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model

Cid Reyes‐Bustos
Institute of Mathematics for Industry, Kyushu University

1 Introduction

The semi‐classical Rabi model was originally defined by Isidor Isaac Rabi in 1936 [13]
to describe the effect of a rapidly varying weak magnetic field on an oriented atom
possessing nuclear spin. The fully quantized version, known now as the the quantum
Rabi model (QRM), was introduced by Jaynes and Cummings in 1963 [6]. The QRM
describes the simplest interaction between a two‐level atom and a light field, making
it one of the basic models of quantum optics.

Let \mathcal{H} be a Hilbert space satisfying the hypothesis of the Stone‐von Neumann the‐
orem, with raising and lowering operators   a\dagger and  a , respectively. Then, the QRM is
the model with Hamiltonian acting on  \mathcal{H}\otimes \mathbb{C}^{2} given by

 H_{Rabi}=\omega a^{\dagger}a+g(a+a^{\dagger})\sigma_{x}+\triangle\sigma_{z},

where  \sigma_{x},  \sigma_{z} are the Pauli matrices

 \sigma_{x}=\begin{array}{ll}
0   1
1   0
\end{array}, \sigma_{z}=\begin{array}{ll}
1   0
0   -1
\end{array},
 \omega>0 is the classical frequency of light field (modeled by a quantum harmonic os‐
cillator),  2\triangle>0 is the energy difference of the two‐level system and  g>0 is the
interaction strength between the two systems.

It is not difficult to verify that  H_{Rabi} is self‐adjoint and that its spectrum consist
only of the (discrete) set of eigenvalues (see e.g. Prop. 2.1‐2.3 of [15]). In Figure 1, for
 \triangle=1 , we show the plot of the spectral curves of the QRM, obtained by considering
the eigenvalues as functions of the parameter  g>0 . The apparent crossings on the
plots actually correspond to multiplicity two degeneracies in the spectrum of QRM.

An important feature of the QRM is the presence of a  \mathbb{Z}/2\mathbb{Z}‐symmetry. This sym‐
metry amounts to the existence of the parity operator  \Pi=-\sigma_{z}(-1)^{aa}\dagger satisfying
 [\Pi, H_{Rabi}]=0 and having eigenvalues  p=\pm 1 (c.f. [12]). The presence of this symme‐
try allows one to write

 H_{Rabi}=H_{+\triangle}\oplus H_{-\triangle},
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Figure 1: Spectral graph of QRM for  \triangle=1

for Hamiltonians  H_{\pm\triangle} acting on appropriate subspaces of  \mathcal{H}\otimes \mathbb{C}^{2} . Degeneracies of
multiplicity two consisting of an eigenvalue of  H_{+\triangle} and one eigenvalue of  H_{-\triangle} appear
naturally, manifesting as crossings in the spectral curves (cf. in Figure 1).

The symmetry in the QRM is broken by the introduction of a non‐trivial inter‐
action term, resulting in a model called asymmetric quantum Rabi model (AQRM).
Concretely, the AQRM is the model described by the Hamiltonian

 H_{Rabi}^{\varepsilon}=\omega a^{\dagger}a+\triangle\sigma_{z}+g\sigma_{x}
(a^{\dagger}+a)+\varepsilon\sigma_{x},

acting on  \mathcal{H}\otimes \mathbb{C}^{2} , with  \varepsilon\in \mathbb{R} . Clearly, the Hamiltonian of the QRM is recovered by
setting  \varepsilon=0 , that is,  H_{Rabi}^{0}=H_{Rabi}.

In the same way as the QRM, it is verified that the spectrum of the AQRM consist
only on the discrete set of eigenvalues of  H_{Rabi}^{\varepsilon} . In general, due to the absence of a
symmetry operator acting on the Hamiltonian  H_{Rabi}^{\varepsilon} for nonzero parameter  \varepsilon\in \mathbb{R} , the
presence is degenerate eigenvalues is a prior not to be expected.

In Figure 2, we show plots of spectral curves of the AQRM for fixed  \triangle=1 and
different values of  \varepsilon\in \mathbb{R} . Notice that for  \varepsilon=1.4 , the spectral graph does not have
crossings, that is, there is not degenerate eigenvalues of AQRM. However, in the case
  \varepsilon=\frac{1}{2} , (apparent) crossings in the spectral graphs were first observed by Li and
Batchelor in [10].

(a)  \varepsilon=1.4 and  \triangle=1 (b)   \varepsilon=\frac{1}{2} and  \triangle=1

Figure 2: Spectral graphs AQRM
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The presence of degenerate eigenvalues was proved for the case   \varepsilon=\frac{1}{2} by Masato
Wakayama in [16], where he also conjecture that degeneracies are present for general
  \varepsilon\in\frac{1}{2}\mathbb{Z} . The conjecture was settled and the degeneracy structure of the spectrum
of the AQRM was completed in [8]. In this document we present an overview and
introduction to these results.

