{k=0}^{\infty} (\begin{array}{ll}
l+   k
k   
\end{array})(F_{l+k^{\wedge}} \otimes_{k}\xi^{\otimes k})
\otimes\frac{\xi^{\otimes m}}{m!})_{n=0}^{\infty}
and

  \langle\langle\Phi\phi_{\xi}, \phi_{\eta}\rangle\rangle=\sum_{n=0}^{\infty}
\{\sum_{m=0}^{n}\sum_{k=0}^{\infty} (\begin{array}{l}
n-m+k
k
\end{array})(F_{n-m+k^{\wedge}}\otimes_{k}\xi^{\otimes k})
\otimes\frac{\xi^{\otimes m}}{m!}, \eta^{\otimes n}\}
 = \sum_{m=0}^{\infty}\sum_{n=0}^{\infty}\{\sum_{k=0}^{\infty} (\begin{array}{l}
n+k
k
\end{array})(F_{n+k^{\wedge}}\otimes_{k}\xi^{\otimes k})
\otimes\frac{\xi^{\otimes m}}{m!}, \eta^{\otimes(n+m)}\}
 =e^{\langle\xi,\eta\rangle} \sum_{l=0}^{\infty}\{F_{l},\sum_{n+k=l} 
(\begin{array}{l}
n+k
k
\end{array})\eta^{\otimes n_{\otimes}^{\wedge}}\xi^{\otimes k}\}
 =e^{\langle\xi,\eta\rangle}\langle\langle\Phi, \phi_{\xi+\eta}\rangle\rangle
 =\langle\langle\Phi, \phi_{\eta}\phi_{\eta}\rangle\rangle .

Since the exponential vectors span a dense subspace of  \mathcal{G} , by the continuity of the Wiener
product (see Theorems 2.3 and 2.4), the proof is immediate.  \square 

Let  \Phi\in \mathcal{G}^{*} be given. Then we consider the Wiener multiplication operator  M_{\Phi} :
 \mathcal{G}arrow \mathcal{G}^{*} and then from (3.9),  \phi,  \psi\in \mathcal{G} , we obtain that it holds that

 \langle\langle M_{\Phi}\phi, \psi\rangle\rangle=\langle\langle\Phi\phi, 
\psi\rangle\rangle=\langle\langle\Phi, \phi\psi\rangle\rangle.

Therefore, by the continuity property a(ζ) ∈ L(G,G) ∩ L(G∗,G∗) and the fact that
exponential vectors span a dense subspace of G and G∗, we complete the proof.

(ii) The proof is similar to the proof of (i). In fact, we obtain that

a(ζ)(φξ ⋄ φη) = a(ζ)(φξ+η) = 〈ζ, ξ + η〉φξ+η = 〈ζ, ξ + η〉φξ ⋄ φη

= (a(ζ)φξ) ⋄ φη + φξ ⋄ (a(ζ)φη) .

�

Let K ∈ L(H,H). Then from Theorem 3.1, it holds that

Λ(K) := Ξ1,1(K) ∈ L(G,G) ∩ L(G∗,G∗).

The operator Λ(K) is called the conservation operator. for any p ∈ R and q > 0, from
(3.4) we obtain that

|||Λ(K)Φ |||p ≤ e−q
√

C1,1;q‖K‖ |||Φ |||p+q , Φ ∈ G∗. (3.8)

3.2 Multiplication Operators

Theorem 3.3 For any Φ ∈ G∗ and φ, ψ ∈ G, it holds that

〈〈Φφ, ψ〉〉 = 〈〈Φ, φψ〉〉 . (3.9)

Proof. For given Φ = (Fn) ∈ G∗ and any ξ, η ∈ H, from (2.1) we obtain that

Φφξ =

(
∑

l+m=n

∞∑

k=0

(
l + k

k

)(
Fl+k⊗̂kξ

⊗k
)
⊗ ξ⊗m

m!

)∞

n=0

and

〈〈Φφξ, φη〉〉 =
∞∑

n=0

〈
n∑

m=0

∞∑

k=0

(
n−m+ k

k

)(
Fn−m+k⊗̂kξ

⊗k
)
⊗ ξ⊗m

m!
, η⊗n

〉

=
∞∑

m=0

∞∑

n=0

〈
∞∑

k=0

(
n+ k

k

)(
Fn+k⊗̂kξ

⊗k
)
⊗ ξ⊗m

m!
, η⊗(n+m)

〉

= e〈ξ, η〉
∞∑

l=0

〈
Fl,

∑

n+k=l

(
n+ k

k

)
η⊗n⊗̂ξ⊗k

〉

= e〈ξ, η〉 〈〈Φ, φξ+η〉〉
= 〈〈Φ, φηφη〉〉 .

Since the exponential vectors span a dense subspace of G, by the continuity of the Wiener
product (see Theorems 2.3 and 2.4), the proof is immediate. �

Let Φ ∈ G∗ be given. Then we consider the Wiener multiplication operator MΦ :
G → G∗ and then from (3.9), φ, ψ ∈ G, we obtain that it holds that

〈〈MΦφ, ψ〉〉 = 〈〈Φφ, ψ〉〉 = 〈〈Φ, φψ〉〉 .
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Theorem 3.4 ([30]) For each  \zeta\in H,  X_{\zeta}=(0, \zeta, 0, \cdots)\in \mathcal{G} as a Wiener multiplica‐
tion operator is represented as the sum of  a(\zeta) and  a^{*}(\zeta),  i.e,

 X_{\zeta}=a(\zeta)+a^{*}(\zeta) , (3.10)

which is called the quantum decomposition of  X_{\eta}.

PROOF. Since  X_{\zeta}=(0, \zeta, 0, \cdots)\in \mathcal{G} , from (3.9) we obtain that

 \langle X_{\zeta}\phi_{\xi}, \phi_{\eta}\rangle=\langle X_{\zeta}, \phi_{\xi}
\phi_{\eta}\rangle=\langle X_{\zeta}, \phi_{\xi+\eta}\rangle e^{\langle\xi,
\eta\rangle}=\langle\zeta, \xi+\eta\rangle e^{\langle\xi,\eta\rangle}
 =\langle(a(\zeta)+a^{*}(\zeta))\phi_{\xi}, \phi_{\eta}\rangle,

which gives the proof.  \square 

For each  t\geq 0 , put  B_{t}=X_{1_{[0,t]}} . Then  \{B_{t}\}_{t\geq 0} becomes a Brownian motion which is
called a realization of Brownian motion and so from Theorem 3.4 we have the following
quantum decomposition of Brownian motion:

 B_{t}=a(1_{[0,t]})+a^{*}(1_{[0,t]}) , t\geq 0 . (3.11)

Remark 3.5 The operators  \mathcal{L}(\mathcal{G}, \mathcal{G}^{*}) on admissible Gaussian functionals play an essen‐
tial role in the study of quantum martingales and integral representations [11, 14, 16, 17].

4 Quantum White Noise Derivatives

In this section, we briefly review some basic properties of quantum white noise derivatives
[14, 15, 16, 17, 18, 20].

4.1 Annihilation and Creation Derivatives

For any admissible operator  \Xi\in \mathcal{L}(\mathcal{G}, \mathcal{G}^{*}) and  \zeta\in H , from Theorem 3.1 the commutators

 [a(\zeta), \Xi]=a(\zeta)\Xi-\Xi a(\zeta) , -[a^{*}(\zeta), \Xi]=\Xi a^{*}
(\zeta)-a^{*}(\zeta)\Xi

are well defined as compositions of admissible operators, i.e., belong to  \mathcal{L}(\mathcal{G}, \mathcal{G}^{*}) . We
define

 D_{\zeta}^{+}\Xi=[a(\zeta), \Xi], D_{\zeta}^{-}\Xi=-[a^{*}(\zeta), \Xi].
These are called the creation derivative and annihilation derivative of  --- , respectively.
Both together are referred to as the quantum white noise derivatives (qwn‐derivatives
for brevity) of  \Xi . By the definitions, it is obvious that

 (D_{\zeta-}^{+-*}-)^{*}=([a(\zeta),---*])^{*}=(a(\zeta)_{--}^{-*-*}---a(\zeta))
^{*-}=--a^{*}(\zeta)-a^{*}(\zeta)_{-}^{-}-
 =D_{\zeta}^{-}\Xi . (4.1)

For each admissible operator  \Xi\in \mathcal{L}(\mathcal{G}_{p}, \mathcal{G}_{q}) , we operator norm of  \Xi is denoted by
 \Vert\Xi\Vert_{p,q}.

