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1 Introduction

Suppose we have independent and d‐variate two populations,  \Pi_{i},  i=1,2 , having an
unknown mean vector  \mu_{i} and unknown covariance matrix  \Sigma_{i} for each  i . We have independent
and identically distributed (i.i.d.) observations,  x_{i1},  x_{in_{i}} , from each  \Pi_{i} . We assume
 n_{i}\geq 2,  i=1,2 . Let  x_{0} be an observation vector of an individual belonging to one of the two
populations. Let  N=n_{1}+n_{2} . We assume  x_{0} and  x_{ij}s are independent.

In this paper, we consider classification in the High‐dimension, low‐sample‐size (HDLSS)
context such as   darrow\infty while  N is fixed. Hall et al. [7], Chan and Hall [5] and Aoshima
and Yata [2] considered distance‐based classifiers. In particular, Aoshima and Yata [2] gave
the misclassification rate adjusted classifier for multiclass, high‐dimensional data in which
misclassification rates are no more than specified thresholds. On the other hand, Aoshima and
Yata [1, 3] considered geometric classifiers based on a geometric representation of HDLSS data.
Aoshima and Yata [4] considered quadratic classifiers in general and discussed asymptotic
properties and optimality of the classifiers under high‐dimension, non‐sparse settings. For
linear support vector machine (SVM) in HDLSS settings, Hall et al. [6], Chan and Hall [5]
and Qiao and Zhang [11] showed that the misclassification rates tend to zero as   darrow\infty

under certain severe conditions. Nakayama et al. [8] investigated asymptotic properties of
linear SVM for HDLSS data. They proposed a bias‐corrected linear SVM and showed that it
gives preferable performances compared to linear SVM. Nakayama [9] investigated asymptotic
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properties of a soft‐margin linear SVM. On the other hand, Nakayama et al. [10] investigated
asymptotic properties of SVM with the Gaussian kernel for HDLSS data.

In this paper, we consider the soft‐margin SVM as follows:

 y(x)=w^{T}\phi(x)+b , (1)

where  \phi(\cdot) is a feature map,  w is a weight vector and  b is an intercept term. Let us write
that  (x_{1}, \ldots, x_{N})=(x_{11}, \ldots, x_{1n_{1}}, x_{21}, \ldots, x_{2n_{2}}) . Let  t_{j}=-1 for  j=1,  n_{1} and  t_{j}=1
for  j=n_{1}+1,  N . By differentiating the Lagrangian formulation with respect to  w and
 b , we obtain the following dual form:

 L( \alpha)=\sum_{j=1}^{N}\alpha_{j}-\frac{1}{2}\sum_{j=1}^{N}\sum_{j=1}^{N}
\alpha_{j}\alpha_{j'}t_{j}t_{j'}k(x_{j}, x_{j'}) ,

where  k(x_{j}, x_{j'})=\phi(x_{j})^{T}\phi(x_{j'}) is a kernel function, and  \alpha=(\alpha_{1}, \ldots, \alpha_{N})^{T} and  \alpha_{j}s are

Lagrange multipliers such as  w= \sum_{j=1}^{N}\alpha_{\dot{j}}t_{j}\phi(x_{j}) . The optimization problem can be trans‐
formed into the following:   \arg\max_{\alpha}L(\alpha) subject to

 0\leq\alpha_{j}\leq C,  j=1 , . . . ,  N , and   \sum_{j=1}^{N}\alpha_{j}t_{j}=0 , (2)

where  C(>0) is a regularization parameter. Let us write that

  \hat{\alpha}=(\hat{\alpha}_{1}, \ldots,\hat{\alpha}_{N})^{T}=\arg\max_{\alpha}
L(\alpha) subject to (2).