The document is organized as follows. First, in Section 2 we introduce the classi‐
fication of the spectrum of the AQRM and its degeneracy structure. In Section 3 we
explain the relation between constraint polynomials and Juddian solutions, leading to
the proof of existence of degeneracies in the AQRM for half‐integer  \varepsilon . In Section 4
we give a brief description of the non‐degenerate states of the AQRM via the study of
the  G‐fUnction and  T‐fUnction.

2 The spectrum of the AQRM

In this section, we introduce the classification of the spectrum of the AQRM. As we
have explained in the introduction, the spectrum of the AQRM consists only on the
discrete set of (real) eigenvalues of  H_{Rabi}^{\varepsilon} , in other words, the continuous and residual
spectrum of  H_{Rabi}^{\varepsilon} are empty.

To discuss the classification of eigenvalues we introduce first the Segal‐Bargmann
Hilbert space (cf. [1, 5]). Let  \mathcal{V}(\mathbb{C}) be the space of holomorphic functions  f :  \mathbb{C}arrow \mathbb{C}

with the inner‐product  (\cdot, \cdot)_{\mathcal{H}_{\mathcal{B}}} defined for  f,  g\in \mathcal{V}(\mathbb{C}) by

 (f, g)_{\mathcal{B}}= \int_{\mathbb{C}}\overline{f(z)}g(z)d\mu(z) (1)

where the measure  d\mu(z) is given by  d \mu(z)=\frac{1}{\pi}e^{-|z|^{2}}dxdy for  z=x+iy , and  dxdy is
the Lebesgue measure in  \mathbb{C}\simeq \mathbb{R}^{2}.

The Segal‐Bargmann space  \mathcal{H}_{\mathcal{B}} is the space of (entire) functions  f\in \mathcal{V}(\mathbb{C}) satisfying

  \Vert f\Vert_{\mathcal{B}}=(f, f)_{\mathcal{B}}^{1/2}=(\int_{\mathbb{C}}|f(z)
|^{2}d\mu(z))^{1/2}<\infty.
The Segal‐Bargmann space  \mathcal{H}_{\mathcal{B}} is a complete Hilbert space (cf. Proposition 14.15

of [5]). Moreover, in  \mathcal{H}_{\mathcal{B}} the multiplication operator  Z=z and and differentiation
operator  Y= \partial_{z}=\frac{d}{dz} acting on  \mathcal{H}_{\mathcal{B}} satisfy the commutation relation

 [Y, Z]=1,

and in particular, are verified to be realizations of the raising and lowering operators
  a\dagger and  a.

Next, we consider the representation of the eigenvalue problem of the AQRM in the
Segal‐Bargmann space  \mathcal{H}_{\mathcal{B}} . The Hamiltonian  H_{Rabi}^{\varepsilon} , realized as an operator acting on
 \mathcal{H}_{\mathcal{B}}\otimes \mathbb{C}^{2} , corresponds to the operator

 \tilde{H}_{Rabi}^{\varepsilon}:=\{\begin{array}{ll}
z\partial_{z}+\triangle   g(z+\partial_{z})+\varepsilon
 g(z+\partial_{z})+\varepsilon   z\partial_{z}-\triangle
\end{array}\}
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Then, the time‐independent Schrödinger equation  H_{Rabi}^{\varepsilon}\varphi=\lambda\varphi(\lambda\in \mathbb{R}) is equivalent
to the system of first order differential equations

 \tilde{H}_{Rabi}^{\varepsilon}\psi=\lambda\psi, \psi=\{\begin{array}{l}
\psi_{1}(z)
\psi_{2}(z)
\end{array}\},
where eigenfunctions of  H_{Rabi}^{\varepsilon} associated to a given eigenvalue  \lambda\in \mathbb{R} correspond to
solutions  \psi_{i}\in \mathcal{H}_{\mathcal{B}}i=1,2.

Therefore, the eigenvalue problem of the AQRM amounts to finding entire functions
 \psi_{1},  \psi_{2}\in \mathcal{H}_{\mathcal{B}} and real number  \lambda satisfying

 \{\begin{array}{l}
(z\partial_{z}+\triangle)\psi_{1}+(g(z+\partial_{z})+\varepsilon)\psi_{2}=
\lambda\psi_{1},
(g(z+\partial_{z})+\varepsilon)\psi_{1}+(z\partial_{z}-\triangle)\psi_{2}=
\lambda\psi_{2}.
\end{array}
Now, by setting  f_{\pm}=\psi_{1}\pm\psi_{2} , we get

 \{\begin{array}{l}
(z+g)\frac{d}{dz}f_{+}+(gz+\varepsilon-\lambda)f_{+}+\triangle f_{-}=0,
(z-g)\frac{d}{dz}f_{-}-(gz+\varepsilon+\lambda)f_{-}+\triangle f_{+}=0.
\end{array} (2)

Notice that the system (2) has an (unramified) irregular singular point at   z=\infty in
addition to regular singular points at  z=\pm g . It is known (see e.g. [4]) that actually,
any entire solution  \psi of (2) is actually  \psi\in \mathcal{H}_{\mathcal{B}}\otimes \mathbb{C}^{2}.

