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1 Introduction

The studies about local maps were started by Larson, Kadison and Sourour. In

1988, Larson[9] studied local automorphisms of Banach algebra and obtained the

first results concerning to local maps. In 1990, Kadison[8] exhibited the results

concerning to local derivations on von neumann algebras. Larson and Sourour[10]

got the results of local derivations of B(X) for a Banach space  X.

The studies of 2‐local maps were initiated by Šemr1[13]. He got the results about
2‐local automorphisms and 2‐local derivations in 1997. Inspired by his results,

Molnár[12] started the sudies about 2‐local isometries in 2002. He considered the

group of all surjective complex linear isometries. If  X is locally compact Hausdorrf

space, Gyóry[3] studies that 2‐local isometries are complex linear isometries on

the ste of all continuous functions vanishing at infinity  C_{0}(X) . Hatori, Miura,

Oka and Takagi[4] got the results in the case of the uniform algebras in 2007.

 C^{(n)}[0,1] denotes the set of all  n‐times continuously differentiable functions on

 [0,1] with   \Vert f\Vert_{C}=\sup_{t\in[0,1]}\sum_{k=0}^{n}|f^{(k)}(t)|/k! . In 2018, Kawamura, Koshimizu

and Miura[7] studied about  C^{(n)}[0,1] They got the results that 2‐local isometries

are surjective complex linear isometries on each space. In recent years, the case
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of surjective real linear isometries are studied. Hosseini[5] studied  C^{(n)}[0,1] with

  \Vert f\Vert_{n}=\max\{|f(0)|, |f'(0)|, |f^{(2)}(0)|, |f^{(n-1)}(0)|, \Vert f^
{(n)}\Vert_{\infty}\} in 2017. The results

about 2‐local isometries in the case of real linear isometries is fewer than the case

of complex linear isometries. I get the result about surjective real linear isometries.

I will prove it.

2 Fundamental definitions

In this paper,  \mathbb{R} stands for the set of all real numbers. The symbol  \mathbb{C} stands for

all complex numbers.

Definition 2.1 (isometry). Let  (X, d_{X}),  (Y, d_{Y}) be metric spaces. Let  T be a map
 X into Y. If  d_{X}(x_{1}, x_{2})=d_{Y}(T(x_{1}), T(x_{2})) for all points  x_{1},  x_{2}\in X , then  T is

called an isometry.

Note that  T is injective if  T is an isometry.

Definition 2.2. Let  X be a Banach space. The set of all surjective complex

linear isometries on  X is denoted by  Iso_{\mathbb{C}}(X) . The set of all surjective real linear

isometries on  X is denoted by  Iso_{\mathbb{R}}(X) .

Definition 2.3 (2‐local isometry). Let  X be a Banach space. Let  T be a map

on X. If for each pair of elements  f,  g\in X there exists  T_{f,g}\in Iso_{\mathbb{C}}(X) (or

 \in Iso_{\mathbb{R}}(X)) such that  T_{f,g}(f)=T(f) and  T_{f,g}(g)=T(g) depending on  f and  g,

then  T is called a 2‐local isometry

We note that no continuity, surjectivity nor linearity are assumed for  T.

Definition 2.4. Let  C[0,1] denote the set of all complex‐valued functions  f on

the closed interval endowed with the supremum norm

  \Vert f\Vert_{\infty}=\sup\{|f(t)| : t\in[0,1]\}.

Then  (C[0,1], \Vert\cdot\Vert_{\infty}) is a Banach algebra.

Definition 2.5 (Choquet boundary). Let  X be a locally compact Hausdorff space.

Let  A be a uniform algebra on X. Define a subset  E of  X by  E=\{t\in X :  f(x)=

 1\} for some  f\in A. Then  E is called a peak set for A. For every  x\in X ,  E_{\alpha}
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is a peak set for A. If   \{x\}=\bigcap_{\alpha}E_{\alpha},  x is called a weak peak point of A. Define

 Ch(A) by  Ch(A)= {  x\in X :  x is a weak peak point for  A}. Then  Ch(A) is called

the Choquet boundary of  A.

Definition 2.6 (reflexivity). Let  X be a Banach space. We say that  Iso_{\mathbb{R}}(X) is

2‐local reflexive if every 2‐local isometry is in  Iso_{\mathbb{R}}(X) .