Theorem 4.1 ([14]) Let  \zeta\in H be given. Then  D_{\zeta}^{\pm} are continuous linear operators
from  \mathcal{L}(\mathcal{G}, \mathcal{G}^{*}) itself.

Theorem 3.4 ([30]) For each ζ ∈ H, Xζ = (0, ζ, 0, · · · ) ∈ G as a Wiener multiplica-
tion operator is represented as the sum of a(ζ) and a∗(ζ), i.e,

Xζ = a(ζ) + a∗(ζ), (3.10)

which is called the quantum decomposition of Xη.

Proof. Since Xζ = (0, ζ, 0, · · · ) ∈ G, from (3.9) we obtain that

〈Xζφξ, φη〉 = 〈Xζ , φξφη〉 = 〈Xζ , φξ+η〉 e〈ξ, η〉 = 〈ζ, ξ + η〉 e〈ξ, η〉
= 〈(a(ζ) + a∗(ζ))φξ, φη〉 ,

which gives the proof. �

For each t ≥ 0, put Bt = X1[0,t]
. Then {Bt}t≥0 becomes a Brownian motion which is

called a realization of Brownian motion and so from Theorem 3.4 we have the following
quantum decomposition of Brownian motion:

Bt = a(1[0,t]) + a∗(1[0,t]), t ≥ 0. (3.11)

Remark 3.5 The operators L(G,G∗) on admissible Gaussian functionals play an essen-
tial role in the study of quantum martingales and integral representations [11, 14, 16, 17].

4 Quantum White Noise Derivatives

In this section, we briefly review some basic properties of quantum white noise derivatives
[14, 15, 16, 17, 18, 20].

4.1 Annihilation and Creation Derivatives

For any admissible operator Ξ ∈ L(G,G∗) and ζ ∈ H, from Theorem 3.1 the commutators

[a(ζ),Ξ] = a(ζ)Ξ− Ξa(ζ), −[a∗(ζ),Ξ] = Ξa∗(ζ)− a∗(ζ)Ξ

are well defined as compositions of admissible operators, i.e., belong to L(G,G∗). We
define

D+
ζ Ξ = [a(ζ),Ξ], D−

ζ Ξ = −[a∗(ζ),Ξ].

These are called the creation derivative and annihilation derivative of Ξ, respectively.
Both together are referred to as the quantum white noise derivatives (qwn-derivatives
for brevity) of Ξ. By the definitions, it is obvious that

(
D+

ζ Ξ
∗
)∗

= ([a(ζ),Ξ∗])∗ = (a(ζ)Ξ∗ − Ξ∗a(ζ))∗ = Ξa∗(ζ)− a∗(ζ)Ξ

= D−
ζ Ξ. (4.1)

For each admissible operator Ξ ∈ L(Gp,Gq), we operator norm of Ξ is denoted by
‖Ξ‖p;q.

Theorem 4.1 ([14]) Let ζ ∈ H be given. Then D±
ζ are continuous linear operators

from L(G,G∗) itself.

8
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PROOF. Suppose that  \Xi\in \mathcal{L}(\mathcal{G}_{p}, \mathcal{G}_{q}) . Then for any  r>0 , by applying (3.4), we
obtain that

 \Vert D_{\zeta}^{+}\Xi\Vert_{p-r,q+r}=\Vert[a(\zeta), \Xi]\Vert_{p-r,q+r}=\Vert
a(\zeta)\Xi-\Xi a(\zeta)\Vert_{p-r,q+r}
 \leq\Vert a(\zeta)\Vert_{q,q+r}\Vert\Xi\Vert_{p,q}+\Vert\Xi\Vert_{p,q}\Vert 
a(\zeta)\Vert_{p-r,p},

which implies that  D_{\zeta}^{+} is a continuous linear operator on  \mathcal{L}(\mathcal{G}, \mathcal{G}^{*}) . Similarly, we see
that  D_{\zeta}^{-} is a continuous linear operator on  \mathcal{L}(\mathcal{G}, \mathcal{G}^{*}) .  \square 

Proposition 4.2 For each  \zeta\in H and  \Phi\in \mathcal{G}^{*} , it holds that

 (D_{\zeta}^{+}M_{\Phi})\phi_{0}=(D_{\zeta}^{-}M_{\Phi})\phi_{0}=a(\zeta)\Phi.
PROOF. We obtain that

 (D_{\zeta}^{+}M_{\Phi})\phi_{0}=(a(\zeta)M_{\Phi}-M_{\Phi}a(\zeta))\phi_{0}=
a(\zeta)\Phi,
 (D_{\zeta}^{-}M_{\Phi})\phi_{0}=(M_{\Phi}a^{*}(\zeta)-a^{*}(\zeta)M_{\Phi})
\phi_{0}=\Phi X_{\zeta}-a^{*}(\zeta)\Phi=a(\zeta)\Phi,

where we used the quantum decomposition as  \Phi X_{\zeta}=X_{\zeta}\Phi=(a(\zeta)+a^{*}(\zeta))\Phi.  \square 

4.2 Pointwise QWN‐Derivatives

Let  \phi=(f_{n})\in \mathcal{G} and  t\in \mathbb{R}_{+} be given. Suppose that  f_{n}=0 except for a finite number
of  n . We define

 D_{t}\phi:=(nf_{n}(t, \cdot))_{n=1}^{\infty},

where   f_{n}(t, \cdot)\in H^{\otimes(n-1)}\wedge , and then  D is called the classical stochastic gradient. The
classical stochastic gradient is denoted by  \nabla in some literatures see [8, 16, 18, 22, 29].
We now extend the domain of  D to the space  \mathcal{G}^{*}

Lemma 4.3 ([16]) For any  p\in \mathbb{R} and  r>0 we have

  \Vert D\phi\Vert_{L^{2}(\mathbb{R}_{+},\mathcal{G}_{-p-r})}^{2}=
\int_{\mathbb{R}_{+}}\Vert|D\phi(t)\Vert|_{-p-r}^{2}dt\leq K(p, r)
\Vert|\phi\Vert|_{-p}^{2}, \phi\in \mathcal{G} , (4.2)

where   K(p, r)= \sup_{n}(n+1)e^{2p-2rn}<\infty . In particular, the classical stochastic gradient

 D:\mathcal{G}_{-p}arrow L^{2}(\mathbb{R}_{+}, \mathcal{G}_{-p-r})\cong L^{2}
(\mathbb{R}_{+})\otimes \mathcal{G}_{-p-r} (4.3)

is a continuous linear map.

PROOF. For each  \phi=(f_{n})_{n=0}^{\infty}\in \mathcal{G} consisting of continuous functions  f_{n} on  \mathbb{R}_{+}^{n} , we
have  D\phi(t)=((n+1)f_{n+1}(t, \cdot))_{n=0}^{\infty} , where the right‐hand side has a pointwise meaning.
Then we obtain that

  \int_{\mathbb{R}_{+}}\Vert|D\phi(t)\Vert|_{-p-r}^{2}dt=\sum_{n=0}^{\infty}n!e^
{-2(p+r)n}\int_{\mathbb{R}_{+}}|(n+1)f_{n+1}(t, \cdot)|_{0}^{2}dt
 = \sum_{n=0}^{\infty}(n+1)e^{2p-2rn}\cross(n+1)!e^{-2p(n+1)}|f_{n+1}|_{0}^{2}
 \leq K(p, r)\Vert|\phi\Vert|_{-p}^{2},

Proof. Suppose that Ξ ∈ L(Gp,Gq). Then for any r > 0, by applying (3.4), we
obtain that

∥∥D+
ζ Ξ

∥∥
p−r;q+r

= ‖[a(ζ),Ξ]‖p−r;q+r = ‖a(ζ)Ξ− Ξa(ζ)‖p−r;q+r

≤ ‖a(ζ)‖q;q+r‖Ξ‖p;q + ‖Ξ‖p;q‖a(ζ)‖p−r;p,

which implies that D+
ζ is a continuous linear operator on L(G,G∗). Similarly, we see

that D−
ζ is a continuous linear operator on L(G,G∗). �

Proposition 4.2 For each ζ ∈ H and Φ ∈ G∗, it holds that
(
D+

ζ MΦ

)
φ0 =

(
D−

ζ MΦ

)
φ0 = a(ζ)Φ.