By using the substitution  \phi_{1,\pm}(z)  :=e^{gz}f_{\pm}(z) and the change of variable  y= \frac{g+z}{2g},
we obtain

 \{\begin{array}{l}
y\frac{d}{dy}\phi_{1,+}(y)=(\lambda+g^{2}-\varepsilon)\phi_{1,+}(y)-
\triangle\phi_{1,-}(y) ,
(y-1)\frac{d}{dy}\phi_{1,-}(y)=(\lambda+g^{2}-\varepsilon-4g^{2}+4g^{2}y+
2\varepsilon)\phi_{1,-}(y)-\triangle\phi_{1,+}(y) .
\end{array} (3)

Defining  a  :=-(\lambda+g^{2}-\varepsilon) , we get

 \{\begin{array}{l}
y\frac{d}{dy}\phi_{1,+}(y)=-a\phi_{1,+}(y)-\triangle\phi_{1,-}(y) ,
(y-1)\frac{d}{dy}\phi_{1,-}(y)=-(4g^{2}-4g^{2}y+a-2\varepsilon)\phi_{1,-}(y)-
\triangle\phi_{1,+}(y) .
\end{array} (4)

We remark here that we can define a system of linear differential equations (similar
to (4)) by applying the substitutions  \phi_{2,\pm}(z)  :=e^{-gz}f_{\pm}(z) and   \overline{y}=\frac{g-z}{2g} . In order to
make the full analysis of the holomorphicity of solutions, it is necessary to consider
both systems. For simplicity, in this document we consider only system (4) and leave
the detailed discussion to [8].

The exponents of the equation system can be obtained by standard computation,
and are shown in Table 1 for reference.

Due to the presence of finite singularities, solutions of (4) are not to be automatically
assumed to correspond to solutions of the eigenvalue problem of the AQRM. The
verification of the holomorphicity (on the complex plane) of the Frobenius solution
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Table 1: Exponents of system (4).

 \phi_{1,-}(y) \phi_{1,+}(y)

 y=0 0, -a+1 0, -a
 y=1 0, -a+2\varepsilon 0, -a+2\varepsilon+1

of the system (4) depends on the value of the parameter  a , in other words, of the
eigenvalue  \lambda . For instance, if  \lambda=N\pm\varepsilon-g^{2} (i.e.  -a=N), then the difference
between the two exponents (at  y=0 ) is an integer and the system may develop a
logarithmic branch‐cut at  y=0.

The ongoing considerations motivate the classification of the eigenvalues of AQRM.
Let  \lambda\in \mathbb{R} be an eigenvalue of  H_{Rabi}^{\varepsilon} , then

1. if there is an integer  \mathbb{N}\in \mathbb{Z} such that  \lambda=N\pm\varepsilon-g^{2},  \lambda is called exceptional
eigenvalue,

2. if  \lambda is not an exceptional eigenvalue, we say that  \lambda is a regular eigenvalue.

In the case that  \lambda is an exceptional eigenvalues, it may be the case that the solu‐
tion  \phi_{1,-}(y) of (4) is polynomial, in which case it is automatically entire and thus, it
corresponds to a solution of the eigenvalues problem. Such a solution (and the corre‐
sponding eigenvalue) is called Juddian (also known as quasi‐exact). Otherwise, we say
that the solution (resp. the eigenvalue) is non‐Juddian exceptional. In this context,
a non‐Juddian eigenvalue is either a regular eigenvalue or a non‐Juddian exceptional
eigenvalue.

Historically, the first eigenvalues of QRM to be described were the Juddian eigen‐
values, studied by Judd in [7] and Kuś in [9]. Concretely, Kuś showed the presence of
degenerate eigenvalues of the form  \lambda=N-g^{2} in the spectrum of the QRM, subject
to a polynomial equation. These eigenvalues constitute the crossings of the spectral
graph in Figure 1. In fact, it was shown in [8] (see also [10, 16] for the case   \varepsilon=\frac{1}{2} )
that for   \varepsilon\in\frac{1}{2}\mathbb{Z} the degenerate solutions are exactly the Juddian ones and that any
other solution is non‐degenerate. The complete degeneracy picture for the AQRM is
shown in Table 2.

