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1 Introduction

The purpose of these notes is to give an explanation of the results obtained in [2]. In that paper, the
authors consider the Spin‐Boson model, which is a very popular model for a qubit coupled to a radiation
field. It is proven, that ultraviolet renormalisation in the Spin‐Boson model cannot be done in the same
way as Edward Nelson renormalized the Nelson model in the paper [8]. More precisely, it is proven, that
if Edward Nelsons method worked then the limiting operator is independent of the qubit so it would
be physically uninteresting. It should be noted, that the proof does not exclude other (more exotic)
renormalisation methods. It might be possible to take the coupling constant to 0 as the ultraviolet
cut‐off is removed and then end up at a physically useful model.

2 Notation and definitions

The following introduction is taken almost directly from [2]. Throughout this paper,  \mathcal{H} will always denote
a separable Hilbert space. Write  \mathcal{H}^{\otimes n} for the  n‐fold tensor product of  \mathcal{H} and let  \mathcal{H}^{\otimes_{s}n}\subset \mathcal{H}^{\otimes n} be the
subspace of symmetric tensors. The bosonic (or symmetric) Fock space is defined as

  \mathcal{F}_{b}(\mathcal{H})=\bigoplus_{n=0}^{\infty}\mathcal{H}^{\otimes_{s}
n}
If  \mathcal{H}=L^{2}(\mathcal{M}, \mathcal{F}, \mu) where  (\mathcal{M}, \mathcal{F}, \mu) is a a‐finite measure space then  \mathcal{H}^{\otimes_{s}n}=L_{sym}^{2}(\mathcal{M}^{n}, \mathcal{F}^{\otimes n}
, \mu^{\otimes n}) .
We will write an element  \psi\in \mathcal{F}_{b}(\mathcal{H}) in terms of its coordinates as  \psi=(\psi^{(n)}) and define the vacuum
 \Omega=(1,0,0, \ldots) . For  g\in \mathcal{H} one defines the annihilation operator  a(g) and the creation operator  a\dagger(g)
on symmetric tensors in  \mathcal{F}_{b}(\mathcal{H}) by  a(g)\Omega=0,  a\dagger(g)\Omega=g and

 a(g)(f_{1} \otimes_{s} \cdot \cdot \cdot \otimes_{s}f_{n})=\frac{1}{\sqrt{n}}
\sum_{\dot{i}=1}^{n}\{g, f_{i}\}f_{1}\otimes_{s} \cdot \cdot \cdot\otimes_{s}
\hat{f_{i}}\otimes_{s} \cdot \cdot \cdot\otimes_{s}f_{n}
 a^{\dagger}(g)(f_{1}\otimes_{s}\cdots\otimes_{s}f_{n})=\sqrt{n+1}g\otimes_{s}f_
{1}\otimes_{s}\cdots\otimes_{s}f_{n}

where  \hat{f_{i}} means that  f_{\dot{i}} is omitted from the tensor product. These operators extend to closed operators
in  \mathcal{F}_{b}(\mathcal{H}) and  (a(g))^{*}=a\dagger(g) . Furthermore, we have the canonical commutation relations:

 \overline{[a(f),a(g)]}=0=\overline{[a\dagger(f),a\dagger(g)]} and  \overline{[a(f),a\dagger(g)]}=\langle f,  g\rangle.

We also define the field operators
 \varphi(g)=\overline{a(g)+a\dagger(g)}.
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renormalisation methods. It might be possible to take the coupling constant to 0 as the ultraviolet
cut-off is removed and then end up at a physically useful model.

2 Notation and definitions

The following introduction is taken almost directly from [2]. Throughout this paper, H will always denote
a separable Hilbert space. Write H⊗n for the n-fold tensor product of H and let H⊗sn ⊂ H⊗n be the
subspace of symmetric tensors. The bosonic (or symmetric) Fock space is defined as

Fb(H) =
∞⊕

n=0

H⊗sn.

If H = L2(M,F , μ) where (M,F , μ) is a σ-finite measure space then H⊗sn = L2
sym(Mn,F⊗n, μ⊗n).

We will write an element ψ ∈ Fb(H) in terms of its coordinates as ψ = (ψ(n)) and define the vacuum
Ω = (1, 0, 0, . . . ). For g ∈ H one defines the annihilation operator a(g) and the creation operator a†(g)
on symmetric tensors in Fb(H) by a(g)Ω = 0, a†(g)Ω = g and

a(g)(f1 ⊗s · · · ⊗s fn) =
1√
n

n∑

i=1

〈g, fi〉f1 ⊗s · · · ⊗s f̂i ⊗s · · · ⊗s fn

a†(g)(f1 ⊗s · · · ⊗s fn) =
√
n+ 1g ⊗s f1 ⊗s · · · ⊗s fn

where f̂i means that fi is omitted from the tensor product. These operators extend to closed operators
in Fb(H) and (a(g))∗ = a†(g). Furthermore, we have the canonical commutation relations:

[a(f), a(g)] = 0 = [a†(f), a†(g)] and [a(f), a†(g)] = 〈f, g〉.

We also define the field operators
ϕ(g) = a(g) + a†(g).
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Let  A be a selfadjoint operator on  \mathcal{H} with domain  D(A) . Then we define the second quantisation of  A

to be the selfadjoint operator

 d \Gamma(A)=0\oplus\bigoplus_{n=1}^{\infty}\sum_{k=1}^{n}(1\otimes)^{k-1}
A(\otimes 1)^{n-k}|_{\mathcal{H}^{\otimes}s^{n}} (2.1)

The number operator is defined as  N=d\Gamma(1) . If  \mathcal{K} is another Hilbert space and  U :  \mathcal{H}arrow \mathcal{K} is a bounded
operator with  \Vert U\Vert\leq 1 then we define

  \Gamma(U)=1\oplus\bigoplus_{n=1}^{\infty}U^{\otimes n}|_{\mathcal{H}^{\otimes_
{S}n}} .

We will write  d\Gamma^{(n)}(A)=d\Gamma(A)|_{\mathcal{H}^{\otimes_{S}n}} and  \Gamma^{(n)}(U)=\Gamma(U)|_{\mathcal{H}^{\otimes_{\mathcal{S}}n}} throughout the text. If  \omega is a
multiplication operator then  d\Gamma^{(n)}(\omega) is the multiplication operator defined by the map  \omega_{n}(k_{1}, \ldots, k_{n})=
 \omega(k_{1})+\cdots+\omega(k_{n}) . The following three results are essential standard results (see [1], [2], [6]).

Lemma 2.1. Let  \omega\geq 0 be a selfadjoint operator defined on the Hilbert space  \mathcal{H} and let  m= \inf(\sigma(\omega)) .
For  n\geq 1 we have

 \sigma(d\Gamma^{(n)}(\omega))=\overline{\{\lambda_{1}+\cdots+\lambda_{n}
|\lambda_{i}\in\sigma(\omega)\}},
  \inf(\sigma(d\Gamma^{(n)}(\omega)))=nm.