3 Surjective real linear isometries on  C[0,1]

In this section, we consider the form of surjective real linear isometries (Theorem

3.1) This theorem was essentially proved by Ellis[2] or  Miura[11] . We note that

the Chouque boungary and the Shilov boudary of  C[0,1] corresponds to the closed

interval  [0,1].

Theorem 3.1. A map  T is a surjective real linear isometry on  C[0,1] if and

only if there exist a continuous function  T(1) :  [0,1]arrow\{z\in \mathbb{C} : |z|=1\} and a

homeomorphism  \varphi :  [0,1]arrow[0,1] such that one of the following equalities

 \{\begin{array}{ll}
T(f)(t)=T(1)f\circ\varphi(t)   (f\in C[0,1], t\in[0,1])
T(f)(t)=T(1)f\circ\varphi(t)   (f\in C[0,1], t\in[0,1]) .
\end{array}
Proof. First, we assume that a map  T:C[0,1]arrow C[0,1] is a surjective real linear

isometry on  C[0,1] . The Couquet boundary of  C[0,1] coincides with the closed

interval  [0,1] . By a theorem of  Miura[11] and the connectivity of  [0,1] , one of the

following equalities

 \{\begin{array}{ll}
Tf(t)=T(1)f\circ\varphi(t)   (f\in C[0,1], t\in[0,1])
Tf(t)=T(1)f\circ\varphi(t)   (f\in C[0,1], t\in[0,1]) .
\end{array}
Next, we assume that there exist a continuous function  T(1) :  [0,1]arrow\{z\in \mathbb{C} :

 |z|=1\} and a homeomorphism  \varphi :  [0,1]arrow[0,1] such that one of the following

equalities

 \{\begin{array}{ll}
T(f)(t)=T(1)f\circ\varphi(t)   (f\in C[0,1], t\in[0,1])
T(f)(t)=T(1)f\circ\varphi(t)   (f\in C[0,1], t\in[0,1]) .
\end{array}
We infer that  T is a surjectve real linear isometry on  C[0,1].
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 \square 

4 2‐local isometries in  C[0,1]

The studies about 2‐local isometries were started by Molnár[12]. If there exists

 T_{f,g}\in Iso_{\mathbb{R}}(C[0,1]) such that Tf  =T_{f,g}f and Tg  =T_{f,g}g for every pair of

elements  f,  g\in C[0,1] , then  T is called 2‐local isometry.

The following is the main result in this paper.

Theorem 4.1. Let  T be a 2‐local isometry on  C[0,1] . Then  T is a 2‐local isom‐

etry. Thus  Iso_{\mathbb{R}}(C[0,1]) is 2‐local reflexive.

To prove Theorem 4.1, we can reduce the case of  T(1)=1 (Proposition 4.1).

When we assume that  T(1)=1 , for every element  f\in C[0,1] there exists an

isometry  T_{1,f} such that  T(1)=T_{1,f}(1) . Since  T(1)=1 , we get  T_{1,f}(1)=1 . By

Theorem 3.1,  T satisfies one of the following equalities

 \{\begin{array}{l}
Tf(t)=T_{1,f}f(t)=T_{1,f}(1)fo\varphi_{1,f}(t)=fo\varphi_{1,f}(t) (f\in C[0,1], 
t\in[0,1])
Tf(t)=T_{1f}f(t)=T_{1,f}(1)fo\varphi_{1,f}(t)=fo\varphi_{1,f}(t) (f\in C[0,1], t
\in[0,1]) ,
\end{array}
where  \varphi_{1,f} is a homeomorphism. When we put  t_{0} such that  \varphi_{1,f}(t)=t_{0} , one of

the following equalities

  \{_{Tf(t)=}^{Tf(t)=}\frac{f(t_{0})}{f(t_{0})}.
Proposition 4.1. Let  T be a 2‐local isometry on  C[0,1] . When  T(1)=1,  T is a

2‐local isometry.