Type

Eigenvalue Solution Degenerate

Regular  \cross

Exceptional  \epsilon\neq\ell/2 Juddian  \cross

Non‐Juddian  \cross

Juddian /  Non‐Juddian  \cross

Exceptional  \epsilon=\ell/2 Juddian  \backslash \subset

Non‐Juddian  \cross

 Juddian/Non‐Juddian  \cross

Table 2: Eigenvalue structure of AQRM
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The non‐degeneracy of regular solution was proved in [2], along with the non‐
Juddian solutions for the case   \varepsilon\not\in\frac{1}{2}\mathbb{Z}.

In Section 3 we given an overview of the proof of the existence of degeneracy of
Juddian solutions for the case   \varepsilon\in\frac{1}{2}\mathbb{Z} and in Section 4 we describe the conditions for

the existence of non‐Juddian solutions.

3 Juddian solutions: constraint polynomials

The presence of a Juddian eigenvalue  \lambda=N\pm\varepsilon-g^{2}(N\in \mathbb{N}) in the spectrum of
 H_{Rabi}^{\varepsilon} for parameters  \triangle,  g>0 is equivalent (cf. [10, 16]) to the existence of solution
of the polynomial equation

 P_{N}^{(N,\pm\varepsilon)}((2g)^{2}, \triangle^{2})=0 . (5)

The polynomial  P_{N}^{(N,\varepsilon)}(x, y) is known as constraint polynomial and equation (5) is
the constraint relation for the Juddian eigenvalue  \lambda=N\pm\varepsilon-g^{2} . The constraint
polynomial  P_{N}^{(N,\varepsilon)}(x, y) is the N‐th member of a family of polynomials defined by a
recurrence relation.

Definition 3.1. Let  N\in \mathbb{Z}_{\geq 0} . The polynomials  P_{k}^{(N,\varepsilon)}(x, y) of degree  k are defined
recursively by

 P_{0}^{(N,\varepsilon)}(x, y)=1,
 P_{1}^{(N,\varepsilon)}(x, y)=x+y-1-2\varepsilon,
 P_{k}^{(N,\varepsilon)}(x, y)=(kx+y-k(k+2\varepsilon))P_{k-1}^{(N,\varepsilon)}
(x, y)-k(k-1)(N-k+1)xP_{k-2}^{(N,\varepsilon)}(x, y) .

For brevity, we set  c_{k}^{(\varepsilon)}=k(k+2\varepsilon) and  \lambda_{k}=k(k-1)(N-k+1) .

A necessary condition for two exceptional eigenvalues  \lambda_{1}=N+\varepsilon-g^{2} and  \lambda_{2}=

 M-\varepsilon-g^{2} with  N,  M\in \mathbb{Z}_{\geq 0} and  N\neq M , to be equal is that

  \varepsilon=\frac{M-N}{2}=\frac{\ell}{2}\in\frac{1}{2}\mathbb{Z},
that is,  \varepsilon must be half‐integer. In terms of constraint polynomials, this is equivalent
to the simultaneous satisfaction of the two constraint relations

 P_{N}^{(N,\ell/2)}((2g)^{2}, \triangle^{2})=0=P_{N+\ell}^{(N+\ell,-\ell/2)}
((2g)^{2}, \triangle^{2}) , (6)

where  N\in \mathbb{Z}_{\geq 0} and  \ell\geq 0.

Following this argumentation, Masato Wakayama conjectured in [16] that the rela‐
tion

 P_{N+\ell}^{(N+\ell,-\ell/2)}(x, y)=A_{N}^{\ell}(x, y)P_{N}^{(N,\ell/2)}(x, y) , (7)

holds for  N,  \ell\in \mathbb{Z}_{\geq 0} and that the polynomials  A_{N}^{\ell}(x, y) have no positive roots for
 x,  y>0.

The divisibility condition (7) and the positivity of the factor  A_{N}^{\ell}(x, y) are illus‐
trated in Figure 3 where the curves described by the zeros of constraint polynomials
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(a)  \epsilon=0.3 (  b )  \epsilon=1 (  c )  \epsilon=3/2

Figure 3: Curves defined by constraint polynomials for  N=5,  \ell=3

 fordifferent values o  f\varepsilon. Notice t   hatinthecase\varepsilon=\frac{1}{2}\mathbb{Z},  thezeros o fbothconstraintP_{N+\ell}^{(N+\ell,-\varepsilon)}(x,y)andP_{N}^{(N,\varepsilon)
}(x,y),with N  =5,\ell=8,areplotted i  nthe(g,\triangle)-plane
polynomials exactly coincide.

As mentioned in the introduction, the conjecture above was settled in [8]. Actually,
we have the following generalization (also conjectured in [16]), these results are the
topic of the paper by the author [14].

Theorem 3.2. Let  \ell,  k\in \mathbb{Z}_{\geq 0} , then

 P_{k+\ell}^{(N+\ell,-\frac{\ell}{2})}(x, y)=A_{k}^{(\ell)}(x, y)P_{k}^{(N,\frac
{\ell}{2})}(x, y)+B_{k}^{(N,\ell)}(x, y)
with  B_{N}^{(N,\ell)}(x, y)=0.