Furthermore,  d\Gamma(\omega) will have compact resolvents if and only if  \omega has compact resolvents.

Lemma 2.2. Let  U:\mathcal{H}arrow \mathcal{K} be unitary,  A be a selfadjoint operator on  \mathcal{H},  V\in \mathcal{U}(\mathcal{H}) and  f\in \mathcal{H} . Then
 \Gamma(U) is unitary and

 \Gamma(U)d\Gamma(A)\Gamma(U)^{*}=d\Gamma(UAU^{*}) .

 \Gamma(U)W(f, V)\Gamma(U)^{*}=W(Uf, UVU^{*}) .

 \Gamma(U)\varphi(f)\Gamma(U)^{*}=\varphi(Uf) .

Furthermore,  \Gamma(U)(f_{1}\otimes_{s}\cdots\otimes_{s}f_{n})=Uf_{1}\otimes_{S}
\cdots\otimes_{S}Uf_{n} and  \Gamma(U)\Omega=\Omega.

Lemma 2.3. Let  \omega\geq 0 be selfadjoint and injective. If  g\in D(\omega^{-1/2}) then  \varphi(g) is  d\Gamma(\omega)^{1/2} bounded. In
particular,  \varphi(g) is  N^{1/2} bounded. We have the following bound

 \Vert\varphi(g)\psi\Vert\leq 2\Vert(\omega^{-1/2}+1)g\Vert\Vert(d\Gamma(\omega)
+1)^{1/2}\psi\Vert

which holds on  D(d\Gamma(\omega)^{1/2}) . In particular,  \varphi(g) is infinitesimally  d\Gamma(\omega) bounded.

We now introduce the Weyl representation. For any  g\in \mathcal{H} we define the corresponding exponential
vector

  \epsilon(g)=\sum_{n=0}^{\infty}\frac{g^{\otimes n}}{\sqrt{n!}} . (2.2)

One may prove that if  D\subset \mathcal{H} is a dense subspace then  \{\epsilon(f)|f\in D\} is a linearly independent and total
subset of  \mathcal{F}_{b}(\mathcal{H}) . Write  \mathcal{U}(\mathcal{H}) for the set of unitary maps from  \mathcal{H} into  \mathcal{H} . Let  U\in \mathcal{U}(\mathcal{H}) and  h\in \mathcal{H}.

Then there is a unique unitary map  W(h, U) such that

 W(h, U)\epsilon(g)=e^{-\Vert h\Vert^{2}/2-\langle h,Ug\rangle}\epsilon(h+Ug) 
\forall g\in \mathcal{H}.
One may easily check that  (h, U)\mapsto W(h, U) is strongly continuous and that

 W(h_{1}, U_{1})W(h_{2}, U_{2})=e^{-i{\rm Im}(\langle h_{{\imath}},U_{1}h_{2}
\rangle)}W((h_{1}, U_{1})(h_{2}, U_{2})) ,

where  (h_{1}, U_{1})(h_{2}, U_{2})=(h_{1}+U_{1}h_{2}, U_{1}U_{2}) . If  A is a selfadjoint operator on  \mathcal{H} and  f\in \mathcal{H} we have

 e^{itd\Gamma(A)}=\Gamma(e^{itA})=W(0, e^{itA})
 e^{it\varphi(if)}=W(tf, 1) .

We have the following lemma (see [6]):

Let A be a selfadjoint operator on H with domain D(A). Then we define the second quantisation of A
to be the selfadjoint operator

dΓ(A) = 0⊕
∞⊕

n=1

n∑

k=1

(1⊗)k−1A(⊗1)n−k

∣∣∣∣
H⊗sn

. (2.1)

The number operator is defined as N = dΓ(1). If K is another Hilbert space and U : H → K is a bounded
operator with ‖U‖≤ 1 then we define

Γ(U) = 1⊕
∞⊕

n=1

U⊗n |H⊗sn .

We will write dΓ(n)(A) = dΓ(A) |H⊗sn and Γ(n)(U) = Γ(U) |H⊗sn throughout the text. If ω is a
multiplication operator then dΓ(n)(ω) is the multiplication operator defined by the map ωn(k1, . . . , kn) =
ω(k1) + · · ·+ ω(kn). The following three results are essential standard results (see [1], [2], [6]).

Lemma 2.1. Let ω ≥ 0 be a selfadjoint operator defined on the Hilbert space H and let m = inf(σ(ω)).
For n ≥ 1 we have

σ(dΓ(n)(ω)) = {λ1 + · · ·+ λn | λi ∈ σ(ω)},
inf(σ(dΓ(n)(ω))) = nm.

Furthermore, dΓ(ω) will have compact resolvents if and only if ω has compact resolvents.

Lemma 2.2. Let U : H → K be unitary, A be a selfadjoint operator on H, V ∈ U(H) and f ∈ H. Then

Γ(U) is unitary and

Γ(U)dΓ(A)Γ(U)∗ = dΓ(UAU∗).

Γ(U)W (f, V )Γ(U)∗ = W (Uf, UV U∗).

Γ(U)ϕ(f)Γ(U)∗ = ϕ(Uf).

Furthermore, Γ(U)(f1 ⊗s · · · ⊗s fn) = Uf1 ⊗s · · · ⊗s Ufn and Γ(U)Ω = Ω.

Lemma 2.3. Let ω ≥ 0 be selfadjoint and injective. If g ∈ D(ω−1/2) then ϕ(g) is dΓ(ω)1/2 bounded. In

particular, ϕ(g) is N1/2 bounded. We have the following bound

‖ϕ(g)ψ‖≤ 2‖(ω−1/2 + 1)g‖‖(dΓ(ω) + 1)1/2ψ‖
which holds on D(dΓ(ω)1/2). In particular, ϕ(g) is infinitesimally dΓ(ω) bounded.

We now introduce the Weyl representation. For any g ∈ H we define the corresponding exponential
vector

ǫ(g) =
∞∑

n=0

g⊗n

√
n!
. (2.2)

One may prove that if D ⊂ H is a dense subspace then {ǫ(f) | f ∈ D} is a linearly independent and total
subset of Fb(H). Write U(H) for the set of unitary maps from H into H. Let U ∈ U(H) and h ∈ H.
Then there is a unique unitary map W (h, U) such that

W (h, U)ǫ(g) = e−‖h‖2/2−〈h,Ug〉ǫ(h+ Ug) ∀g ∈ H.

One may easily check that (h, U) �→ W (h, U) is strongly continuous and that

W (h1, U1)W (h2, U2) = e−iIm(〈h1,U1h2〉)W ((h1, U1)(h2, U2)),

where (h1, U1)(h2, U2) = (h1 + U1h2, U1U2). If A is a selfadjoint operator on H and f ∈ H we have

eitdΓ(A) = Γ(eitA) = W (0, eitA)

eitϕ(if) = W (tf, 1).