There exist some  x_{j}s satisfying that  t_{j}y(x_{j})=1 (i.e.,  \hat{\alpha}_{j}\neq 0 ). Such  x_{j}s are called the support
vector. Let  \hat{S}=\{j|\hat{\alpha}_{j}\neq 0, j=1, N\} and  N_{\hat{s}_{\wedge}}=\#\hat{S} , where  \# A denotes the number of

elements in a set  A . The intercept term is given by  b=N_{\hat{S}}^{-1} \sum_{j\in\hat{S}}\{t_{\dot{j}}-\sum_{j\in\hat{S}}
\hat{\alpha}_{j'}t_{\dot{j}^{l}}k(x_{j}, x_{j'})\}.
Then, the classifier in (1) is defined by

  \hat{y}(x)=\sum_{j\in\hat{S}}\hat{\alpha}_{j}t_{j}k(x, x_{j})+\hat{b} . (3)

Finally, in SVM, one classifies  x_{0} into  \Pi_{1} if  \hat{y}(x_{0})<0 and into  \Pi_{2} otherwise. See Vapnik [12]
for the details. Let  e(i) denote the error rate of misclassifying an individual from  \Pi_{i} into the
other class for  i=1,2 . We claim that a classifier has consistency if

 e(i)=o(1) as   darrow\infty for  i=1,2 . (4)

In this paper, we investigate the following typical kernels for the soft‐margin SVM:

(I) The Gaussian kernel:  k(x_{j}, x_{j'})=\exp(-\Vert x_{j}-x_{j'}\Vert^{2}/\gamma) and
(II) The polynomial kernel:  k(x_{j}, x_{j'})=(\zeta+x_{j}^{T}x_{j'})^{r},
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where  \gamma(>0) is a scale parameter and  \zeta\geq 0 and  r\in \mathbb{N}.

In Section 2, we investigate asymptotic properties of the soft‐margin SVM with the Gaus‐
sian kernel. In Section 3, we investigate asymptotic properties of the soft‐margin SVM with
the polynomial kernel. We show that the SVMs are heavily biased in the HDLSS context espe‐
cially for imbalanced data. In order to overcome such difficulties, we propose a bias‐corrected
SVM in Section 4. In Section 5, we check the performance of the BC‐SVM by numerical
simulations.

2 Asymptotic properties of the soft‐margin SVM with the
Gaussian kernel

We assume that   \lim\sup_{darrow\infty}\Vert\mu_{i}\Vert^{2}/d<\infty and  tr(\Sigma_{i})/d\in(0, \infty) as   darrow\infty for  i=1,2.
Here, for a function,  f(\cdot) , “  f(d)\in(0, \infty) as   darrow\infty ” implies   \lim\inf_{darrow\infty}f(d)>0 and
  \lim\sup_{darrow\infty}f(d)<\infty . Similar to Aoshima and Yata [2], we assume the following assumption
for  \Pi_{i}s as necessary:

(A‐i) Let  z_{i_{\dot{j}}},  j=1,  n_{i} , be i.i.  d . random  p_{i}‐vectors having  E(z_{ij})=0 and  Var(z_{ij})=I_{p_{i}}
for each  i(=1,2) and some  p_{i} . Let  z_{ij}=(z_{i1j}, \ldots, z_{ip_{i}j})^{T} whose components satisfy
that   \lim\sup_{darrow\infty}E(z_{\dot{i}rj}^{4})<\infty for all  r and

 E(z_{irj}^{2}z_{isj}^{2})=E(z_{irj}^{2})E(z_{isj}^{2})=1 and  E(z_{irj}z_{isj}z_{it_{J}}z_{iuj})=0

for all  r\neq s,  t,  u . Then, the observations,  x_{ij}s , from each  \Pi_{i}(i=1,2) are given by
 x_{ij}=\Gamma_{i}z_{ij}+\mu_{i},  j=1,  n_{i} , where  \Gamma_{i} is a  d\cross p_{i} matrix such that  \Gamma_{i}\Gamma_{i}^{T}=\Sigma_{i}.