Proof. We obtain that
(
D+

ζ MΦ

)
φ0 = (a(ζ)MΦ −MΦa(ζ))φ0 = a(ζ)Φ,

(
D−

ζ MΦ

)
φ0 = (MΦa

∗(ζ)− a∗(ζ)MΦ)φ0 = ΦXζ − a∗(ζ)Φ = a(ζ)Φ,

where we used the quantum decomposition as ΦXζ = XζΦ = (a(ζ) + a∗(ζ))Φ. �

4.2 Pointwise QWN-Derivatives

Let φ = (fn) ∈ G and t ∈ R+ be given. Suppose that fn = 0 except for a finite number
of n. We define

Dtφ := (nfn(t, ·))∞n=1,

where fn(t, ·) ∈ H⊗̂(n−1), and then D is called the classical stochastic gradient. The
classical stochastic gradient is denoted by ∇ in some literatures see [8, 16, 18, 22, 29].
We now extend the domain of D to the space G∗.

Lemma 4.3 ([16]) For any p ∈ R and r > 0 we have

‖Dφ‖2L2(R+,G−p−r)
=

∫

R+

|||Dφ(t) |||2−p−r dt ≤ K(p, r) |||φ |||2−p , φ ∈ G, (4.2)

where K(p, r) = supn (n+1)e2p−2rn < ∞. In particular, the classical stochastic gradient

D : G−p → L2(R+,G−p−r) ∼= L2(R+)⊗ G−p−r (4.3)

is a continuous linear map.

Proof. For each φ = (fn)
∞
n=0 ∈ G consisting of continuous functions fn on R

n
+, we

have Dφ(t) = ((n+1)fn+1(t, ·))∞n=0, where the right-hand side has a pointwise meaning.
Then we obtain that

∫

R+

|||Dφ(t) |||2−p−r dt =
∞∑

n=0

n!e−2(p+r)n

∫

R+

|(n+ 1)fn+1(t, ·)|20dt

=
∞∑

n=0

(n+ 1)e2p−2rn × (n+ 1)!e−2p(n+1)|fn+1|20

≤ K(p, r) |||φ |||2−p ,
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which implies the proof of (4.2).  \square 

Put

 L^{2}(\mathbb{R}, \mathcal{G}):= proj  \lim L^{2}(\mathbb{R}, \mathcal{G}_{p})parrow\infty\cong proj  \lim L^{2}(\mathbb{R})\otimes \mathcal{G}_{p}parrow\infty,
 L^{2}( \mathbb{R}_{+}, \mathcal{G}^{*}) :=ind\lim L^{2}(\mathbb{R}_{+}, 
\mathcal{G}_{-p})parrow\infty\cong ind\lim_{arrow p\infty}L^{2}(\mathbb{R})
\otimes \mathcal{G}_{-p}.

Then by Lemma 4.3, the classical stochastic gradient  D is a continuous linear map from
 \mathcal{G} into  L^{2}(\mathbb{R}_{+}, \mathcal{G}) and from  \mathcal{G}^{*} into  L^{2}(\mathbb{R}_{+}, \mathcal{G}^{*}) .

We see from (4.3) that  D\Phi(t) has a meaning as  \mathcal{G}_{-p-r}‐valued  L^{2}‐function in  t\in \mathbb{R}_{+}.
Given  \zeta\in L^{2}(\mathbb{R}_{+}) , the linear map  \mathcal{G}_{p+r}\ni\psi\mapsto\langle\langle D\Phi,  \zeta\otimes\psi\rangle\rangle is continuous. Therefore
there exists a unique  \Psi\in \mathcal{G}_{-p-r} such that

 \langle\langle D\Phi, \zeta\otimes\psi\rangle\rangle=\langle\langle\Psi, 
\psi\rangle\rangle, \psi\in \mathcal{G}_{p+r}.

It is reasonable to write

  \Psi=\int_{\mathbb{R}_{+}}\zeta(t)D\Phi(t)dt.
As is easily seen, the Schwarz inequality holds:

  \Vert|\int_{\mathbb{R}_{+}}\zeta(t)D\Phi(t)dt\Vert|_{-p-r}\leq|\zeta|_{0}
\Vert|D\Phi\Vert|_{L^{2}(\mathbb{R}_{+},\mathcal{G}_{-p-r})} , (4.4)

which implies that the map

  \mathcal{G}_{-p}\ni\Phi\mapsto\int_{\mathbb{R}_{+}}\zeta(t)D\Phi(t)dt\in 
\mathcal{G}_{-(p+r)}
is continuous. On the other hand, for any  \xi\in H , we obtain that

  \int_{\mathbb{R}_{+}}\zeta(t)D\phi_{\xi}(t)dt=\int_{\mathbb{R}_{+}}\zeta(t)
a_{t}\phi_{\xi}dt=\int_{\mathbb{R}_{+}}\zeta(t)\xi(t)\phi_{\xi}dt=\langle\zeta, 
\xi\rangle\phi_{\xi}
 =a(\zeta)\phi_{\xi}.

Therefore, we obtain that

  \int_{\mathbb{R}_{+}}\zeta(t)D\Phi(t)dt=a(\zeta)\Phi, \Phi\in \mathcal{G}^{*} , (4.5)

see [16].

Remark 4.4 The space  \mathcal{G}^{*} as a domain of the classical gradient  D appeared in Aase‐
 o-Ub[1]. For a standard domain see e.g., Kuo [22], Malliavin [27],
Nualart [29].

Let  \Xi\in \mathcal{L}(\mathcal{G}_{p}, \mathcal{G}_{q}) for some  p,  q\in \mathbb{R} . Then for any  r>0 and  \phi\in \mathcal{G} , from (4.2) we
obtain that

  \int_{\mathbb{R}_{+}}\Vert|\Xi D_{t}\phi\Vert|_{q}^{2}dt\leq\int_{\mathbb{R}_{
+}}\Vert I^{\Xi}II_{p,q}^{2} III  D_{t}\phi II_{p}^{2}dt

 \leq K(-p,r)\Vert 1\Xi\Vert 1_{p,q}^{2}11\phi\Vert 1_{p+r}^{2},

which implies the proof of (4.2). �

Put

L2(R,G) := proj lim
p→∞

L2(R,Gp) ∼= proj lim
p→∞

L2(R)⊗ Gp ,

L2(R+,G∗) := ind lim
p→∞

L2(R+,G−p) ∼= ind lim
p→∞

L2(R)⊗ G−p.

Then by Lemma 4.3, the classical stochastic gradient D is a continuous linear map from
G into L2(R+,G) and from G∗ into L2(R+,G∗).

We see from (4.3) that DΦ(t) has a meaning as G−p−r-valued L2-function in t ∈ R+.
Given ζ ∈ L2(R+), the linear map Gp+r ∋ ψ �→ 〈〈DΦ, ζ ⊗ ψ〉〉 is continuous. Therefore
there exists a unique Ψ ∈ G−p−r such that

〈〈DΦ, ζ ⊗ ψ〉〉 = 〈〈Ψ, ψ〉〉, ψ ∈ Gp+r.

It is reasonable to write

Ψ =

∫

R+

ζ(t)DΦ(t) dt.

As is easily seen, the Schwarz inequality holds:
∣∣∣∣
∣∣∣∣
∣∣∣∣
∫

R+

ζ(t)DΦ(t) dt

∣∣∣∣
∣∣∣∣
∣∣∣∣
−p−r

≤ |ζ|0 |||DΦ |||L2(R+,G−p−r)
, (4.4)

which implies that the map

G−p ∋ Φ �→
∫

R+

ζ(t)DΦ(t) dt ∈ G−(p+r)

is continuous. On the other hand, for any ξ ∈ H, we obtain that
∫

R+

ζ(t)Dφξ(t) dt =

∫

R+

ζ(t)atφξ dt =

∫

R+

ζ(t)ξ(t)φξ dt = 〈ζ, ξ〉φξ

= a(ζ)φξ.