We have the following lemma (see [6]):
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Lemma 2.4. Let  f,  h\in \mathcal{H} and  U\in \mathcal{U}(\mathcal{H}) . Then

 W(h, U)\varphi(g)W(h, U)^{*}=\varphi(Ug)-2{\rm Re}(\langle Ug, h\rangle)
  W(h, U)a(g)W(h, U)^{*}=a(Ug)-\langle Ug, h\rangle

 W(h, U)a^{\dagger}(g)W(h, U)^{*}=a^{\dagger}(Ug)-\langle h, Ug\rangle.

Furthermore, if  \omega is selfadjoint, non negative and injective on  \mathcal{H} and  h\in D(\omega U^{*}) then

 W(h, U)d\Gamma(\omega)W(h, U)^{*}=d\Gamma(U\omega U^{*})-\varphi(U\omega U^{*}
h)+\{h, U\omega U^{*}h\}

on the domain  D(d\Gamma(U\omega U^{*})) .

The last essential ingredient is the lemmas In what follows we consider two fixed Hilbert spaces  \mathcal{H}_{1}

and  \mathcal{H}_{2} . We will need the following two lemmas (see [9]).

Lemma 2.5. There is a unique isomorphism  U :  \mathcal{F}(\mathcal{H}_{1}\oplus \mathcal{H}_{2})arrow \mathcal{F}(\mathcal{H}
_{1})\otimes \mathcal{F}(\mathcal{H}_{2}) such that  U(\epsilon(f\oplus g))=
 \epsilon(f)\otimes\epsilon(g) . If  \omega_{i} is selfadjoint on  \mathcal{H}_{i},  V_{i} is unitary on  \mathcal{H}_{i} and  f_{i}\in \mathcal{H}_{i} then

 UW(f_{1}\oplus f_{2}, V_{1}\oplus V_{2})U^{*}=W(f_{1}, V_{1})\otimes W(f_{2}, 
V_{2})

 Ud\Gamma(\omega_{1}\oplus\omega_{2})U^{*}=d\Gamma(\omega_{1})\otimes 1+1\otimes
d\Gamma(\omega_{2})

 U\varphi(f_{1}, f_{2})U^{*}=\varphi(f_{1})\otimes 1+1\otimes\varphi(f_{2})

 Ua(f_{1}, f_{2})U^{*}=a(f_{1})\otimes 1+1\otimes a(f_{2})

 Ua^{\dagger}(f_{1}, f_{2})U^{*}=a^{\dagger}(f_{1})\otimes 1+1\otimes 
a^{\dagger}(f_{2}) .

Lemma 2.6. There is a unique isomorphism

 U: \mathcal{F}(\mathcal{H}_{1})\otimes \mathcal{F}(\mathcal{H}_{2})arrow 
\mathcal{F}(\mathcal{H}_{1})\oplus\bigoplus_{n=1}^{\infty}\mathcal{F}
(\mathcal{H}_{1})\otimes S_{n}(\mathcal{H}_{2}^{\otimes n})
such that

 U(w \otimes\{\psi_{2}^{(n)}\}_{n=0}^{\infty})=\psi^{(0)}w\oplus\bigoplus_{n=1}^
{\infty}w\otimes\psi_{2}^{(n)}.
Let  A be a selfadjoint operator on  \mathcal{F}(\mathcal{H}_{1}) and  B be selfadjoint on  \mathcal{F}(\mathcal{H}_{2}) such that  BiS reduced by all of
the subspaces  S_{n}(\mathcal{H}_{2}^{\otimes n}) . Write  B^{(n)}=B|_{S_{n}(\mathcal{H}_{2}^{\otimes n})} . Then

 U(A \otimes 1+1\otimes B)U^{*}=A+B^{(0)}\oplus\bigoplus_{n=1}^{\infty}(A\otimes
1+1\otimes B^{(n)})
 UA \otimes BU^{*}=A\otimes B=B^{(0)}A\oplus\bigoplus_{n=1}^{\infty}A\otimes B^{
(n)}.

3 The Spin‐Boson model

Let  a_{x},  \sigma_{y},  \sigma_{z} denote the Pauli matrices

 \sigma_{x}=(\begin{array}{ll}
0   1
1   0
\end{array}) \sigma_{y}=(\begin{array}{ll}
0   -i
i   0
\end{array}) \sigma_{z}=(\begin{array}{ll}
1   0
0   -1
\end{array})
and define  e_{1}=(1,0) and  e_{-1}=(0,1) . The Spin‐Boson Hamiltonian is given by

 H_{\eta}(v, \omega) :=\eta\sigma_{z}\otimes 1+1\otimes d\Gamma(\omega)+
\sigma_{x}\otimes\varphi(v) ,

which is here parametrised by  v\in \mathcal{H},  \eta\in \mathbb{C} and  \omega selfadjoint on  \mathcal{H} . We will also need the fiber operators:

 F_{\eta}(v, \omega)=\eta\Gamma(-1)+d\Gamma(\omega)+\varphi(v) .

Lemma 2.4. Let f, h ∈ H and U ∈ U(H). Then

W (h, U)ϕ(g)W (h, U)∗ = ϕ(Ug)− 2Re(〈Ug, h〉)
W (h, U)a(g)W (h, U)∗ = a(Ug)− 〈Ug, h〉
W (h, U)a†(g)W (h, U)∗ = a†(Ug)− 〈h, Ug〉.

Furthermore, if ω is selfadjoint, non negative and injective on H and h ∈ D(ωU∗) then

W (h, U)dΓ(ω)W (h, U)∗ = dΓ(UωU∗)− ϕ(UωU∗h) + 〈h, UωU∗h〉

on the domain D(dΓ(UωU∗)).

The last essential ingredient is the lemmas In what follows we consider two fixed Hilbert spaces H1

and H2. We will need the following two lemmas (see [9]).

Lemma 2.5. There is a unique isomorphism U : F(H1⊕H2) → F(H1)⊗F(H2) such that U(ǫ(f⊕g)) =
ǫ(f)⊗ ǫ(g). If ωi is selfadjoint on Hi, Vi is unitary on Hi and fi ∈ Hi then

UW (f1 ⊕ f2, V1 ⊕ V2)U
∗ = W (f1, V1)⊗W (f2, V2)

UdΓ(ω1 ⊕ ω2)U
∗ = dΓ(ω1)⊗ 1 + 1⊗ dΓ(ω2)

Uϕ(f1, f2)U
∗ = ϕ(f1)⊗ 1 + 1⊗ ϕ(f2)

Ua(f1, f2)U
∗ = a(f1)⊗ 1 + 1⊗ a(f2)

Ua†(f1, f2)U
∗ = a†(f1)⊗ 1 + 1⊗ a†(f2).