Proof. Let Id be the identity map of  C[0,1] . Since  T is a 2‐local isometry, for

every  f\in C[0,1] there exists  T_{f^{Id}},\in Iso_{\mathbb{R}}(C[0,1]) such that  T(f)=T_{f^{Id}},(f) and

 TId=T_{f^{Id}},(Id) , also there exists  T_{1,Id}\in Iso_{\mathbb{R}}(C[0,1]) such that  T(1)=T_{1,Id}(1)

and  T(Id)=T_{1,Id}(Id) . By Theorem 3.1,  T_{f^{Id}}, and  T_{1,Id} are represented by

 \{\begin{array}{ll}
T_{f,Idg(t)}=T_{f},Id (1) g\circ\varphi f,Id (t)   (g\in C[0,1], t\in[0,1])
or   
T_{f,Idg(t)}=T_{f},Id (1) g\circ\varphi_{f},Id (t)   (g\in C[0,1], t\in[0,1])
\end{array} (1)
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 \{\begin{array}{ll}
T_{1,Idg}(t)=T_{1},Id (1) go\varphi_{1},Id (t)   (g\in C[0,1], t\in[0,1])
or   
T_{1,Idg}(t)=T_{1},Id (1) go\varphi_{1},Id (t)   (g\in C[0,1], t\in[0,1]) ,
\end{array}
where  \varphi_{f^{Id}}, and  \varphi_{1,Id} are homeomorphisms on  [0,1] respectively. Since  T_{1,Id}(1)=

 T(1)=1,  T_{1,Id} is represented by

 \{\begin{array}{ll}
T_{1}, Id g(t)=g\circ\varphi_{1}, Id (t)   (g\in C[0,1], t\in[0,1])
or   
T_{1,Idg}(t)=go\varphi 1,Id(t)   (g\in C[0,1], t\in[0,1])
\end{array} (2)

We define a set  E_{t_{0}f} by  E_{t_{0}f}= \{t\in[0,1] : Tf(t)=Tf(t)=\frac{f(t_{0})}{f(t_{0})}\} for every   f\in

 C[0,1],  t_{0}\in[0,1] . Now,  E_{t_{0}f} is a subset of  [0,1] . By the definition of  E_{t_{0}f},  E_{t_{0}Id}

is represented by  E_{t_{0}Id}=\{t\in[0,1] : T(Id)(t)=Id(t_{0})\} . Since  TId=T_{1,Id}Id

and (2), we get
 TId=T_{1,Id}Id=Id\circ\varphi_{1,Id}=\varphi_{1,Id} . (3)

We get  E_{t_{0}Id}=\{t\in[0,1] : \varphi_{1,Id}(t)=t_{0}\} since (3) and  Id(t_{0})=t_{0} . Since  \varphi_{1,Id} is

a homeomorphism,  E_{t_{0}Id} is a singleton.

We take  b_{t_{0}}\in[0,1] such that  \{b_{t_{0}}\}=E_{t_{0}Id} . We have  TId(b_{t_{0}})=Id(t_{0})=t_{0} by

 b_{t_{0}}\in E_{t_{0}Id} and the definition of  E_{t_{0}Id} . Therefore we obtain

 \varphi_{1} ,  Id  (b_{t_{0}})=t_{0} (4)

by (3). Forthermore we have

 TId(b_{t_{0}})=T_{f,Id}Id(b_{t_{0}})
 =T_{f^{Id}},(1)Id\circ\varphi_{f^{Id}},(b_{t_{0}})
 =T_{f,Id}(1)\varphi_{f,Id}(b_{t_{0}}) (5)

by  TId=T_{f^{Id}},Id and (1). By (5) and  T(Id)(b_{t_{0}})=t_{0} , we have  T_{f^{Id}},(1)\varphi_{f^{Id}},(b_{t_{0}})=
 t_{0} . Since  \varphi_{f^{Id}},(b_{t_{0}}) is in  [0,1] and  t_{0} is in  [0,1],  T_{f^{Id}}(1)(b_{t_{0}}) is a real number

which is a scalar of modulars 1. we get

 T_{f^{Id}},(1)(b_{t_{0}})=1 . (6)

Therefore we obtain

 \varphi_{f,Id}(b_{t_{0}})=t_{0} . (7)
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We consider  E_{t_{of}}= \{t\in[0,1] : Tf(t)=Tf(t)=\frac{f(t_{0})}{f(t_{0})}\} for every  f\in C[0,1] . Since