Note that (A‐i) naturally holds when the  \Pi_{i}s are Gaussian.
We consider the soft‐margin Gaussian kernel SVM (sm‐GSVM), that is, the classifier (3)

with the Gaussian kernel. Let  \triangle_{\mu}=\Vert\mu_{1}-\mu_{2}\Vert^{2} . Let  \kappa_{1(I)}=\exp\{-2tr(\Sigma_{1})/\gamma\},  \kappa_{2(I)}=
 \exp\{-2tr(\Sigma_{2})/\gamma\},  \kappa_{3(I)}=\exp[-\{tr(\Sigma_{1})+tr(\Sigma_{2})+\triangle_{\mu}\}/\gamma] , and

 \triangle_{(I)}=\kappa_{1(I)}+\kappa_{2(I)}-2\kappa_{3(I)} and

 \eta_{i(I)}=1-\exp(-2tr(\Sigma_{i})/\gamma) for  i=1,2.

We note that  \triangle_{(I)}>0 when  \mu_{1}\neq\mu_{2} or  tr(\Sigma_{1})\neq tr(\Sigma_{2}) . We consider the following condition:

  \lim_{darrow}\inf_{\infty}\frac{\eta_{i(I)}}{\triangle_{(I)}}>0 for  i=1,2 . (5)

Let  \triangle_{*(I)}=\triangle_{(I)}+\eta_{1(I)}/n_{1}+\eta_{2(I)}/n_{2} and  n_{\min}= \min\{n_{1}, n_{2}\} . We consider the following
condition for  C :

 1\dot{{\imath}}_{darrow\infty}m\dot{{\imath}}nf —C \triangle* (2I)nmın  >1 . (6)
Let   tr(\Sigma_{\min})=\min_{i=1,2}tr(\Sigma_{i}) and  \psi=\exp\{-2tr(\Sigma_{\min})/\gamma\} . We assume the following condi‐
tion as   darrow\infty :
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(A‐ii)   \frac{tr(\Sigma_{i}^{2})+\triangle_{\mu}\{tr(\Sigma_{i}^{2})\}^{1/2}}
{m\dot{{\imath}}n\{\gamma^{2}\triangle_{(I)}^{2}/\psi^{2},\gamma^{2}\}}=o(1) for  i=1,2.

Let  \delta_{(I)}=\eta_{1(I)}/n_{1}-\eta_{2(I)}/n_{2} . Let  \hat{y}_{(I)}(x_{0}) denote  \hat{y}(x_{0}) given by using the kernel function
(I). Then, from Sections 2 and 6 in Nakayama et al. [10], we have the following results.

Theorem 1. Assume (A‐i) and (A‐ii). Assume also (5) and (6). Then, it holds that as
  darrow\infty

  \hat{y}_{(I)}(x_{0})=\frac{\triangle_{(I)}}{\triangle_{*(I)}}((-1)^{i}+
\frac{\delta_{(I)}}{\triangle_{(I)}}+o_{P}(1)) when  x_{0}\in\Pi_{i} for  i=1,2.

Assume also

(  A‐iii)   \lim_{darrow}\sup_{\infty}\frac{|\delta_{(I)}|}{\triangle_{(I)}}<1.
Then, the sm‐GSVM holds consistency (4).

Corollary 1. For the sm‐GSVM, one can claim that

 e(1)=1+o(1) and  e(2)=o(1) as   darrow\infty

if   \lim_{darrow}\inf_{\infty}\frac{\delta_{(I)}}{\triangle_{(I)}}>1 ; and

 e(1)=o(1) and  e(2)=1+o(1) as   darrow\infty

if   \lim_{darrow}\sup_{\infty}\frac{\delta_{(I)}}{\triangle_{(I)}}<-1.
under (A‐i), (A‐ii) and (5) and (6).

From Corollary 1, if  |\delta_{(I)}| is larger than  \triangle_{(I)} , the sm‐GSVM would give a bad performance.
In order to overcome such difficulties, we propose a bias‐corrected SVM in Section 4.

3 Asymptotic properties of the soft‐margin SVM with the
polynomial kernel

In this section, we consider the soft‐margin polynomial kernel SVM (sm‐PSVM), that is,
the classifier (3) with the polynomial kernel.