Therefore, we obtain that
∫

R+

ζ(t)DΦ(t) dt = a(ζ)Φ, Φ ∈ G∗, (4.5)

see [16].

Remark 4.4 The space G∗ as a domain of the classical gradient D appeared in Aase–
Øksendal–Privault–Ubøe [1]. For a standard domain see e.g., Kuo [22], Malliavin [27],
Nualart [29].

Let Ξ ∈ L(Gp,Gq) for some p, q ∈ R. Then for any r > 0 and φ ∈ G, from (4.2) we
obtain that

∫

R+

|||ΞDtφ |||2q dt ≤
∫

R+

|||Ξ |||2p;q |||Dtφ |||2p dt

≤ K(−p, r) |||Ξ |||2p;q |||φ |||
2
p+r ,
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which implies that

  \int_{\mathbb{R}_{+}}\Vert|_{-}^{-}-D_{t}\Vert|_{p+r,q}^{2}dt\leq K(-p, r)
\Vert|_{-}^{-}-\Vert|_{p,q}^{2},
and so the map

 \mathcal{L}(\mathcal{G}_{p}, \mathcal{G}_{q})\ni\Xi\mapsto\Xi D\in L^{2}
(\mathbb{R}_{+}, \mathcal{L}(\mathcal{G}_{p+r}, \mathcal{G}_{q})
is continuous. Similarly, we obtain that

  \int_{\mathbb{R}_{+}}\Vert|D_{t}\Xi\phi\Vert|_{q-r}^{2}dt\leq K(-q, r)
\Vert|\Xi\phi\Vert|_{q}^{2}\leq K(-q, r)\Vert|\Xi\Vert|_{p,q}^{2}
\Vert|\phi\Vert|_{p}^{2},
which implies that

  \int_{\mathbb{R}_{+}}\Vert|\Xi D_{t}\Vert|_{p+r,q}^{2}dt\leq K(-p, r)\Vert|\Xi
\Vert|_{p,q}^{2},
and so the map

 \mathcal{L}(\mathcal{G}_{p}, \mathcal{G}_{q})\ni\Xi\mapsto D\Xi\in L^{2}
(\mathbb{R}_{+}, \mathcal{L}(\mathcal{G}_{p}, \mathcal{G}_{q-r})
is continuous. Therefore, the pointwise creation derivative  D_{t}^{+} is defined by

 D_{t}^{+}\Xi=D_{t}\Xi-\Xi D_{t}, \Xi\in \mathcal{L}(\mathcal{G}, \mathcal{G}
^{*})

and  D_{t-}^{+-}- is an  \mathcal{L}(\mathcal{G}, \mathcal{G}^{*}) ‐valued  L^{2}‐function in  t\in \mathbb{R}_{+} . Motivated by (4.1), the pointwise
annihilation derivative  D_{t}^{-} is defined by

 D_{t}^{-}\Xi=(D_{t}^{+}\Xi^{*})^{*} \Xi\in \mathcal{L}(\mathcal{G}, \mathcal{G}
^{*}) ,

see [16, 18]. In fact, for given  \Xi\in \mathcal{L}(\mathcal{G}, \mathcal{G}^{*}) and  \zeta\in H , from (4.5) we obtain that

  \int_{\mathbb{R}_{+}}\zeta(t)D_{t}^{+}\Xi dt=D_{\zeta}^{+}\Xi
and

 D_{\zeta}^{-} \Xi=(D_{\zeta}^{+}\Xi^{*})^{*}=\int_{\mathbb{R}_{+}}\zeta(t)
(D_{t}^{+}\Xi^{*})^{*}dt.
Proposition 4.5 For each  t\geq 0 and  \Phi\in \mathcal{G}^{*} , it holds that

 (D_{t}^{+}M_{\Phi})\phi_{0}=(D_{t}^{-}M_{\Phi})\phi_{0}=D_{t}\Phi.

PROOF. We obtain that

 (D_{t}^{+}M_{\Phi})\phi_{0}=(D_{t}M_{\Phi}-M_{\Phi}D_{t})\phi_{0}=D_{t}\Phi,
 (D_{t}^{-}M_{\Phi})\phi_{0}=(D_{t}^{+}M_{\Phi}^{*})^{*}\phi_{0}=(D_{t}^{+}
M_{\Phi})^{*}\phi_{0}=(M_{D_{t}\Phi})^{*}\phi_{0}=D_{t}\Phi,

which gives the proof.  \square 

which implies that ∫

R+

|||ΞDt |||2p+r;q dt ≤ K(−p, r) |||Ξ |||2p;q ,

and so the map
L(Gp,Gq) ∋ Ξ �−→ ΞD ∈ L2(R+,L(Gp+r,Gq)

is continuous. Similarly, we obtain that

∫

R+

|||DtΞφ |||2q−r dt ≤ K(−q, r) |||Ξφ |||2q ≤ K(−q, r) |||Ξ |||2p;q |||φ |||
2
p ,

which implies that ∫

R+

|||ΞDt |||2p+r;q dt ≤ K(−p, r) |||Ξ |||2p;q ,

and so the map
L(Gp,Gq) ∋ Ξ �−→ DΞ ∈ L2(R+,L(Gp,Gq−r)

is continuous. Therefore, the pointwise creation derivative D+
t is defined by

D+
t Ξ = DtΞ− ΞDt, Ξ ∈ L(G,G∗)

and D+
t Ξ is an L(G,G∗)-valued L2-function in t ∈ R+. Motivated by (4.1), the pointwise

annihilation derivative D−
t is defined by

D−
t Ξ =

(
D+

t Ξ
∗
)∗

, Ξ ∈ L(G,G∗),

see [16, 18]. In fact, for given Ξ ∈ L(G,G∗) and ζ ∈ H, from (4.5) we obtain that

∫

R+

ζ(t)D+
t Ξdt = D+

ζ Ξ

and

D−
ζ Ξ =

(
D+

ζ Ξ
∗
)∗

=

∫

R+

ζ(t)
(
D+

t Ξ
∗
)∗

dt.

Proposition 4.5 For each t ≥ 0 and Φ ∈ G∗, it holds that

(
D+

t MΦ

)
φ0 =

(
D−

t MΦ

)
φ0 = DtΦ.

Proof. We obtain that

(
D+

t MΦ

)
φ0 = (DtMΦ −MΦDt)φ0 = DtΦ,(

D−
t MΦ

)
φ0 =

(
D+

t M
∗
Φ

)∗
φ0 =

(
D+

t MΦ

)∗
φ0 = (MDtΦ)

∗ φ0 = DtΦ,

which gives the proof. �
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5 Anticipating Quantum Stochastic Integrals

For each  t\geq 0 , let  \mathcal{F}_{t} be the  \sigma‐field generated by  \{B_{s};0\leq s\leq t\} . A one‐parameter
family  \Phi=\{\Phi_{t}\}_{t\geq 0}\subset \mathcal{G}^{*} is called a generalized stochastic process [4, 11, 31] if there exists
a  p\geq 0 (independent of  t\geq 0 ) such that  \Phi_{t}\in \mathcal{G}_{-p} for all  t\geq 0 and the map  t\mapsto\Phi_{t}\in \mathcal{G}_{-p}
is Borel measurable on  \mathbb{R}_{+} . A generalized stochastic process  \{\Phi_{t}=(F_{t,n})\}_{t\geq 0} is said to
be adapted (w.r.  t.  \mathcal{F}_{t} ) if for all  t\geq 0 and  n\geq 0,  suppF_{t,n}\subset[0, t]^{n}.

A one‐parameter family  \{\Xi_{t}\}_{t\in \mathbb{R}_{+}}\subset \mathcal{L}(\mathcal{G}, \mathcal{G}^{
*}) is called a quantum stochastic process.
Our approach covers a wide class of classical and quantum stochastic processes in the
sense that  \mathcal{G}^{*} and  \mathcal{L}(\mathcal{G}, \mathcal{G}^{*}) involve distributions. As examples, for each  t\geq 0 , we put

 A_{t}=a(1_{[0,t]}) , A_{t}^{*}=a^{*}(1_{[0,t]}) , \Lambda_{t}=\Xi_{1,1}(1_{[0,
t]}) .