Notice that the conjecture (7) is recovered from Theorem 3.2 by setting  k=N . The
positivity part of the conjecture also holds in the general case.

Theorem 3.3. With the notation of Theorem 3.2,  A_{k}^{(\ell)}(x, y)>0 for  x,  y>0.

Next, we sketch the proof of the Theorems 3.2 and 3.3. For a tridiagonal matrix we
write

tridiag  \{\begin{array}{ll}
a_{\dot{i}}   b_{i}
c_{i}   
\end{array}\}  1\leq i\leq n

 :=  \{\begin{array}{llllll}
a_{1}   b_{1}   0   0   \cdots   0
c_{1}   a_{2}   b_{2}   0   \cdots   0
0   c_{2}   a_{3}   b_{3}   \cdots   0
\vdots   .   \ddots   .   .   \vdots
 0   \cdots   0   c_{n-2}   a_{n-1}   b_{n-1}
0   \cdots   0   0   c_{n-1}   a_{n}
\end{array}\}
Since the polynomials  P_{k}^{(N,\varepsilon)}(x, y) are defined by a recurrence relation, the naturally

have a representation as the determinant of a  k\cross k tridiagonal matrix,

 P_{k}^{(N,\varepsilon)}(x, y)=\det(I_{k}y+A_{k}^{(N)}x+U_{k}^{(\varepsilon)}) (8)

where  I_{k} is the identity matrix of size  k and

 A_{k}^{(N)}= tridiag  \{\begin{array}{ll}
i   0
\lambda_{i+1}   
\end{array}\}  1\leq i\leq k

’  U_{k}^{(\varepsilon)}= tridiag  \{\begin{array}{ll}
-c_{i}^{(\varepsilon)}   1
0   
\end{array}\}  1\leq i\leq k

The key to the proof of Theorem 3.2 is the fact that the polynomials  P_{k}^{(N,\varepsilon)}(x, y) can
be expressed as the determinant of a tridiagonal matrix plus a rank‐one perturbation.

140



141

Proposition 3.4. Let  k\in \mathbb{Z}_{\geq 0} , then

 P_{k}^{(N,\varepsilon)}=\det(\begin{array}{l}
(N,\epsilon)T
kkkk
\end{array}) ,

where  I_{k} is the identity matrix,  D_{k}=diag(1,2, \ldots, k) and  C_{k}^{(N,\epsilon)} is the tridiagonal
matrix given by

 C_{k}^{(N,\epsilon)}= tridiag  \{\begin{array}{ll}
-i(2(N-\dot{i})+1+2\varepsilon)   1
i(i+1)c_{N-i}^{(\varepsilon)}   
\end{array}\}
 e_{k}\in \mathbb{R}^{k} is the k‐th standard basis vector and  u\in \mathbb{R}^{k} is given entrywise by

 u_{j}=(-1)^{k-j+2}  (k   +1j)   \frac{k!(N-j)!}{(j-1)!(N-k-1)!}
Sketch of the proof of Theorem 3.2. By elementary linear algebra, from Proposition
3.4 we obtain the expression

 P_{k}^{(N+\ell,-\frac{\ell+N-k}{2})}(x, y)=\det(I_{k}y+D_{k}x+C_{k}^{(N+\ell,-
\frac{\ell+N-k}{2})})+q_{k}(x, y) ,

for some polynomial  q_{k}(x, y) divisible by  N-k . Next, observe that the matrix  I_{k}y+

 D_{k}x+C_{k}^{(N+\ell,-\frac{\ell+N-k}{2})} is block diagonal and therefore, the determinant is given by the
product of

  \overline{A}_{k}^{(N,\ell)}(x, y)=\frac{(k+\ell)!}{k!}\det tridiag  [^{x+\frac{y}{k+x}+2_{i}-1+k-N-\ell}c_{-\dot{i}}^{\underline{N+\ell-k}}  1]_{1\leq i\leq p}
and

 P_{k}^{(N,\frac{\ell+N-k}{2})}(x, y)+q'(x, y;N, \ell, k)
for some polynomial  q'(x, y;N, \ell, k) divisible by  N-k.

Note that the matrices in the determinant expressions of  \overline{A}_{k}^{(N,\ell)}(x, y) and

 A_{k}^{(\ell)}(x, y)  := \frac{(k+\ell)!}{k!}\det tridiag  [^{x+\frac{y}{k+i}+2i-1-\ell}c_{-}^{(\frac{\ell}{2i})}  1]_{1\leq i\leq\ell}
differ entrywise only by multiples of  N-k . The result then follows from the multi‐
linearity of the determinant.  \square 

Next, we give a sketch of the proof of positivity. First, note that we can find a
matrix  M_{\ell}^{(N)}(x) such that

 {\rm Spec}(-M_{\ell}^{(N)}(x))=\{y\in \mathbb{R} : A_{N}^{(\ell)}(x, y)=0\}

for any fixed  x>0.