Let  \kappa_{1(II)}=(\zeta+\Vert\mu_{1}\Vert^{2})^{r},  \kappa_{2(II)}=(\zeta+\Vert\mu_{2}\Vert^{2})^{r},  \kappa_{3(II)}=(\zeta+\mu_{1}^{T}\mu_{2})^{r} , and

 \triangle_{(II)}=\kappa_{1(II)}+\kappa_{2(II)}-2\kappa_{3(II)} and

 \eta_{i(II)}=(\zeta+tr(\Sigma_{i})+\Vert\mu_{i}\Vert^{2})^{r}-\kappa_{i(II)} for  i=1,2.
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We consider the following condition:

  \lim\dot{{\imath}}nf\frac{\eta_{i(II)}}{\triangle_{(II)}}darrow\infty>0 for  i=1,2 . (7)

Let  \triangle_{*(II)}=\triangle_{(II)}+\eta_{1(II)}/n_{1}+\eta_{2(II)}/n_{2} . We consider the following condition for  C :

  \lim_{darrow}\inf_{\infty} —C \triangle* (I2I)nmın  >1 . (8)
We assume the following conditions for  \zeta and  r :

 \zeta/d\in(0, \infty) and  r\in(0, \infty) as   darrow\infty . (9)

We also assume the following condition:

(A‐iv)   \lim_{darrow}\inf_{\infty}|\frac{\Vert\mu_{1}\Vert^{2}-\Vert\mu_{2}\Vert^{2}}
{d}|>0.
Let  \delta_{(II)}=\eta_{1(II)}/n_{1}-\eta_{2(II)}/n_{2} . Let  \hat{y}_{(II)}(x_{0}) denote  \hat{y}(x_{0}) given by using the kernel function
(II). Then, from Sections 2 and 7 in Nakayama et al. [10], we have the following results.

Theorem 2. Assume (A‐i) and (A‐iv). Assume also (7) to (9). Then, it holds that as   darrow\infty

  \hat{y}_{(II)}(x_{0})=\frac{\triangle_{(II)}}{\triangle_{*(II)}}((-1)^{i}+
\frac{\delta_{(II)}}{\triangle_{(II)}}+o_{P}(1)) when  x_{0}\in\Pi_{i} for  i=1,2.

Assume also

(A‐v)   \lim_{darrow}\sup_{\infty}\frac{|\delta_{(II)}|}{\triangle_{(II)}}<1.
Then, the sm‐PSVM holds consistency (4).

Corollary 2. For the sm‐PSVM, one can claim that

 e(1)=1+o(1) and  e(2)=o(1) as   darrow\infty

if   \lim_{darrow}\inf_{\infty}\frac{\delta_{(II)}}{\triangle_{(II)}}>1 ; and

 e(1)=o(1) and  e(2)=1+o(1) as   darrow\infty

if   \lim_{darrow}\sup_{\infty}\frac{\delta_{(II)}}{\triangle_{(II)}}<-1.
under (A‐i), (A‐iv) and (7) to (9).

Similar to the sm‐GSVM, if  |\delta_{(II)}| is larger than  \triangle_{(II)} , the sm‐PSVM would give a bad
performance.
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4 Bias‐corrected SVM

Let

  \hat{\eta}_{i}=\sum_{j=1}^{n_{i}}\frac{k(x_{ij},x_{ij})}{n_{i}-1}-\sum_{j=1}
^{n_{i}}\sum_{j=1}^{n_{i}}\frac{k(x_{ij},x_{i_{\dot{j}}}!)}{n_{i}(n_{i}-1)} for  i=1,2 ; and (10)

  \triangle_{*}^{\wedge}=\sum_{i=1}^{2}(\sum_{j=1}^{n_{i}}\sum_{j=1}^{n_{i}}
\frac{k(x_{i_{j}},x_{ij^{t}})}{n_{i}^{2}})-2\sum_{j=1}^{n_{1}}\sum_{j=1}^{n_{2}}
\frac{k(x_{1_{\dot{j}}},x_{2j^{t}})}{n_{1}n_{2}} . (11)

We consider estimating  \delta as  \hat{\delta}=\hat{\eta}_{1}/n_{1}-\hat{\eta}_{2}/n_{2} . We give a bias‐corrected SVM (BC‐SVM) as
follows:

  \hat{y}_{BC}(x_{0})=\hat{y}(x_{0})-\frac{\hat{\delta}}{\triangle_{*}^{\wedge}} . (12)

One classifies  x_{0} into  \Pi_{i} if  \hat{y}_{BC}(x_{0})<0 and into  \Pi_{2} otherwise. We have the following result.