Lemma 2.6. There is a unique isomorphism

U : F(H1)⊗F(H2) → F(H1)⊕
∞⊕

n=1

F(H1)⊗ Sn(H⊗n
2 )

such that

U(w ⊗ {ψ(n)
2 }∞n=0) = ψ(0)w ⊕

∞⊕

n=1

w ⊗ ψ
(n)
2 .

Let A be a selfadjoint operator on F(H1) and B be selfadjoint on F(H2) such that B is reduced by all of

the subspaces Sn(H⊗n
2 ). Write B(n) = B |Sn(H

⊗n
2

). Then

U(A⊗ 1 + 1⊗B)U∗ = A+B(0) ⊕
∞⊕

n=1

(A⊗ 1 + 1⊗B(n))

UA⊗BU∗ = A⊗B = B(0)A⊕
∞⊕

n=1

A⊗B(n).

3 The Spin-Boson model

Let σx, σy, σz denote the Pauli matrices

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)

and define e1 = (1, 0) and e−1 = (0, 1). The Spin-Boson Hamiltonian is given by

Hη(v, ω) := ησz ⊗ 1 + 1⊗ dΓ(ω) + σx ⊗ ϕ(v),

which is here parametrised by v ∈ H, η ∈ C and ω selfadjoint on H. We will also need the fiber operators:

Fη(v, ω) = ηΓ(−1) + dΓ(ω) + ϕ(v).
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acting in  \mathcal{F}_{b}(\mathcal{H}) . If the spectra are real we define

 E_{\eta}(v,  \omega) :=\inf(\sigma(H_{\eta}(v, \omega)))
  \mathcal{E}_{\eta}(v, \omega) :=\inf(\sigma(F_{\eta}(v, \omega))) .

For  \omega selfadjoint on  \mathcal{H} we define

 m( \omega)=\inf\{\sigma(\omega)\} and  m_{ess}( \omega)=\inf\{\sigma_{ess}(\omega)\}.

Standard perturbation theory and Lemma 2.3 yields:

Proposition 3.1. Let  \omega\geq 0 be selfadjoint and injective,  v\in \mathcal{D}(\omega^{-1/2}) and  \eta\in \mathbb{C} . Then the operators
 F_{\eta}(v, \omega) and  H_{\eta}(v, \omega) are closed on the respective domains

 \mathcal{D}(F_{\eta}(v, \omega))=\mathcal{D}(d\Gamma(\omega))
 \mathcal{D}(H_{\eta}(v, \omega))=\mathcal{D}(1\otimes d\Gamma(\omega)) .

Given any core  \mathcal{D} of  \omega the linear span of the following  \mathcal{S}ets

  \mathcal{J}(\mathcal{D}):=\{\Omega\}\cup\bigcup_{n=1}^{\infty}\{f_{i}
\otimes_{s} \cdot \cdot \cdot \otimes_{s}f_{n}|f_{j}\in \mathcal{D}\}
 \overline{\mathcal{J}}(\mathcal{D}):=\{f_{1}\otimes f_{2}|f_{1}\in\{e_{1}, e_{-
1}\}, f_{2}\in \mathcal{J}(\mathcal{D})\}

is a core for  F_{\eta}(v, \omega) and  H_{\eta}(v, \omega) respectively. Furthermore, both operators are selfadjoint and semi‐
bounded if  \eta\in \mathbb{R} and they have compact  re\mathcal{S} olvents if  \omega has compact resolvents.

From the paper [2] we find the following theorem:

Theorem 3.2. Let  \phi=(\phi_{1}, \phi_{-1})=e_{1}\otimes\phi_{1}+e_{-1}\otimes\phi_{-1} be an element in  \mathcal{F}_{b}(\mathcal{H})^{2}=\mathcal{F}_{b}(\mathcal{H})\oplus \mathcal{F}
_{b}(\mathcal{H})\approx
 \mathbb{C}^{2}\otimes \mathcal{F}_{b}(\mathcal{H}) . Write  \phi_{i}=(\phi_{i}^{(k)}) for  i\in\{-1,1\} . Let  i\in\{-1,1\} . Define  \overline{\phi}_{i}=(\overline{\phi}_{i}^{(k)}) where

 \overline{\phi}_{i}^{(k)}=\{\begin{array}{ll}
\phi_{\dot{i}}^{(k)}   k is even
\phi_{-i}^{(k)}   k is odd
\end{array}
and  V(\phi_{1}, \phi_{-1})=(\overline{\phi}_{1},\overline{\phi}_{-1}) . Then

(1)  V is unitary with  V^{*}=V.

(2) If  \omega\geq 0 is selfadjoint and injective then  V1\otimes d\Gamma(\omega)V^{*}=1\otimes d\Gamma(\omega) . Furthermore, if  \eta\in \mathbb{R} and
 v\in \mathcal{D}(\omega^{-1/2}) then

 VH_{\eta}(v, \omega)V^{*}=F_{-\eta}(v, \omega)\oplus F_{\eta}(v, \omega) .

(3) Let  \omega\geq 0 be selfadjoint and injective,  \eta\in \mathbb{R} and  v\in \mathcal{D}(\omega^{-1/2}) . Then  E_{\eta}(v, \omega)=\mathcal{E}_{-|\eta|}(v, \omega) and
 H_{\eta}(v, \omega) has a ground state if and only if the operator  F_{-|\eta|}(v, \omega) has a ground state. This is the
case if  m(\omega)>0 , and it  i_{\mathcal{S}} non degenerate if  \eta\neq 0 . Also

  \inf(\sigma_{ess}(F_{|\eta|}(v, \omega)))=\mathcal{E}_{-|\eta|}(v, \omega)+
m_{ess}(\omega)
  \inf(\sigma_{ess}(H_{\eta}(v, \omega)))=E_{\eta}(v, \omega)+m_{ess}(\omega)

and  \mathcal{E}_{|\eta|}(v, \omega)>\mathcal{E}_{-|\eta|}(v, \omega) if and only if both  \eta\neq 0 and  m(\omega)\neq 0.

(4) Let  \omega\geq 0 be  \mathcal{S} elfadjoint and injective,  \eta\in \mathbb{R} and  v\in \mathcal{D}(\omega^{-1/2}) . If  \phi is a ground state for  H_{\eta}(v, \omega)
then

 V\phi=\{\begin{array}{ll}
e_{-sign(\eta)}\otimes\psi   \eta\neq 0
e_{-1}\otimes\psi_{-1}+e_{1}\otimes\psi_{1}   \eta=0
\end{array}
where  \psi i_{\mathcal{S}} a ground  \mathcal{S}tate for  F_{-|\eta|}(v, \omega) and  \psi_{1},  \psi_{-1} are either  0 or a ground state for  F_{0}(v, \omega) .

acting in Fb(H). If the spectra are real we define

Eη(v, ω) := inf(σ(Hη(v, ω)))

Eη(v, ω) := inf(σ(Fη(v, ω))).