 Tf=T_{f^{Id}},f and (1), we get

 \{\begin{array}{l}
Tf(b_{t_{0}})=T_{f^{Id}},(1)(b_{t_{0}})f\circ\varphi_{f^{Id}},(b_{t_{0}})
Tf(b_{t_{0}})=T_{f^{Id}},(1)(b_{t_{0}})f\circ\varphi_{f^{Id}},(b_{t_{0}}) .
\end{array}
By (6), we have

 \{\begin{array}{l}
Tf(b_{t_{0}})=f\circ\varphi_{f,Id}(b_{t_{0}})
Tf(b_{t_{0}})=f\circ\varphi_{f^{Id}},(b_{t_{0}}) .
\end{array}
By (7), we have

  \{_{Tf(b_{t_{0}})=}^{Tf(b_{t_{0}})=}\frac{f(t_{0})}{f(t_{0})}.
Therefore  b_{t_{0}} is an element of  E_{t_{of}} . Since  f is an arbitrary element of  C[0,1] , we

get  E_{t_{0}Id}= \{b_{t_{0}}\}=\bigcap_{f\in C[0,1]}E_{t_{0}f}.
Let  \psi be a map  [0,1] into  [0,1] such that   \{\psi(t_{0})\}=\bigcap_{f\in C[0,1]}E_{t_{0}f} . Since

  \{b_{t_{0}}\}=\bigcap_{f\in C[0,1]}E_{t_{0}f} , we get  \psi(t_{0})=b_{t_{0}} . By  TId=T_{1,Id}Id and (2), we have

TId  (\psi(t_{0}))=T_{1,Id}Id(\psi(t_{0}))
 =Id\varphi_{1,Id}(\psi(t_{0}))
 =\varphi_{1,Id}(\psi(t_{0}))
 =\varphi_{1,Id}(b_{t_{0}}) .

By (4), we get

TId (\psi(t_{0}))=t_{0} . (8)

We will prove that a map  \psi is bijective. Let  x\in[0,1] be  x=\varphi_{1,Id}(y) for every

 y\in[0,1] . We obtain  b_{\varphi_{1,Id}(y)}=\psi(\varphi_{1,Id}(y))\in E_{\varphi_{1,Id}(y)Id} . We get  TId=\varphi_{1,Id}

by (3). By  TId=\varphi_{1,Id} and (8), we get  \varphi_{1,Id}(\psi(\varphi_{1,Id}(y)))=TId(\psi(\varphi_{1,Id}(y)))=

 \varphi_{1,Id}(y) . Since  \varphi_{1,Id} is a homeomorphism, we get  \psi(\varphi_{1,Id}(y))=y . By  x=

 \varphi_{1,Id}(y),  y is represented by  \psi(x)=y . Therefore  \psi is surjective.

We take  t_{1},  t_{2}\in[0,1] and assume that  t_{1}\neq t_{2} . We notice  \psi(t_{1})=b_{t_{1}}\in E_{t_{1}f}
and  \psi(t_{2})=b_{t_{2}}\in E_{t_{2}f}  (f\in C[0,1]) . We get  TId(\psi(t_{1}))=\varphi_{1,Id}(\psi(t_{1})) by (3).

Since we have  TId(\psi(t_{1}))=t_{1}by(8) , we get  \varphi_{1,Id}(\psi(t_{1}))=t_{1} . In the same way, we

get  \varphi_{1,Id}\psi(t_{2})=t_{2} . By the assumption  t_{1}\neq t_{2} , we get  \varphi_{1,Id}(\psi(t_{1}))\neq\varphi_{1,Id}(\psi(t_{2})) .