Theorem 3. Assume (A‐i) and (A‐ii). Assume also (5) and (6). For the classifier (12) with
the Gaussian kernel, it holds the consistency (4).

For the Gaussian kernel, the BC‐SVM claims the consistency without (  A‐iii).

Theorem 4. Assume (A‐i) and (A‐iv). Assume also (7) to (9). For the classifier (12) with
the polynomial kernel, it holds the consistency (4).

For the polynomial kernel, the BC‐SVM claims the consistency without (A‐v).

Remark 1. Nakayama et al. [8] gave a bias‐corrected linear SVM. Nakayama [9] also pro‐
posed a robust SVM in HDLSS settings for the linear kernel.

5 Simulation

In this section, we compared the performance of the sm‐GSVM, sm‐PSVM and BC‐SVM
with the kernel functions (I) and (II). We set  \Pi_{i} :  N_{d}(\mu_{i}, \Sigma_{i}),  i=1,2 , having  \mu_{2}=0,  \Sigma_{1}=

 c_{1}B(0.3^{|i-j|^{1/3}})B and  \Sigma_{2}=c_{2}B(0.4^{|i-j|^{1/3}})B , where  B=diag[\{0.5+1/(d+1)\}^{1/2},  \{0.5+
 d/(d+1)\}^{1/2}] . Note that  tr(\Sigma_{i})=c_{\dot{i}}d for  i=1,2 . We considered

 \mu_{1}=(-1/5,1/5, -1/5, \ldots, -1/5,1/5)^{T} (  =\mu_{\alpha} , say),

where the  r‐element is  (-1)^{r}/5 for  r=1,  d . We set  (n_{1}, n_{2})=(20,10),  \gamma=d/4 in the

Gaussian kernel and  \zeta=d,  r=2 in the polynomial kernel. We considered three cases:

(a)  \mu_{1}=\mu_{\alpha} and  (c_{1}, c_{2})=(1,1) ,
(b)  \mu_{1}=0 and  (c_{1}, c_{2})=(0.9,1.1) , and
(c)  \mu_{1}=\mu_{\alpha} and  (c_{1}, c_{2})=(0.9,1.1) .
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Note that  \Vert\mu_{1}-\mu_{2}\Vert^{2}=d/25 for (a) and (c),  \Vert\mu_{1}-\mu_{2}\Vert^{2}=0 for (b),  |tr(\Sigma_{1})-tr(\Sigma_{2})|=0
for (a), and  |tr(\Sigma_{1})-tr(\Sigma_{2})|=0.2d for (b) and (c). We set  C=4/(n_{\min}\triangle_{*}^{\wedge}) for both kernel
(I) and (II). From Lemma 2 in Nakayama et al. [10], it holds that  \triangle_{*}^{\wedge}=\triangle_{*}\{1+o_{P}(1)\} , so
that (6) and (S) hold. We repeated 2000 times to confirm if the classifier does (or does not)
classify  x_{0}\in\Pi_{i} correctly and defined  P_{ir}=0 (or 1) accordingly for each  \Pi_{i}(i=1,2) . We
calculated the error rates,   \overline{e}(i)=\sum_{r=1}^{2000}P_{ir}/2000,  i=1,2 . Also, we calculated the average
error rate,  \overline{e}=\{\overline{e}(1)+\overline{e}(2)\}/2 . Their standard deviations are less than 0.0112 from the fact
that  Var\{\overline{e}(i)\}=e(i)\{1-e(i)\}/2000\leq 1/S000 . In Figures 1 to 3, we plotted  \overline{e}(1),  \overline{e}(2) and

 \overline{e} for  d=2^{s},  s=5 , 12.
We observed that the BC‐SVMs give good performances as  d increases for (a) and (c).