For ω selfadjoint on H we define

m(ω) = inf{σ(ω)} and mess(ω) = inf{σess(ω)}.

Standard perturbation theory and Lemma 2.3 yields:

Proposition 3.1. Let ω ≥ 0 be selfadjoint and injective, v ∈ D(ω−1/2) and η ∈ C. Then the operators

Fη(v, ω) and Hη(v, ω) are closed on the respective domains

D(Fη(v, ω)) = D(dΓ(ω))

D(Hη(v, ω)) = D(1⊗ dΓ(ω)).

Given any core D of ω the linear span of the following sets

J (D) := {Ω} ∪
∞⋃

n=1

{f1 ⊗s · · · ⊗s fn | fj ∈ D}

J̃ (D) := {f1 ⊗ f2 | f1 ∈ {e1, e−1}, f2 ∈ J (D)}

is a core for Fη(v, ω) and Hη(v, ω) respectively. Furthermore, both operators are selfadjoint and semi-

bounded if η ∈ R and they have compact resolvents if ω has compact resolvents.

From the paper [2] we find the following theorem:

Theorem 3.2. Let φ = (φ1, φ−1) = e1 ⊗ φ1 + e−1 ⊗ φ−1 be an element in Fb(H)2 = Fb(H)⊕ Fb(H) ≈
C

2 ⊗Fb(H). Write φi = (φ
(k)
i ) for i ∈ {−1, 1}. Let i ∈ {−1, 1}. Define φ̃i = (φ̃

(k)
i ) where

φ̃
(k)
i =

{
φ
(k)
i k is even

φ
(k)
−i k is odd

and V (φ1, φ−1) = (φ̃1, φ̃−1). Then

(1) V is unitary with V ∗ = V .

(2) If ω ≥ 0 is selfadjoint and injective then V 1 ⊗ dΓ(ω)V ∗ = 1 ⊗ dΓ(ω). Furthermore, if η ∈ R and

v ∈ D(ω−1/2) then

V Hη(v, ω)V
∗ = F−η(v, ω)⊕ Fη(v, ω).

(3) Let ω ≥ 0 be selfadjoint and injective, η ∈ R and v ∈ D(ω−1/2). Then Eη(v, ω) = E−|η|(v, ω) and

Hη(v, ω) has a ground state if and only if the operator F−|η|(v, ω) has a ground state. This is the

case if m(ω) > 0, and it is non degenerate if η �= 0. Also

inf(σess(F|η|(v, ω))) = E−|η|(v, ω) +mess(ω)

inf(σess(Hη(v, ω))) = Eη(v, ω) +mess(ω)

and E|η|(v, ω) > E−|η|(v, ω) if and only if both η �= 0 and m(ω) �= 0.

(4) Let ω ≥ 0 be selfadjoint and injective, η ∈ R and v ∈ D(ω−1/2). If φ is a ground state for Hη(v, ω)
then

V φ =

{
e−sign(η) ⊗ ψ η �= 0

e−1 ⊗ ψ−1 + e1 ⊗ ψ1 η = 0

where ψ is a ground state for F−|η|(v, ω) and ψ1, ψ−1 are either 0 or a ground state for F0(v, ω).
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At this point we should look at an example:

Example 3.3. The physically correct model we have  \mathcal{H}=L^{2}(\mathbb{R}^{3}, \mathcal{B}(\mathbb{R}^{3}), \lambda_{3}) where  \lambda_{3} is the Lebesgue
measure and  \mathcal{B}(\mathbb{R}^{3}) is the Borel  \sigma‐algebra. Furthermore,  \omega(k)=\sqrt{|k|^{2}+m^{2}} and  v_{g,\Lambda}=g\omega^{-1/2}1_{\{|k|\leq\Lambda\}}
for some  m\geq 0,  g>0 and  \Lambda>0 . In this case,  m(\omega)=m=m_{ess}(\omega) and  \sigma(\omega)=[m, \infty )  =\sigma_{ess}(\omega) . Note
that all assumptions in Theorem 3.2 are fulfilled.

4 Result and Interpretation

Throughout this section  \omega will always denote an injective, non negative and selfadjoint operator on  \mathcal{H}.

Furthermore, we will write  m=m(\omega) and  m_{ess}=m_{ess}(\omega) . The main technical result is the following
theorem:

Theorem 4.1. Let  \{v_{g}\}_{g\in(0,\infty)}\subset \mathcal{D}(\omega^{-1/2}) and  P_{\omega} denote the spectral measure corresponding to  \omega . For
each  \overline{m}>0 we define  P_{\overline{m}}=P_{\omega}((\overline{m}, \infty)) and  \overline{P}_{\overline{m}}=1-P_{\overline{m}}=P_{\omega}([0,\overline{m}]) . Assume that there is  \overline{m}>0

 \mathcal{S}uch that:

(1)  \{\overline{P}_{\overline{7n}}v_{g}\}_{g\in(0,\infty)}converge\mathcal{S} to  v\in \mathcal{D}(\omega^{-1/2}) in the graph norm of  \omega^{-1/2}

(2)  \Vert\omega^{-1}P_{\overline{m}}v_{g}\Vert diverges to  \infty a\mathcal{S}gtend_{\mathcal{S}} to infinity.

Then the  g ‐dependent family of operators given by

 \overline{F}_{\eta,\overline{7n}}(v_{g}, \omega) :=W(\omega^{-1}P_{\overline{m}
}v_{g}, 1)F_{\eta}(v_{g}, \omega)W(\omega^{-1}P_{\overline{m}}v_{g}, 1)^{*}+
\Vert\omega^{-1/2}P_{\overline{m}}v_{g}\Vert^{2}
 =\eta W(2\omega^{-1}P_{\overline{m}}v_{g}, -1)+d\Gamma(\omega)+
\varphi(\overline{P}_{\overline{m}}v_{g}) (4.1)

is uniformly bounded below by  -| \eta|-\sup_{g\in(0,\infty)}\Vert\omega^{-1/2}\overline{P}_{\overline{7n}}
v_{g}\Vert^{2} Furthermore,  \{\overline{F}_{\eta,\overline{m}}(v_{g}, \omega)\}_{g\in(0,\infty)} con‐
verges to  d\Gamma(\omega)+\varphi(v) in norm resolvent sense  a\mathcal{S}gtend_{\mathcal{S}} to  \infty.