Then, we establish the properties of  M_{\ell}^{(N)}(x) :

 \bullet   \det(M_{p}^{(N)}(x))=\frac{(N+\ell)!}{N!}x^{\ell}.
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 \bullet For  x\geq 0 , the eigenvalues  \lambda\in{\rm Spec}(M_{\ell}^{(N)}(x)) are real.

 \bullet We have  {\rm Spec}(M_{\ell}^{(N)}(0))=\{i(\ell-i) : i=1,2, \cdot\cdot\cdot , \ell\}.
 \bullet If  x'>\ell-1 , all eigenvalues  \lambda\in{\rm Spec}(M_{p}^{(N)}(x')) satisfy  \lambda>0.

To prove the positivity it is enough to show that all the eigenvalues of  M_{\ell}^{(N)}(x) are
positive for  x>0.

Sketch of the proof of Theorem 3.3. Suppose there is a positive  x' such that  M_{\ell}^{(N)}(x')
has an eigenvalue  \lambda(x')<0.

Since  \lambda(x)\in{\rm Spec}(M_{\ell}^{(N)}(x)) is a continuous real‐valued function and  \lambda(\ell)>0 , there
is  x^{\prime/} with   x'<x"<\ell such that

 \lambda(x")=0\in{\rm Spec}(M_{\ell}^{(N)}(x")) .

Thus,  0= \det(M_{\ell}^{(N)}(x"))=\frac{(N+\ell)!}{N!}(x")^{\ell}>0.  \square 

We summarize the discussion of constraint polynomials in terms of the spectrum of
the AQRM in the following theorem.

Theorem 3.5. If  x=(2g)^{2} is a root of the equation  P_{N}^{(N,\ell/2)}(x, \triangle^{2})=0 , then the Jud‐
dian eigenvalue  \lambda=N+\ell/2-g^{2} is a degenerate exceptional eigenvalue of multiplicity
2. Moreover, the two linearly independent solutions are Juddian.  \square 

For a proof of the linear independence of the solution using techniques from repre‐
sentation theory of  \mathfrak{s}(_{2} , we refer the reader to [16].

4 Non‐juddian eigenvalues: constraint functions

The  G‐fUnction was introduced in 2011 by Daniel Braak [2] to describe analytically
the regular solutions of the QRM. It was defined by considering the conditions for the
solutions of the system (4) to be entire, and thus constitute solutions of the eigenvalue
problem of AQRM.

Definition 4.1. The  G ‐function for the Hamiltonian  H_{Rabi}^{\varepsilon} is defined as

 G_{\varepsilon}(x;g, \triangle):=\triangle^{2}\overline{R}^{+}(x;g, \triangle, 
\varepsilon)\overline{R}^{-}(x;g, \triangle, \varepsilon)-R^{+}(x;g, \triangle, 
\varepsilon)R^{-}(x;g, \triangle, \varepsilon)
where

 R^{\pm}(x;g,  \triangle, \varepsilon)=\sum_{n=0}^{\infty}K_{n}^{\pm}(x)g^{n} and   \overline{R}^{\pm}(x;g, \triangle, \varepsilon)=\sum_{n=0}^{\infty}\frac{K_{n}
(x)}{-n\pm}g^{n} , (9)

whenever x  \mp\varepsilon\not\in \mathbb{Z}_{\geq 0} , respectively.  Forn\in \mathbb{Z}_{\geq 0} , define the functions  f_{n}^{\pm}=f_{n}^{\pm}(x, g, \triangle, \varepsilon)
 by

 f_{n}^{\pm}(x, g,  \triangle, \varepsilon)=2g+\frac{1}{2g}(n-x\pm\varepsilon+
\frac{\triangle^{2}}{x-n\pm\varepsilon}) , (10)

then, the coefficients  K_{n}^{\pm}(x)=K_{n}^{\pm}(x, g, \triangle, \varepsilon) are given by the recurrence relation

 nK_{n}^{\pm}(x)=f_{n-1}^{\pm}(x, g, \triangle, \varepsilon)K_{n-1}^{\pm}(x)-
K_{n-2}^{\pm}(x) (n\geq 1) (11)

with initial condition  K_{-1}^{\pm}=0 and  K_{0}^{\pm}=1.
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For fixed parameters  \{g, \triangle, \varepsilon\} the zeros  x_{n} of  G_{\varepsilon}(x;g, \triangle) correspond to regular
eigenvalues  A_{n}=x_{n}-g^{2} of  H_{Rabi}^{\varepsilon} (cf. [2, 3, 12]).