However, for (b), the error rate of the BC‐SVM with the polynomial kernel is 0.5 because
(A‐iv) does not hold. On the other hand, the BC‐SVM with the Gaussian kernel gave good
performances drawing information about heteroscedasticity. For the sm‐GSVM and the sm‐
PSVM,  \overline{e}(1) and  \overline{e}(2) became quite unbalanced. This is because of the bias in the SVM. See
Corollaries 1 and 2 for the details.

Next, we considered (a) to (c) for  (n_{1}, n_{2})=(20,10),  d= 1024  (=2^{10}) and  C=

 2^{-7+t}/(n_{\min}\triangle_{*}),  t=1 , 10 for the kernel function (I) and (II). Similar to Figures 1 to
3, we calculated the average error rate  \overline{e} by 2000 replications and plotted the results in Fig‐
ure 4. We observed that the sm‐GSVM and the sm‐PSVM give bad performances for all  C.

However the BC‐SVMs gave good performances when  C>2/(n_{\min}\triangle_{*}) .
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Figure 1: The error rates of the BC‐SVM with (I), BC‐SVM with (II), sm‐GSVM and sm‐
PSVM for (a). The left panel displays  \overline{e}(1) , the right panel displays  \overline{e}(2) and the top panel
displays  \overline{e} for  d=2^{s},  s=5 , 12.
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Figure 2: The error rates of the BC‐SVM with (I), BC‐SVM with (II), sm‐GSVM and sm‐
PSVM for (b). The left panel displays  \overline{e}(1) , the right panel displays  \overline{e}(2) and the top panel
displays  \overline{e} for  d=2^{s},  s=5 , 12.
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‐e(ı)

Figure 3: The error rates of the BC‐SVM with (I), BC‐SVM with (II), sm‐GSVM and sm‐
PSVM for (c). The left panel displays  \overline{e}(1) , the right panel displays  \overline{e}(2) and the top panel
displays  \overline{e} for  d=2^{s},  s=5 , 12.

 \overline{e}

Figure 4: The error rates of the BC‐SVM with (I), BC‐SVM with (II), sm‐GSVM and sm‐
PSVM for (a) to (c) when  d=1024 and  C=2^{-7+t}/(n_{\min}\triangle_{*}),  t=1 , 10. The left panel
displays (a), the middle panel displays (b) and the right panel displays (c).
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6 Proofs

6.1 Proofs of Theorem 1 and Corollary 1

Assume (A‐i), (A‐ii) and (5) and (6). From Proposition 1 and Lemma 4 in Nakayama et
al. [10], we have that as   darrow\infty

  \hat{\alpha}_{j}=\frac{2}{\triangle_{*(I)}n_{1}}\{1+o_{P}(1)\} for all  j=1,  n_{1} ; and

  \hat{\alpha}_{j}=\frac{2}{\triangle_{*(I)}n_{2}}\{1+o_{P}(1)\} for all  j=n_{1}+1,  N

for the Gaussian kernel. Then, similar to the proof of Proposition 1 in Nakayama et al.
[10], we can conclude the result of Theorem 1. From Theorem 1, we conclude the results of
Corollary 1.

6.2 Proofs of Theorem 2 and Corollary 2

Assume (A‐i), (A‐ii) and (7) to (9). From Propositions 1 and 8 in Nakayama et al. [10],
we have that as   darrow\infty

  \hat{\alpha}_{j}=\frac{2}{\triangle_{*(II)}n_{1}}\{1+o_{P}(1)\} for all  j=1,  n_{1} ; and

  \hat{\alpha}_{j}=\frac{2}{\triangle_{*(II)}n_{2}}\{1+O_{P(1)\}} for all  j=n_{1}+1,  N

for the polynomial kernel. Then, similar to the proof of Proposition 1 in Nakayama et al.
[10], we can conclude the result of Theorem 2. From Theorem 2, we conclude the results of
Corollary 2.

6.3 Proofs of Theorems 3 and 4

By combining Theorem 2 in Nakayama et al. [10] with Theorems 1 and 2, we can conclude
the results.
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