For the definition of  \Lambda_{t} , the indicator function  1_{[0,t]} is considered as a multiplication
operator on  H , i.e.,  1_{[0,t]}(\xi)=1_{[0,t]}\xi=:\xi_{[0,t]} for any  \xi\in H . Then for each  t\geq 0,
 A_{t},  A_{t}^{*},  \Lambda_{t}\in \mathcal{L}(\mathcal{G}, \mathcal{G})\cap \mathcal{L}
(\mathcal{G}^{*}, \mathcal{G}^{*}) . The processes  \{A_{t}\}_{t\geq 0},  \{A_{t}^{*}\}_{t\geq 0} and  \{\Lambda_{t}\}_{t\geq 0} are called
the annihilation, creation and conservation (or gauge) processes, respectively.

5.1 Quantum Hitsuda‐Skorohod Integrals

In this section, we study the Hitsuda‐Skorohod type quantum stochastic integrals with
their regular properties.

Theorem 5.1 Let  p,  q\in \mathbb{R} be given and  \Xi\in L^{2}(\mathbb{R}_{+}, \mathcal{L}(\mathcal{G}_{p}, \mathcal{G}_{q})) be a quantum stochastic
process. Then there exists an admissible operator, denoted by  \delta^{-}(---) , in  \mathcal{L}(\mathcal{G}_{p+r}, \mathcal{G}_{q}) for
any  r>0 such that

  \delta^{-}(\Xi)\phi=\int_{\mathbb{R}_{+}}\Xi(t)(D_{t}\phi)dt (5.1)

for any  \phi\in \mathcal{G}.

PROOF. For any  \phi\in \mathcal{G} and  r>0 , by applying (4.2), we obtain that

  \Vert|\int_{\mathbb{R}_{+}}\Xi(t)(D_{t}\phi)dt\Vert|_{q}\leq\int_{\mathbb{R}_{
+}}\Vert|\Xi(t)\Vert|_{p,q}\Vert|D_{t}\phi\Vert|_{p}dt
  \leq(\int_{\mathbb{R}_{+}}\Vert|\Xi(t)\Vert|_{p,q}^{2}dt)^{1/2}
(\int_{\mathbb{R}_{+}}\Vert|D_{t}\phi\Vert|_{p}^{2}dt)^{1/2}
  \leq\sqrt{K(-p,r)}(\int_{\mathbb{R}_{+}}\Vert|\Xi(t)\Vert|_{p,q}^{2}dt)^{1/2}
\Vert|\phi\Vert|_{p+r}^{2},

which implies that the linear operator

  \mathcal{G}_{p+r}\ni\phi\mapsto\int_{\mathbb{R}_{+}}\Xi(t)(D_{t}\phi)dt\in 
\mathcal{G}_{q}
is continuous.  \square 

For given  ---\in L^{2}(\mathbb{R}_{+}, \mathcal{L}(\mathcal{G}_{p}, \mathcal{G}_{q})) , the admissible operator  \delta^{-}(---) satisfying (5.1) is
called the annihilation integral of  \Xi , see [3, 24, 16, 18].

5 Anticipating Quantum Stochastic Integrals

For each t ≥ 0, let Ft be the σ-field generated by {Bs ; 0 ≤ s ≤ t}. A one-parameter
family Φ = {Φt}t≥0 ⊂ G∗ is called a generalized stochastic process [4, 11, 31] if there exists
a p ≥ 0 (independent of t ≥ 0) such that Φt ∈ G−p for all t ≥ 0 and the map t �→ Φt ∈ G−p

is Borel measurable on R+. A generalized stochastic process {Φt = (Ft;n)}t≥0 is said to
be adapted (w.r.t. Ft) if for all t ≥ 0 and n ≥ 0, suppFt;n ⊂ [0, t]n.

A one-parameter family {Ξt}t∈R+ ⊂ L(G,G∗) is called a quantum stochastic process.
Our approach covers a wide class of classical and quantum stochastic processes in the
sense that G∗ and L(G,G∗) involve distributions. As examples, for each t ≥ 0, we put

At = a(1[0,t]), A∗
t = a∗(1[0,t]), Λt = Ξ1,1(1[0,t]).

For the definition of Λt, the indicator function 1[0,t] is considered as a multiplication
operator on H, i.e., 1[0,t](ξ) = 1[0,t]ξ =: ξ[0,t] for any ξ ∈ H. Then for each t ≥ 0,
At, A

∗
t ,Λt ∈ L(G,G)∩L(G∗,G∗). The processes {At}t≥0, {A∗

t}t≥0 and {Λt}t≥0 are called
the annihilation, creation and conservation (or gauge) processes, respectively.

5.1 Quantum Hitsuda–Skorohod Integrals

In this section, we study the Hitsuda–Skorohod type quantum stochastic integrals with
their regular properties.

Theorem 5.1 Let p, q ∈ R be given and Ξ ∈ L2(R+,L(Gp,Gq)) be a quantum stochastic
process. Then there exists an admissible operator, denoted by δ−(Ξ), in L(Gp+r,Gq) for
any r > 0 such that

δ−(Ξ)φ =

∫

R+

Ξ(t)(Dtφ) dt (5.1)

for any φ ∈ G.

Proof. For any φ ∈ G and r > 0, by applying (4.2), we obtain that

∣∣∣∣
∣∣∣∣
∣∣∣∣
∫

R+

Ξ(t)(Dtφ) dt

∣∣∣∣
∣∣∣∣
∣∣∣∣
q

≤
∫

R+

|||Ξ(t) |||p;q |||Dtφ |||p dt

≤
(∫

R+

|||Ξ(t) |||2p;q dt

)1/2 (∫

R+

|||Dtφ |||2p dt

)1/2

≤
√

K(−p, r)

(∫

R+

|||Ξ(t) |||2p;q dt

)1/2

|||φ |||2p+r ,

which implies that the linear operator

Gp+r ∋ φ �−→
∫

R+

Ξ(t)(Dtφ) dt ∈ Gq

is continuous. �

For given Ξ ∈ L2(R+,L(Gp,Gq)), the admissible operator δ−(Ξ) satisfying (5.1) is
called the annihilation integral of Ξ, see [3, 24, 16, 18].
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Remark 5.2 Let  p,  q\in \mathbb{R} be given and  \Xi\in L^{2}(\mathbb{R}_{+}, \mathcal{L}(\mathcal{G}_{p}, \mathcal{G}_{q})) be a quantum stochastic
process. Then for any  \xi\in H , we obtain that

  \delta^{-}(\Xi)\phi_{\xi}=\int_{\mathbb{R}_{+}}\Xi(t)(D_{t}\phi_{\xi})dt=\int_
{\mathbb{R}_{+}}\xi(t)\Xi(t)\phi_{\xi}dt=(\int_{\mathbb{R}_{+}}\Xi(t)dA_{t})
\phi_{\xi},
which implies that

  \delta^{-}(\Xi)=\int_{\mathbb{R}_{+}}\Xi(t)dA_{t}
on a certain domain. Furthermore, if  \Xi is adapted, then  \delta^{-}(\Xi) coincides with the
annihilation integral of Hudson‐Parthasarathy. For the definition of the adaptedness
of quantum stochastic processes, we refer to [11]. Also, for more study on quantum
Hitsuda‐Skorohod integrals, we refer to [3, 24, 18].

As for a criterion for  \delta^{-}(\Xi) being a bounded operator on  \Gamma(H) , we have the following
corollary. A similar result can be found in [18].

Corollary 5.3 For any  r>0 and  \Xi\in L^{2}(\mathbb{R}, \mathcal{L}(\mathcal{G}_{-r}, \Gamma(H))) , the annihilation integral
 \delta^{-}(\Xi) is a bounded operator on  \Gamma(H) .