On the other hand, if  x\in \mathbb{R} is fixed, the equation

 G_{\varepsilon}(x;g, \triangle)=0,

is the constraint condition for the regular eigenvalue  \lambda=x-g^{2}.
In a similar way, it is possible to define a  T‐fUnction  T_{\varepsilon}^{(N)}(g, \triangle) such that the

solutions  g,  \triangle>0 of the equations

 T_{\varepsilon}^{(N)}(g, \triangle)=0,

correspond to the values of the parameters such that the the spectrum of  H_{Rabi}^{\varepsilon} contains

 th-ddtiona1enva1ue\lambda=N+\varepsilon-g^{2}Thec\cdot\cdot stra\dot{{\imath}}
ntT-functi_{on}\tau_{\varepsilon}^{\ovalbox{\tt\small REJECT}_{N)}}(g,\triangle)oftheAQRMis given by

 T_{\varepsilon}^{(N)}(g, \triangle)=\overline{R}^{(N,+)}(g, \triangle;
\varepsilon)\overline{R}^{(N,-)}(g, \triangle;\varepsilon)-R^{(N,+)}(g, 
\triangle;\varepsilon)R^{(N,-)}(g, \triangle;\varepsilon) , (12)

with

  \overline{R}^{(N,-)}(g, \triangle;\varepsilon)=\phi_{1,+}(\frac{1}{2};
\varepsilon) , \overline{R}^{(N,+)}(g, \triangle;\varepsilon)=\phi_{2,+}
(\frac{1}{2};-\varepsilon) , (13)

 R^{(N,-)}(g,  \triangle;\varepsilon)=\phi_{1,-}(\frac{1}{2};\varepsilon) , 
R^{(N,+)}(g, \triangle;\varepsilon)=\phi_{2,-}(\frac{1}{2};-\varepsilon) , (14)

where  \phi_{1,\pm} and  \phi_{2,\pm} are solutions of (4) (see [8] for the precise definition).
The curves of the constraint relations for non‐Juddian eigenvalues (either  G‐fUnction

or  T‐fUnction) are shown in Figure 4. In the case of exceptional eigenvalues (i.e. the
case  N=3,  x=3.5 ) the constraint relations for Juddian eigenvalues are shown in
dashed lines.

(a)  x=3.2 (  b )  x=3.4 (  c )  N=3,  x=3.5)

Figure 4: Curves defined by constraint relations  (G‐function for (a) and (b),  T‐fUnction
and constraint polynomials for  (c) )

In fact, the  G‐fUnction contains almost all the information regarding the spectrum
of AQRM (not just the regular spectrum). First, from the definition we see that at
the point  x=N\pm\varepsilon(N\in \mathbb{Z}_{\geq 0}) the  G‐fUnction has a singularity which is immediately
seen to be either a simple, pole or a removable singularity. These poles are also seen
to be the only singularities of the  G‐fUnction.

For the case   \varepsilon\not\in\frac{1}{2}\mathbb{Z} , the residues at the simple poles of the  G‐fUnction are given in
terms of the constraint functions.
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Proposition 4.2. Let   \varepsilon\not\in\frac{1}{2}\mathbb{Z} . Then any pole of the  G ‐function  G_{\varepsilon}(x;g, \triangle) is simple.
If  N\in \mathbb{Z}_{\geq 0} , the residue of  G_{\varepsilon}(x;g, \triangle) at the points   x=N\pm\varepsilon is given by

 {\rm Res}_{x=N\pm\varepsilon}G_{\varepsilon}(x;g, \triangle)=C(N)\triangle^{2}
P_{N}^{(N,\pm\varepsilon)}((2g)^{2}, \triangle^{2})T_{\pm\varepsilon}^{(N)}(g, 
\triangle) ,

where  C(N)= \frac{1}{N!(N+1)!}.
In particular, we see that residues at the poles vanish when there is an exceptional

eigenvalue  \lambda=N\pm\varepsilon-g^{2} corresponding to the parameters  g,  \triangle>0.

The computation of the residues for the case of half‐integer  \varepsilon is more complicated
and we refer the reader to [8] for the details. However, the situation is summarized in
the following result.

Proposition 4.3. Suppose  \ell\in \mathbb{Z}_{\geq 0} and let  \triangle>0 be fixed. The  G ‐function  G_{\ell/2}(x;g, \triangle)
has  \ell poles of order  \leq 1 at  x=N-\ell/2 for   0\leq N<\ell and poles of order  \leq 2 at
 x=N+\ell/2 for  N\in \mathbb{Z}_{\geq 0} . Moreover, for  N\in \mathbb{Z}_{\geq 0} , we have:

 \bullet If  \lambda=N\pm\ell/2-g^{2} is a Juddian eigenvalue of  H_{Rabi}^{\ell/2} , then  x=N\pm\ell/2 is not
a pole of  G_{\ell/2}(x;g, \triangle) .