The assumption in part (1) is critical. Divergence where  \omega is small can lead to problems (see [3] for a
counter example). The following Corollary easily proved:

Corollary 4.2. Assume  \mathcal{H}=L^{2}(\mathcal{M}, \mathcal{F}, \mu) and  \omega is a multiplication operator on this space. Let   v:\mathcal{M}arrow

 \mathbb{C} is measurable and  \{\chi_{g}\}_{g\in(0,\infty)} be a collection of functions from  \mathbb{R} into  [0,1] . Assume  g\mapsto\chi_{g}(x) is
increasing and converges to 1 for all  x\in \mathbb{R}.  A_{\mathcal{S}}sume furthermore that  k\mapsto\chi_{g}(\omega(k))v(k)\in \mathcal{D}(\omega^{-1/2})
and that there is  \overline{m}>0 such that  \overline{v}  :=1_{\{\omega\leq\overline{m}\}}v\in \mathcal{D}(\omega^{-1/2}) . If  k\mapsto\omega(k)^{-1}v(k)1_{\{\omega>1\}}(k)\not\in \mathcal{H} there are
unitary maps  \{U_{g}\}_{g\in(0,\infty)} and  \{V_{g}\}_{g\in(0,\infty)} independent of  \eta such that:

(1)  \{U_{g}F_{\eta}(v_{g}, \omega)U_{g}^{*}+\Vert\omega^{-1/2}1_{\{\omega>\overline
{m}\}}v_{g}\Vert^{2}\}_{g\in(0,\infty)} converges in norm resolvent sense to the operator
 d\Gamma(\omega)+\varphi(\overline{v})a\mathcal{S}g tends to infinity.

(2)  \{V_{g}H_{\eta}(v_{g}, \omega)V_{g}^{*}+\Vert\omega^{-1/2}1_{\{\omega>\overline
{m}\}}v_{g}\Vert^{2}\}_{g\in(0,\infty)} is uniformly bounded below and converges in norm
resolvent sense to the operator

 \overline{H}:=(d\Gamma(\omega)+\varphi(\overline{v}))\oplus(d\Gamma(\omega)+
\varphi(\overline{v}))

as  g tends to  \infty . In particular,

 (H_{\eta}(v_{g}, \omega)+\Vert\omega^{-1/2}1_{\{\omega>\overline{m}\}}v_{g}
\Vert^{2}+i)^{-1}-(H_{0}(v_{g}, \omega)+\Vert\omega^{-1/2}
1_{\{\omega>\overline{m}\}}v_{g}\Vert^{2}+i)^{-1}

will converge to  \theta in norm  a\mathcal{S}g tends to  \infty.

Example 4.3. We continue Example 3.3. Let us consider self‐energy renormalisation schemes as invented
in [8]. In such schemes proves that

 H_{\eta}(v_{g,\Lambda}, \omega)-E_{\eta}(v_{g,\Lambda}, \omega)

converges in strong or uniform resolvent sense to an operator  H_{\eta}^{Ren}(v_{g}, \omega) . Using Corollary 4.2 we see:

At this point we should look at an example:

Example 3.3. The physically correct model we have H = L2(R3,B(R3), λ3) where λ3 is the Lebesgue
measure and B(R3) is the Borel σ-algebra. Furthermore, ω(k) =

√
|k|2+m2 and vg,Λ = gω−1/21{|k|≤Λ}

for some m ≥ 0, g > 0 and Λ > 0. In this case, m(ω) = m = mess(ω) and σ(ω) = [m,∞) = σess(ω). Note
that all assumptions in Theorem 3.2 are fulfilled.

4 Result and Interpretation

Throughout this section ω will always denote an injective, non negative and selfadjoint operator on H.
Furthermore, we will write m = m(ω) and mess = mess(ω). The main technical result is the following
theorem:

Theorem 4.1. Let {vg}g∈(0,∞) ⊂ D(ω−1/2) and Pω denote the spectral measure corresponding to ω. For

each m̃ > 0 we define Pm̃ = Pω((m̃,∞)) and P m̃ = 1 − Pm̃ = Pω([0, m̃]). Assume that there is m̃ > 0
such that:

(1) {P m̃vg}g∈(0,∞) converges to v ∈ D(ω−1/2) in the graph norm of ω−1/2.

(2) ‖ω−1Pm̃vg‖ diverges to ∞ as g tends to infinity.

Then the g-dependent family of operators given by

F̃η,m̃(vg, ω) : = W (ω−1Pm̃vg, 1)Fη(vg, ω)W (ω−1Pm̃vg, 1)
∗ + ‖ω−1/2Pm̃vg‖2

= ηW (2ω−1Pm̃vg,−1) + dΓ(ω) + ϕ(P m̃vg) (4.1)

is uniformly bounded below by −|η|− supg∈(0,∞)‖ω−1/2P m̃vg‖2. Furthermore, {F̃η,m̃(vg, ω)}g∈(0,∞) con-

verges to dΓ(ω) + ϕ(v) in norm resolvent sense as g tends to ∞.

The assumption in part (1) is critical. Divergence where ω is small can lead to problems (see [3] for a
counter example). The following Corollary easily proved:

Corollary 4.2. Assume H = L2(M,F , μ) and ω is a multiplication operator on this space. Let v : M →
C is measurable and {χg}g∈(0,∞) be a collection of functions from R into [0, 1]. Assume g �→ χg(x) is

increasing and converges to 1 for all x ∈ R. Assume furthermore that k �→ χg(ω(k))v(k) ∈ D(ω−1/2)
and that there is m̃ > 0 such that ṽ := 1{ω≤m̃}v ∈ D(ω−1/2). If k �→ ω(k)−1v(k)1{ω>1}(k) /∈ H there are

unitary maps {Ug}g∈(0,∞) and {Vg}g∈(0,∞) independent of η such that:

(1) {UgFη(vg, ω)U
∗
g + ‖ω−1/21{ω>m̃}vg‖2}g∈(0,∞) converges in norm resolvent sense to the operator

dΓ(ω) + ϕ(ṽ) as g tends to infinity.

(2) {VgHη(vg, ω)V
∗
g + ‖ω−1/21{ω>m̃}vg‖2}g∈(0,∞) is uniformly bounded below and converges in norm

resolvent sense to the operator

H̃ := (dΓ(ω) + ϕ(ṽ))⊕ (dΓ(ω) + ϕ(ṽ))

as g tends to ∞. In particular,

(Hη(vg, ω) + ‖ω−1/21{ω>m̃}vg‖2+i)−1 − (H0(vg, ω) + ‖ω−1/21{ω>m̃}vg‖2+i)−1

will converge to 0 in norm as g tends to ∞.

Example 4.3. We continue Example 3.3. Let us consider self-energy renormalisation schemes as invented
in [8]. In such schemes proves that

Hη(vg,Λ, ω)− Eη(vg,Λ, ω)

converges in strong or uniform resolvent sense to an operator HRen
η (vg, ω). Using Corollary 4.2 we see:

5
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(1)  \Lambda\mapsto E_{\eta}(v_{g,\Lambda}, \omega)+\Vert\omega^{-1/2}
1_{\{\omega>1\}}v_{g,\Lambda}\Vert^{2} has a limit independent of  \eta.