PROOF. The proof is immediate from Theorem 5.1.  \square 

Theorem 5.4 Let  p,  q\in \mathbb{R} be given and  \Xi\in L^{2}(\mathbb{R}_{+}, \mathcal{L}(\mathcal{G}_{p}, \mathcal{G}_{q})) be a quantum stochastic
process. Then there exists an admissible operator, denoted by  \delta^{+}(_{-}^{-}- ), in  \mathcal{L}(\mathcal{G}_{p}, \mathcal{G}_{q-r}) for
any  r>0 such that

  \langle\langle\delta^{+}(\Xi)\phi, \psi\rangle\rangle=\int_{\mathbb{R}_{+}}
\langle\langle\Xi(t)\phi, D_{t}\psi\rangle\rangle dt (5.2)

for  \phi,  \psi\in \mathcal{G}.

PROOF. For any  \phi,  \psi\in \mathcal{G} and  r>0 , by applying (4.2), we obtain that

 | \int_{\mathbb{R}_{+}}\langle\langle\Xi(t)\phi,  D_{t} \psi\rangle\rangle dt|\leq\int_{\mathbb{R}_{+}}\Vert 1^{\Xi(t)\phi} Ill Ill  D_{t}\psi\Vert 1_{-q}dt

  \leq(\int_{\mathbb{R}_{+}}\Vert|\Xi(t)\Vert|_{p,q}^{2}dt)^{1/2}
(\int_{\mathbb{R}_{+}}\Vert|D_{t}\psi\Vert|_{-q}^{2}dt)^{1/2}
\Vert|\phi\Vert|_{p}
  \leq\sqrt{K(qr)}(\int_{\mathbb{R}_{+}}\Vert|\Xi(t)\Vert|_{p,q}^{2}dt)^{1/2}
\Vert|\phi\Vert|_{p}\Vert|\psi\Vert|_{-q+r},

which implies that the bilinear form

  \mathcal{G}_{p}\cross \mathcal{G}_{-q+r}\ni(\phi, \psi)\mapsto\int_{\mathbb{R}
_{+}}\langle\langle\Xi(t)\phi, D_{t}\psi\rangle\rangle dt\in \mathbb{C}
is continuous. Therefore, there exists a unique admissible operator  \delta^{+}(\Xi)\in \mathcal{L}(\mathcal{G}_{p}, \mathcal{G}_{p-r})
such that (5.2) holds.  \square 

For given  \Xi\in L^{2}(\mathbb{R}_{+}, \mathcal{L}(\mathcal{G}_{p}, \mathcal{G}_{q})) , the admissible operator  \delta^{+}(\Xi) satisfying (5.2) is
called the creation integral of  \Xi , see [3, 24, 16, 18].

As for a criterion for  \delta^{+}(---) being a bounded operator on  \Gamma(H) , we have the following
corollary. A similar result can be found in [18].

Remark 5.2 Let p, q ∈ R be given and Ξ ∈ L2(R+,L(Gp,Gq)) be a quantum stochastic
process. Then for any ξ ∈ H, we obtain that

δ−(Ξ)φξ =

∫

R+

Ξ(t)(Dtφξ) dt =

∫

R+

ξ(t)Ξ(t)φξ dt =

(∫

R+

Ξ(t) dAt

)
φξ,

which implies that

δ−(Ξ) =

∫

R+

Ξ(t) dAt

on a certain domain. Furthermore, if Ξ is adapted, then δ−(Ξ) coincides with the
annihilation integral of Hudson-Parthasarathy. For the definition of the adaptedness
of quantum stochastic processes, we refer to [11]. Also, for more study on quantum
Hitsuda–Skorohod integrals, we refer to [3, 24, 18].

As for a criterion for δ−(Ξ) being a bounded operator on Γ(H), we have the following
corollary. A similar result can be found in [18].

Corollary 5.3 For any r > 0 and Ξ ∈ L2(R,L(G−r,Γ(H))), the annihilation integral
δ−(Ξ) is a bounded operator on Γ(H).

Proof. The proof is immediate from Theorem 5.1. �

Theorem 5.4 Let p, q ∈ R be given and Ξ ∈ L2(R+,L(Gp,Gq)) be a quantum stochastic
process. Then there exists an admissible operator, denoted by δ+(Ξ), in L(Gp,Gq−r) for
any r > 0 such that

〈〈
δ+(Ξ)φ, ψ

〉〉
=

∫

R+

〈〈Ξ(t)φ, Dtψ〉〉 dt (5.2)

for φ, ψ ∈ G.

Proof. For any φ, ψ ∈ G and r > 0, by applying (4.2), we obtain that
∣∣∣∣
∫

R+

〈〈Ξ(t)φ, Dtψ〉〉 dt
∣∣∣∣ ≤

∫

R+

|||Ξ(t)φ |||q |||Dtψ |||−q dt

≤
(∫

R+

|||Ξ(t) |||2p;q dt

)1/2 (∫

R+

|||Dtψ |||2−q dt

)1/2

|||φ |||p

≤
√

K(q, r)

(∫

R+

|||Ξ(t) |||2p;q dt

)1/2

|||φ |||p |||ψ |||−q+r ,

which implies that the bilinear form

Gp × G−q+r ∋ (φ, ψ) �−→
∫

R+

〈〈Ξ(t)φ, Dtψ〉〉 dt ∈ C

is continuous. Therefore, there exists a unique admissible operator δ+(Ξ) ∈ L(Gp,Gp−r)
such that (5.2) holds. �

For given Ξ ∈ L2(R+,L(Gp,Gq)), the admissible operator δ+(Ξ) satisfying (5.2) is
called the creation integral of Ξ, see [3, 24, 16, 18].

As for a criterion for δ+(Ξ) being a bounded operator on Γ(H), we have the following
corollary. A similar result can be found in [18].
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Corollary 5.5 For any  r>0 and  \Xi\in L^{2}(\mathbb{R}, \mathcal{L}(\Gamma(H), \mathcal{G}_{r})) , the creation integral  \delta^{+}(\Xi)
is a bounded operator on  \Gamma(H) .

PROOF. The proof is immediate from Theorem 5.4.  \square 

Remark 5.6 The classical Hitsuda‐Skorohod integral  \delta is defined as the adjoint map
of the classical stochastic gradient  D (see [8, 18, 22, 29]), i.e., for given  \Psi\in L^{2}(\mathbb{R}_{+}, \mathcal{G}^{*}) ,
the classical Hitsuda‐Skorohod integral  \delta(\Psi)\in \mathcal{G}^{*} of  \Psi is defined by

  \langle\langle\delta(\Psi), \phi\rangle\rangle=\int_{\mathbb{R}_{+}}
\langle\langle\Psi(t), D_{t}\phi\rangle\rangle dt, \phi\in \mathcal{G} . (5.3)

Therefore, by denoting  (\Xi\phi)(t)=\Xi(t)\phi , from (5.2) we have

 \delta^{+}(\Xi)\phi=\delta(\Xi\phi) , \phi\in \mathcal{G} , (5.4)

see [2, 24, 18].

The creation and annihilation integrals are related directly. The following corollary
gives a relation between creation and annihilation integrals.

Corollary 5.7 ([18]) Let  p,  q\in \mathbb{R} be given and  \Xi\in L^{2}(\mathbb{R}_{+}, \mathcal{L}(\mathcal{G}_{p}, \mathcal{G}_{q})) be a quantum
stochastic process. Then it holds that

(5.5)

PROOF. For any  \phi,  \psi\in \mathcal{G} , we obtain that

  \langle\langle\delta^{-}(\Xi)\phi, \psi\rangle\rangle=\int_{\mathbb{R}_{+}}
\langle\langle\Xi(t)(D_{t}\phi), \psi\rangle\rangle dt=\int_{\mathbb{R}_{+}}
\langle\{\Xi^{*}(t)\psi, (D_{t}\phi)\rangle\rangle dt
 =\langle\langle\delta^{+}(\Xi^{*})\psi, \phi\rangle\rangle,

which proves (5.5).  \square 

Theorem 5.8 Let  p,  q\in \mathbb{R} be given and  \Xi\in L^{\infty}(\mathbb{R}_{+}, \mathcal{L}(\mathcal{G}_{p}, \mathcal{G}_{q})
) be a quantum stochastic
process. Then there exists an admissible operator, denoted by  \delta^{0}(\Xi) , in  \mathcal{L}(\mathcal{G}_{p+r}, \mathcal{G}_{q-r}) for
any  r>0 such that

  \langle\langle\delta^{0}(\Xi)\phi, \psi\rangle\rangle=\int_{\mathbb{R}_{+}}
\langle\langle\Xi(t)D_{t}\phi, D_{t}\psi\rangle\rangle dt (5.6)

for  \phi,  \psi\in \mathcal{G}.