 \bullet For   0\leq N<\ell , the function  G_{\ell/2}(x;g, \triangle) does not have a pole at  x=N-\ell/2 if

and only if  \lambda=N-\ell/2-g^{2} is a non‐Juddian exceptional eigenvalue of  H_{Rabi}^{\ell/2}.
 \bullet If  G_{\ell/2}(x;g, \triangle) has a simple pole at  x=N+\ell/2 , then  \lambda=N+\ell/2-g^{2} is a

non‐Juddian exceptional eigenvalue of  H_{Rabi}^{\ell/2}.
 \bullet If  G_{\ell/2}(x;g, \triangle) has a double pole at  x=N\pm\ell/2 , then there is no exceptional

eigenvalue  \lambda=N\pm\ell/2-g^{2} of  H_{Rabi}^{\ell/2}.

In this way, for a general  \varepsilon\in \mathbb{R} , the residues at the poles   x=N\pm\varepsilon (or the coefficient
of the  -2 power term in the Laurent series expansion for the case of double poles) are
determined by the constraint functions for exceptional eigenvalues  \lambda=N\pm\varepsilon-g^{2} . It
is then possible to define a generalized (or extended)  G‐fUnction for the AQRM that
is holomorphic in the complex plane.

Definition 4.4. The generalized  G ‐function of the AQRM is

 \mathcal{G}_{\varepsilon}(x;g, \triangle) :=G_{\varepsilon}(x;g, \triangle)
\Gamma(\varepsilon-x)^{-1}\Gamma(-\varepsilon-x)^{-1} (15)

As a consequence of the discussion above on the poles of the  G‐fUnction, we can
establish the following result.

Theorem 4.5. For fixed  g,  \triangle>0,  x is a zero of  \mathcal{G}_{\varepsilon}(x;g, \triangle) if and only if  \lambda=x-g^{2}
is an eigenvalue of  H_{Rabi}^{\varepsilon}.

A related definition for the generalized  G‐fUnction  \mathcal{G}_{\varepsilon}(x;g, \triangle) was used in [11] to
compute all the eigenvalues of the AQRM in a unified way. This numerical computa‐
tion is justified by Theorem 4.5 above.

144



145

References

[1] V. Bargmann, On a Hilbert space of analytic functions and an associated integral
transform. Part I, Comm. Pure Appl. Math. 14 (1961), 187‐214.

[2] Daniel Braak, Integrability of the Rabi model, Phys. Rev. Lett. 107 (2011),
100401‐100404.

[3] —, A generalized  G‐function for the quantum Rabi model, Ann. Phys. 525
No. 3 (2013), L23−L28.

[4] —, Analytical solutions of basic models in quantum optics, Applications  +

Practical Conceptualization  + Mathematics  = fruitful Innovation, Proceedings of
the Forum of Mathematics for Industry 2014 (et al. R. Anderssen, ed.), Mathe‐
matics for Industry, vol. 11, Springer, 2016, pp. 75‐92.

[5] Brian C. Hall, Quantum theory for mathematicians, Gradute Texts in Mathemat‐
ics, vol. 267, Springer, 2013.

[6] E.T. Jaynes and F.W. Cummings, Comparison of quantum and semiclassical radi‐
ation theories with application to the beam maser, Proc. IEEE 51 (1963), 89‐109.

[7] B.R. Judd, Exact solutions to a class of Jahn‐Teller systems, J. Phys. C: Solid
State Phys. 12 (1979), 1685.

[8] Kazufumi Kimoto, Cid Reyes‐Bustos, and Masato Wakayama, Determinant ex‐
pressions of constraint polynomials and the spectrum of the asymmetric quantum
Rabi model, Preprint arXiv:1712.04152, 2017.

[9] M. Kuś, On the spectrum of a two‐level system, J. Math. Phys. 26 (1985), 2792‐
2795.

[10] Z.‐M. Li and M.T. Batchelor, Algebraic equations for the exceptional eigenspec‐
trum of the generalized Rabi model, J. Phys. A: Math. Theor. 48 (2015), 454005
(13pp) .

[11] —, Addendum to “algebraic equations for the exceptional eigenspectrum of
the generalized Rabi model J. Phys. A: Math. Theor. 49 (2016), 369401 (5pp) .

[12] Q.‐T.Xie, H.‐H. Zhong, M.T. Batchelor, and C.‐H. Lee, The quantum Rabi model:
solution and dynamics, J. Phys. A: Math. Theor. 50 (2017), 113001.

[13] I. I. Rabi, On the process of space quantization, Physical Review 49 (1935), 324‐
328.

[14] Cid Reyes‐Bustos, Remainder formula for the family of constraint polynomials
for the quantum rabi model, In preparation, 2018.

[15] Shingo Sugiyama, Spectral zeta functions for the quantum Rabi models, Nagoya
Math. J. 229 (2018), 52‐98 (Published online in 2016).

[16] Masato Wakayama, Symmetry of asymmetric quantum Rabi models, J. Phys. A:
Math. Theor 50 (2017), 174001 (22pp) .

145