(2)  (H_{\eta}(v_{g,\Lambda}, \omega)+\Vert\omega^{-1/2}1_{\{\omega>1\}}v_{g,
\Lambda}\Vert^{2}+i)^{-1}-(H_{0}(v_{g,\Lambda}, \omega)+\Vert\omega^{-1/2}
1_{\{\omega>1\}}v_{g,\Lambda}\Vert^{2}+i)^{-1} converges to  \theta

in norm as  \Lambda tends to  \infty.

From this we conclude that if a self‐energy renormalisation scheme exists then  H_{\eta}^{Ren}(v_{g}, \omega) must be
independent of  \eta , which is not physically interesting. In other words, the contribution from the qubit
disappears, as the ultraviolet cutoff is removed. This result is similar to the result in [4], where it is
shown, that the mass‐shell in a certain model becomes “almost fla t^{11} as the ultraviolet cutoff is removed.
Thus the contribution from the matter particle vanishes as the ultraviolet cutoff is removed.

5 Sketch of proof of Theorem 4.1.

In this section we give the central ideas behind the proof of Theorem 4.1. From now on,  \omega will always
denote an injective, non negative and selfadjoint operator on  \mathcal{H} . As a simplifying assumption we have

 m(\omega)>0.

We will also assume  \{v_{g}\}_{g\in(0,\infty)} satisfies the assumptions of Theorem 4.1. It is easy to see that if they
hold for some  \overline{m} then it will also hold for  \overline{m}=m . Hence we will now assume that  \overline{m}=m . Using Lemma
2.4 we see that

 \overline{F}_{\eta,m}(v_{g}, \omega)=\eta W(2\omega^{-1}v_{g}, -1)+
d\Gamma(\omega)

Hence it is enough to prove that if  \{h_{g}\}_{g\in(0,\infty)}\subset \mathcal{H} satisfies

  garrow\infty 1\dot{{\imath}}m\Vert h_{g}\Vert=\infty
then

 T_{\eta}(h_{g}, \omega) :=\eta W(h_{g}, -1)+d\Gamma(\omega)

converges to  d\Gamma(\omega) is norm resolvent sense as  g tends to infinity. The following Lemma goes back to [5]
and is the first fundamental observation.

Lemma 5.1. Theorem 4.1 holds if  \omega has compact resolvents.

Proof. First we see that  W(h_{g}, -1) converges to  0 weakly for  g tending to infinity. By [10, Theorem 4.26]
it is enough to check exponential vectors. We calculate

 \langle\epsilon(g_{1}), W(v_{g}, -1)\epsilon(g_{2})\rangle=e^{-\Vert v_{g}
\Vert^{2}/2+\langle v_{g},g_{2}\rangle}\langle\epsilon(g_{1}), \epsilon(v_{g}-g_
{2})\}
 =e^{-\Vert v_{9}\Vert^{2}/2+\langle v_{g},g_{2}\rangle+\langle g{\imath},v_{g}
\rangle-\langle g_{1},g_{2}\rangle},

which converges to  0 . We calculate

 (T_{\eta}(v_{g}, \omega)-i)^{-1}-(d\Gamma(\omega)-i)^{-1}=\eta(T_{\eta}(v_{g}, 
\omega)-i)^{-1}W(v_{g}, -1)(d\Gamma(\omega)-i)^{-1}
 =\eta^{2}(\overline{T}_{\eta}(v_{g}, \omega)-i)^{-1}W(v_{g}, -1)
(d\Gamma(\omega)-i)^{-1}W(v_{g}, -1)(d\Gamma(\omega)-i)^{-1}

 +\eta(d\Gamma(\omega)-i)^{-1}W(v_{g}, -1)(d\Gamma(\omega)-i)^{-1}

This implies

 \Vert(\overline{F}_{\eta}(v_{g}, \omega)-i)^{-1}-(d\Gamma(\omega)-i)^{-1}
\Vert\leq(|\eta|+1)|\eta|\Vert(d\Gamma(\omega)-i)^{-1}W(v_{g}, -1)
(d\Gamma(\omega)-i)^{-1}\Vert

By Lemma 2.1 we see  (d\Gamma(\omega)-i)^{-1} is compact so the result is finished.  \square 

The next Lemma is very technical. The full proof can be found in [2] and we only make a short sketch:

(1) Λ �→ Eη(vg,Λ, ω) + ‖ω−1/21{ω>1}vg,Λ‖2 has a limit independent of η.

(2) (Hη(vg,Λ, ω) + ‖ω−1/21{ω>1}vg,Λ‖2+i)−1 − (H0(vg,Λ, ω) + ‖ω−1/21{ω>1}vg,Λ‖2+i)−1 converges to 0

in norm as Λ tends to ∞.

From this we conclude that if a self-energy renormalisation scheme exists then HRen
η (vg, ω) must be

independent of η, which is not physically interesting. In other words, the contribution from the qubit
disappears, as the ultraviolet cutoff is removed. This result is similar to the result in [4], where it is
shown, that the mass-shell in a certain model becomes "almost flat" as the ultraviolet cutoff is removed.
Thus the contribution from the matter particle vanishes as the ultraviolet cutoff is removed.

5 Sketch of proof of Theorem 4.1.

In this section we give the central ideas behind the proof of Theorem 4.1. From now on, ω will always
denote an injective, non negative and selfadjoint operator on H. As a simplifying assumption we have

m(ω) > 0.

We will also assume {vg}g∈(0,∞) satisfies the assumptions of Theorem 4.1. It is easy to see that if they
hold for some m̃ then it will also hold for m̃ = m. Hence we will now assume that m̃ = m. Using Lemma
2.4 we see that

F̃η,m(vg, ω) = ηW (2ω−1vg,−1) + dΓ(ω)

Hence it is enough to prove that if {hg}g∈(0,∞) ⊂ H satisfies

lim
g→∞

‖hg‖= ∞

then

Tη(hg, ω) := ηW (hg,−1) + dΓ(ω)

converges to dΓ(ω) is norm resolvent sense as g tends to infinity. The following Lemma goes back to [5]
and is the first fundamental observation.

Lemma 5.1. Theorem 4.1 holds if ω has compact resolvents.

Proof. First we see that W (hg,−1) converges to 0 weakly for g tending to infinity. By [10, Theorem 4.26]
it is enough to check exponential vectors. We calculate

〈ǫ(g1),W (vg,−1)ǫ(g2)〉 = e−‖vg‖
2/2+〈vg,g2〉〈ǫ(g1), ǫ(vg − g2)〉

= e−‖vg‖
2/2+〈vg,g2〉+〈g1,vg〉−〈g1,g2〉,

which converges to 0. We calculate

(Tη(vg, ω)− i)−1 − (dΓ(ω)− i)−1 =η(Tη(vg, ω)− i)−1W (vg,−1)(dΓ(ω)− i)−1

=η2(T̃η(vg, ω)− i)−1W (vg,−1)(dΓ(ω)− i)−1W (vg,−1)(dΓ(ω)− i)−1

+ η(dΓ(ω)− i)−1W (vg,−1)(dΓ(ω)− i)−1.