PROOF. The proof is a simple modification of the proofs of Theorems 5.1 and
5.4.  \square 

For given  \Xi\in L^{2}(\mathbb{R}_{+}, \mathcal{L}(\mathcal{G}_{p}, \mathcal{G}_{q})) , the admissible operator  \delta^{0}(\Xi) satisfying (5.6) is
called the conservation integral of  \Xi , see [3, 24, 16, 18].

As for a criterion for  \delta^{0}(\Xi) being a bounded operator on  \Gamma(H) , we have the following
corollary. A similar result can be found in [18].

Corollary 5.9 For any  r>0 and  \Xi\in L^{2}(\mathbb{R}, \mathcal{L}(\mathcal{G}_{-r}, \mathcal{G}_{r})) , the conservation integral
 \delta^{0}(\Xi) is a bounded operator on  \Gamma(H) .

PROOF. The proof is immediate from Theorem 5.8.  \square 

Corollary 5.5 For any r > 0 and Ξ ∈ L2(R,L(Γ(H),Gr)), the creation integral δ+(Ξ)
is a bounded operator on Γ(H).

Proof. The proof is immediate from Theorem 5.4. �

Remark 5.6 The classical Hitsuda–Skorohod integral δ is defined as the adjoint map
of the classical stochastic gradient D (see [8, 18, 22, 29]), i.e., for given Ψ ∈ L2(R+,G∗),
the classical Hitsuda–Skorohod integral δ(Ψ) ∈ G∗ of Ψ is defined by

〈〈δ(Ψ), φ〉〉 =
∫

R+

〈〈Ψ(t), Dtφ〉〉 dt, φ ∈ G. (5.3)

Therefore, by denoting (Ξφ)(t) = Ξ(t)φ, from (5.2) we have

δ+(Ξ)φ = δ (Ξφ) , φ ∈ G, (5.4)

see [2, 24, 18].

The creation and annihilation integrals are related directly. The following corollary
gives a relation between creation and annihilation integrals.

Corollary 5.7 ([18]) Let p, q ∈ R be given and Ξ ∈ L2(R+,L(Gp,Gq)) be a quantum
stochastic process. Then it holds that

(δ−(Ξ))∗ = δ+(Ξ∗). (5.5)

Proof. For any φ, ψ ∈ G, we obtain that

〈〈
δ−(Ξ)φ, ψ

〉〉
=

∫

R+

〈〈Ξ(t)(Dtφ), ψ〉〉 dt =
∫

R+

〈〈Ξ∗(t)ψ, (Dtφ)〉〉 dt

=
〈〈
δ+(Ξ∗)ψ, φ

〉〉
,

which proves (5.5). �

Theorem 5.8 Let p, q ∈ R be given and Ξ ∈ L∞(R+,L(Gp,Gq)) be a quantum stochastic
process. Then there exists an admissible operator, denoted by δ0(Ξ), in L(Gp+r,Gq−r) for
any r > 0 such that

〈〈
δ0(Ξ)φ, ψ

〉〉
=

∫

R+

〈〈Ξ(t)Dtφ, Dtψ〉〉 dt (5.6)

for φ, ψ ∈ G.

Proof. The proof is a simple modification of the proofs of Theorems 5.1 and
5.4. �

For given Ξ ∈ L2(R+,L(Gp,Gq)), the admissible operator δ0(Ξ) satisfying (5.6) is
called the conservation integral of Ξ, see [3, 24, 16, 18].

As for a criterion for δ0(Ξ) being a bounded operator on Γ(H), we have the following
corollary. A similar result can be found in [18].

Corollary 5.9 For any r > 0 and Ξ ∈ L2(R,L(G−r,Gr)), the conservation integral
δ0(Ξ) is a bounded operator on Γ(H).

Proof. The proof is immediate from Theorem 5.8. �

14

42



43

5.2 Extensions of Anticipating Quantum Stochastic Integrals

In this section, motivated by the results in [23], we discuss extensions of the quantum
Hitsuda‐Skorohod integrals studied in Section 5.1. Based on the quantum white noise
calculus [12], we have the following integral representations:

 A_{t}= \int_{0}^{t}a_{s}ds, A_{t}^{*}=\int_{0}^{t}a_{s}^{*}ds, \Lambda_{t}=
\int_{0}^{t}a_{s}^{*}a_{s}ds,
where  a_{t} and  a_{t}^{*} are the pointwisely defined annihilation and creation operators. On the
other hand, the pointwisely defined annihilation operator  a_{t} and the stochastic gradient
 D_{t} coincide on a certain domain. Hence, the following informal computations gives moti‐
vations for extensions of the quantum Hitsuda‐Skorohod integrals: for a given quantum
stochastic process  \{\Xi_{t}\}_{t\geq 0}\subset \mathcal{L}(\mathcal{G}, \mathcal{G}^{*}) of enough regular operators  \Xi_{t} , we may write as

  \int_{0}^{t}\Xi_{s}dA_{S}=\int_{0}^{t}\Xi_{s}D_{s}ds=\delta^{-}(1_{[0,t]}\Xi) ,

  \int_{0}^{t}(dA_{s})\Xi_{s}=\int_{0}^{t}D_{s}\Xi_{s}ds=\int_{0}^{t}\Xi_{s}
D_{s}ds+\int_{0}^{t}D_{s}^{+}\Xi_{s}ds=\delta^{-}(1_{[0,t]}\Xi)+\int_{0}^{t}
D_{s}^{+}\Xi_{s}ds,
  \int_{0}^{t}(dA_{s}^{*})\Xi_{s}=\int_{0}^{t}D_{s}^{*}\Xi_{s}ds=\delta^{+}
(1_{[0,t]}\Xi) ,

  \int_{0}^{t}\Xi_{s}dA_{\mathcal{S}}^{*}=\int_{0}^{t}\Xi_{s}D_{s}^{*}ds=\delta^
{+}(1_{[0,t]}\Xi)+\int_{0}^{t}D_{s}^{-}\Xi_{s}ds,
  \int_{0}^{t}\Xi_{s}d\Lambda_{s}=\int_{0}^{t}\Xi_{s}D_{s}^{*}D_{s}ds=\delta^{0}
(1_{[0,t]}\Xi)+\delta^{-}(1_{[0,t]}D^{-}\Xi) ,

  \int_{0}^{t}(d\Lambda_{S})\Xi_{s}=\int_{0}^{t}D_{s}^{*}D_{s}\Xi_{S}ds=
\delta^{0}(1_{[0,t]}\Xi)+\delta^{+}(1_{[0,t]}D^{+}\Xi) . (5.7)

However,  D_{t-t}^{\pm-}- has no meaning directly. For example, we consider the annihilation
process  A_{t}=a(1_{[0,t]}) and then

 D_{t}^{-}A_{s}=1_{[0,s]}(t) .

But the annihilation process  A_{t} can be defined as  a(1_{[0,t)}) and then we would have

 D_{t}^{-}A_{s}=1_{[0,s)}(t) . Therefore,  D_{t}^{-}A_{t} cannot be defined in a unique way [23]. From
the above example, if we deal with quantum stochastic processes, then it is natural to
consider two kinds of pointwisely defined annihilation derivative,  D_{t+}^{\pm} and  D_{t-}^{\pm} . Let
 \{\Xi_{t}\}_{s\geq 0}\subset \mathcal{L}(\mathcal{G}, \mathcal{G}^{*}) be a quantum stochastic process. We define

 D_{t^{-}}^{\pm-}+^{-t}= \lim_{s\downarrow t}D_{s-t}^{\pm-}-, D_{t--t}^{\pm-}-=1
\dot{{\imath}}mD_{s-t}^{\pm-}s\uparrow t-,
if the limits exist.

Definition 5.10 Let  \{\Xi_{t}\}_{t\geq 0}\subset \mathcal{L}(\mathcal{G}, \mathcal{G}^{*}) be a quantum stochastic process.