This implies

‖(F̃η(vg, ω)− i)−1 − (dΓ(ω)− i)−1‖≤ (|η|+1)|η|‖(dΓ(ω)− i)−1W (vg,−1)(dΓ(ω)− i)−1‖

By Lemma 2.1 we see (dΓ(ω)− i)−1 is compact so the result is finished.

The next Lemma is very technical. The full proof can be found in [2] and we only make a short sketch:
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Lemma 5.2. Assume  \omega is a selfadjoint, non negative and injective operator on  \mathcal{H} . Let  P_{\omega} be the spectral
measure of  \omega . Define the measurable function  f_{k} :  \mathbb{R}arrow \mathbb{R}

 f_{k}(x)= \sum_{n=0}^{\infty}(n+1)2^{-k}1_{(n2^{-k},(n+1)2^{-k}]\cap(m,\infty)}
(x) .

along with   \omega_{k}=\int_{\mathbb{R}}f_{k}(\lambda)dP_{\omega}(\lambda) . Then the following holds

1.  \overline{F}_{\eta}(v, \omega_{k}) converges to  \overline{F}_{\eta}(v, \omega) in norm resolvent sense uniformly in  v.

2. Let  \{h_{g}\}_{g\in(0,\infty)} be a collection of elements in  \mathcal{H} . For each  k\in \mathbb{N} , there are Hilbert spaces  \mathcal{H}_{1,k},  \mathcal{H}_{2,k},
selfadjoint operators  \omega_{1,k},  \omega_{2,k}\geq 0 , a collection of elements  \{\overline{h}_{g,k}\}_{g\in(0,\infty)}\subset \mathcal{H}_{1,k} and a collection
of unitary maps  \{u_{g,k}\}_{g\in(0,\infty)} such that

  \mathcal{U}_{g,k}:\mathcal{F}_{b}(\mathcal{H})arrow \mathcal{F}_{b}
(\mathcal{H}_{1,k})\oplus(\bigoplus_{n=1}^{\infty}\mathcal{F}_{b}(\mathcal{H}
_{1,k})\otimes S_{n}((\mathcal{H}_{2,k})^{\otimes n})) ,

 \omega_{1,k}\geq 2^{-k} has compact resolvents,  \Vert h_{g}\Vert=\Vert\overline{h}_{k,g}\Vert for all  g>0 and

  \mathcal{U}_{g},{}_{k}\overline{F}_{\eta}(h_{g}, \omega_{k})\mathcal{U}_{g,k}^
{*}=\overline{F}_{\eta}(\overline{h}_{g,k}, \omega_{1,k})\oplus\bigoplus_{n=1}^{
\infty}(\overline{F}_{(-1)^{n}\eta}(\overline{h}_{g,k}, \omega_{1,k})\otimes 1+1
\otimes d\Gamma^{(n)}(\omega_{2,k}))
for all  \eta\in \mathbb{R}.

Proof. Part (1) can easily be derived from the fact that

  \Vert(\overline{F}_{\eta}(v, \omega)-\overline{F}_{\eta}(v, \omega_{k}))
\psi\Vert=\Vert(d\Gamma(\omega)-d\Gamma(\omega_{k}))\psi\Vert\leq\frac{2^{-k}}
{m}\Vert d\Gamma(\omega)\psi\Vert.
for all  \psi\in \mathcal{D}(d\Gamma(\omega)) . Standard resolvent formulas then finishes the proof. In part (2), one constructs
Hilbert spaces  \mathcal{H}_{1,k} and  \mathcal{H}_{2,k} and a unitary map  U_{g,k} :  \mathcal{H}arrow \mathcal{H}_{1,k}\oplus \mathcal{H}_{2,k} such that

 U_{g,k}\omega_{k}U_{g,k}^{*}=\omega_{1,k}\oplus\omega_{2,k}

where  \omega_{1,k}\geq 2^{-k} has compact resolvents and  \overline{h}_{k,g}=U_{g,k}h_{g}\in \mathcal{H}_{1,k} for all  g\in(0, \infty) . One now uses
Lemmas 2.2, 2.5 and 2.6 to construct  \mathcal{U}_{g,k}.  \square 

We can now prove that Theorem 4.1 is true. From Lemma 5.2 part (2) and Lemma 5.1 we see that
the theorem holds if  \omega=\omega_{k} for some  k . Lemma 5.2 part (1) then finishes the proof.
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Lemma 5.2. Assume ω is a selfadjoint, non negative and injective operator on H. Let Pω be the spectral

measure of ω. Define the measurable function fk : R → R

fk(x) =
∞∑

n=0

(n+ 1)2−k1(n2−k,(n+1)2−k]∩(m,∞)(x).

along with ωk =
∫
R
fk(λ)dPω(λ). Then the following holds

1. F̃η(v, ωk) converges to F̃η(v, ω) in norm resolvent sense uniformly in v.

2. Let {hg}g∈(0,∞) be a collection of elements in H. For each k ∈ N, there are Hilbert spaces H1,k,H2,k,

selfadjoint operators ω1,k, ω2,k ≥ 0, a collection of elements {h̃g,k}g∈(0,∞) ⊂ H1,k and a collection

of unitary maps {Ug,k}g∈(0,∞) such that

Ug,k : Fb(H) → Fb(H1,k)⊕
(

∞⊕

n=1

Fb(H1,k)⊗ Sn((H2,k)
⊗n)

)
,

ω1,k ≥ 2−k has compact resolvents, ‖hg‖= ‖h̃k,g‖ for all g > 0 and

Ug,kF̃η(hg, ωk)U∗
g,k =F̃η(h̃g,k, ω1,k)⊕

∞⊕

n=1

(
F̃(−1)nη(h̃g,k, ω1,k)⊗ 1 + 1⊗ dΓ(n)(ω2,k)

)

for all η ∈ R.

Proof. Part (1) can easily be derived from the fact that

‖(F̃η(v, ω)− F̃η(v, ωk))ψ‖= ‖(dΓ(ω)− dΓ(ωk))ψ‖≤
2−k

m
‖dΓ(ω)ψ‖.

for all ψ ∈ D(dΓ(ω)). Standard resolvent formulas then finishes the proof. In part (2), one constructs
Hilbert spaces H1,k and H2,k and a unitary map Ug,k : H → H1,k ⊕H2,k such that

Ug,kωkU
∗
g,k = ω1,k ⊕ ω2,k

where ω1,k ≥ 2−k has compact resolvents and h̃k,g = Ug,khg ∈ H1,k for all g ∈ (0,∞). One now uses
Lemmas 2.2, 2.5 and 2.6 to construct Ug,k.

We can now prove that Theorem 4.1 is true. From Lemma 5.2 part (2) and Lemma 5.1 we see that
the theorem holds if ω = ωk for some k. Lemma 5.2 part (1) then finishes the proof.
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