(1) Suppose that  \delta^{+}(_{-}^{-}- ) exists, and  D_{t+-t}^{--}- exists and it is integrable on  \mathbb{R}_{+} . Then we
define

  \int_{\mathbb{R}_{+}}-t-=\delta^{+} ( ---)+\int_{\mathbb{R}_{+}}D_{+^{-t}}^{--
}dtt^{-} . (5.8)

5.2 Extensions of Anticipating Quantum Stochastic Integrals

In this section, motivated by the results in [23], we discuss extensions of the quantum
Hitsuda-Skorohod integrals studied in Section 5.1. Based on the quantum white noise
calculus [12], we have the following integral representations:

At =

∫ t

0

asds, A∗
t =

∫ t

0

a∗sds, Λt =

∫ t

0

a∗sasds,

where at and a∗t are the pointwisely defined annihilation and creation operators. On the
other hand, the pointwisely defined annihilation operator at and the stochastic gradient
Dt coincide on a certain domain. Hence, the following informal computations gives moti-
vations for extensions of the quantum Hitsuda-Skorohod integrals: for a given quantum
stochastic process {Ξt}t≥0 ⊂ L(G,G∗) of enough regular operators Ξt, we may write as

∫ t

0

ΞsdAs =

∫ t

0

ΞsDsds = δ−(1[0,t]Ξ),

∫ t

0

(dAs) Ξs =

∫ t

0

DsΞsds =

∫ t

0

ΞsDsds+

∫ t

0

D+
s Ξsds = δ−(1[0,t]Ξ) +

∫ t

0

D+
s Ξsds,

∫ t

0

(dA∗
s) Ξs =

∫ t

0

D∗
sΞsds = δ+(1[0,t]Ξ),

∫ t

0

ΞsdA
∗
s =

∫ t

0

ΞsD
∗
sds = δ+(1[0,t]Ξ) +

∫ t

0

D−
s Ξsds,

∫ t

0

ΞsdΛs =

∫ t

0

ΞsD
∗
sDsds = δ0(1[0,t]Ξ) + δ−(1[0,t]D

−
· Ξ),

∫ t

0

(dΛs) Ξs =

∫ t

0

D∗
sDsΞsds = δ0(1[0,t]Ξ) + δ+(1[0,t]D

+
· Ξ). (5.7)

However, D±
t Ξt has no meaning directly. For example, we consider the annihilation

process At = a(1[0,t]) and then
D−

t As = 1[0,s](t).

But the annihilation process At can be defined as a(1[0,t)) and then we would have
D−

t As = 1[0,s)(t). Therefore, D−
t At cannot be defined in a unique way [23]. From

the above example, if we deal with quantum stochastic processes, then it is natural to
consider two kinds of pointwisely defined annihilation derivative, D±

t+ and D±
t−. Let

{Ξt}s≥0 ⊂ L(G,G∗) be a quantum stochastic process. We define

D±
t+Ξt = lim

s↓t
D±

s Ξt, D±
t−Ξt = lim

s↑t
D±

s Ξt,

if the limits exist.

Definition 5.10 Let {Ξt}t≥0 ⊂ L(G,G∗) be a quantum stochastic process.

(1) Suppose that δ+(Ξ) exists, and D−
t+Ξt exists and it is integrable on R+. Then we

define ∫

R+

ΞtdA
∗
t+ = δ+(Ξ) +

∫

R+

D−
t+Ξtdt. (5.8)
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(2) Suppose that  \delta^{+}(\Xi) exists, and  D_{t-}^{-}\Xi_{t} exists and it is integrable on  \mathbb{R}_{+} . Then we
define

  \int_{\mathbb{R}_{+}}\Xi_{t}dA_{t-}^{*}=\delta^{+}(\Xi)+\int_{\mathbb{R}_{+}}
D_{t-}^{-}\Xi_{t}dt . (5.9)

(3) Suppose that  \delta^{+}(\Xi) exists, and  D_{t+}^{-}\Xi_{t},  D_{t-}^{-}\Xi_{t} exist as integrable functions on  \mathbb{R}_{+}.
Then we define

 < \alpha>\int_{\mathbb{R}_{+}}\Xi_{t}\circ dA_{t}^{*}=\delta^{+}(\Xi)+
\alpha_{1}\int_{\mathbb{R}_{+}}D_{t+}^{-}\Xi_{t}dt+\alpha_{2}\int_{\mathbb{R}_{+
}}D_{t-}^{-}\Xi_{t}dt (5.10)

for  \alpha=(\alpha_{1}, \alpha_{2})\in \mathbb{R}^{2} , which is called the  <\alpha> ‐creation integral.

Theorem 5.11 Let  p,  q\in \mathbb{R} be given and let  \Xi\in L^{2}(\mathbb{R}_{+}, \mathcal{L}(\mathcal{G}_{p}, \mathcal{G}_{q})) be a quantum
stochastic process.

(1) Suppose that  D_{t+}^{-}\Xi_{t} exists and  D_{+}^{-}\Xi.  \in L^{1}(\mathbb{R}_{+}, \mathcal{L}(\mathcal{G}_{p}, \mathcal{G}_{q-r})) for some  r>0 . Then
the integral   \int_{\mathbb{R}_{+}}\Xi_{t}dA_{t+}^{*} exists as an operator in  \mathcal{L}(\mathcal{G}_{p}, \mathcal{G}_{q-r}) .

(2) Suppose that  D_{t-}^{-}\Xi_{t} exists and  D_{-}^{-}\Xi.  \in L^{2}(\mathbb{R}_{+}, \mathcal{L}(\mathcal{G}_{p}, \mathcal{G}_{q-r})) for some  r>0 . Then
the integral   \int_{\mathbb{R}_{+}}\Xi_{t}dA_{t-}^{*} exists as an operator in  \mathcal{L}(\mathcal{G}_{p}, \mathcal{G}_{q-r}) .

PROOF. (1) Since  \Xi\in L^{2}(\mathbb{R}_{+}, \mathcal{L}(\mathcal{G}_{p}, \mathcal{G}_{q})) , by Theorem 5.4, the quantum Hitsuda‐
Skorohod creation integral  \delta^{+}(\Xi) of  \Xi exists as an admissible operator in  \mathcal{L}(\mathcal{G}_{p}, \mathcal{G}_{q-s}) for
any  s>0 . Also, since, by assumption,  D_{t+}^{-}\Xi_{t} exists and  D_{+}^{-}\Xi.  \in L^{1}(\mathbb{R}_{+}, \mathcal{L}(\mathcal{G}_{p}, \mathcal{G}_{q-r}))
for some  r>0 , for any  \phi\in \mathcal{G} we obtain that

  \Vert\int_{\mathbb{R}_{+}}D_{t+}^{-}\Xi_{t}\phi dt\Vert_{q-r}
\leq(\int_{\mathbb{R}_{+}}\Vert D_{t+^{-t}}^{--}-\Vert_{p,q-r}dt)\Vert\phi\Vert_
{p},
which implies that the integral   \int_{\mathbb{R}_{+}}D_{t+-t}^{--}-dt exists as an admissible operator in  \mathcal{L}(\mathcal{G}_{p}, \mathcal{G}_{q-r}) .

Finally, the integral   \int_{\mathbb{R}_{+}}\Xi_{t}dA_{t+}^{*} exists as an operator in  \mathcal{L}(\mathcal{G}_{p}, \mathcal{G}_{q-r}) .

(2) The proof is similar to the proof of (1).  \square 

By similar arguments used in Definition 5.10, we can define the quantum stochastic
integrals of types given as in (5.7) of which the study will be appear in some other
papers.
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(2) The proof is similar to the proof of (1). �

By similar arguments used in Definition 5.10, we can define the quantum stochastic
integrals of types given as in (5.7) of which the study will be appear in some other
papers.
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[34] A. S. Üstünel and M. Zakai: The composition of Wiener functionals with non-
absolutely continuous shifts, Probab. Theory Related Fields 98 (1994), 163–184.

Un Cig Ji
Department of Mathematics
Chungbuk National University
Cheongju 28644, Korea
E-Mail: uncigji@chungbuk.ac.kr

18

46