We obtain  \psi(t_{1})\neq\psi(t_{2}) . Therefore  \psi is injective.
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By (4) and (7), we get  \varphi_{1,Id}(b_{t_{0}})=\varphi_{f,Id}(b_{t_{0}}) . Since  b_{t_{0}}=\psi(t_{0})  (t_{0}\in[0,1]) ,

we have  \varphi_{1,Id}(\psi(t_{0}))=\varphi_{f^{Id}},(\psi(t_{0})) . Since  \psi is a bijection, for every  t\in[0,1] we

represent  \varphi_{1,Id}(t)=\varphi_{f,Id}(t) . We get

 \varphi_{1}, Id=\varphi_{f,Id}. (9)

Let  i be a constant function :  [0,1]arrow i . A map  T is represented by

 \{\begin{array}{l}
Ti (\psi(t_{0}))=i(t_{0})=i
or
Ti (\psi(t_{0}))=\overline{i(t_{0})}=-i
\end{array}
for every  t_{0}\in[0,1] . Since  \psi is bijective and  [0,1] is connected,  T satisfies either

of the cases

(a)  T satisfies  Ti=i for every  t\in[0,1]
or

(b)  T satisfies  Ti=-i for every  t\in[0,1].

First, we consider the case (a). We get

 TId=T_{f} , Id (1) Id  0\varphi_{f} , Id
 =T_{f} , Id (1)  \varphi_{f} , Id

for the identity map Id of  C[0,1] . By the above equation and (3), we get  \varphi_{1,Id}=

  T_{f^{Id}},(1)\varphi_{f^{Id}},\cdot By (9), we get  T_{f^{Id}},(1)=1 . Since (9) and  T_{f^{Id}},(1)=1 , and we get

 Tf=T_{f} , Id (1)  f\circ\varphi_{f} Id
 =f\circ\varphi_{f} , Id

 =fo\varphi_{1Id}.

Consequently, in the case (a),  T is represented by  Tf=f\circ\varphi_{1,Id} for every   f\in

 C[0,1] . Next, we consider the case (b). Let  U be a map :  C[0,1]arrow C[0,1]

such that  U=\overline{T} . We notice  U is a 2‐local isometry. For the constant functions

1,  i\in C[0,1] we have  U(1)=\overline{T(1)}=1 and  U(i)=\overline{T(i)}=\overline{-i}=i . we apply the

case (a) to  U , we get  \overline{Tf}=Uf  =f\circ\varphi_{1,Id} . So we get  Tf=f\circ\varphi_{1,Id} . Therefore

when  T(1)=1 , one of the following equalities

 \{\begin{array}{ll}
Tf(t)=f\varphi_{1,Id}(t)   (f\in C[0,1], t\in[0,1])
Tf(t)=f\varphi_{1,Id}(t)   (f\in C[0,1], t\in[0,1]) .
\end{array}
By Theorem 3.1,  T is a surjective real linear isometry on  C[0,1].  \square 
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Proposition 4.2. Let  T be a 2‐local isometry on  C[0,1] . Then  T satisfies

 |T(1)(t)|=1  (t\in[0,1]) .

Proof. Since  T is a 2‐local isoetry, for every  f\in C[0,1] there exists   T_{f,1}\in

 Iso_{\mathbb{R}}(C[0,1]) such that  T_{f,1}(f)=T(f) and  T_{f,1}(1)=T(1) . Since  T_{f,1} is an element

of  Iso_{\mathbb{R}}(C[0,1]) , there exists  T_{f,1}(1) such that  |T_{f,1}(1)|=1 . By  T_{f,1}(1)=T(1) ,

there exists  T(1) such that  |T(1)(t)|=1(t\in[0,1]) .  \square 

Proposition 4.3. Let  T be a 2‐local isometry on  C[0,1] . Define a map  S by

 S=\overline{T(1)}T . Then  S is a 2‐local isometry on  C[0,1]\mathcal{S}uch that  S(1)=1.

Proof. Since  T is a 2‐local isometry, for every pair of elements  f,  g\in C[0,1] there

exist  T_{f,g}\in Iso_{\mathbb{R}}(C[0,1]) such that  T_{f,g}f=Tf and  T_{f,g}g=Tg. Define a map

 S_{f,g} by  S_{f,g}=\overline{T(1)}T_{f,g} . Since  T_{f,g} is a real linear isometry, we get that for every

 \alpha,  \beta\in \mathbb{R},  u,  v\in C[0,1]

 S_{f,g}(\alpha u+\beta v)=\overline{T(1)}T_{f,g}(\alpha u+\beta v)
 =\overline{T(1)}(\alpha T_{f,g}(u)+\beta T_{f,g}(v))
 =\alpha\overline{T(1)}T_{f,g}(u)+\beta\overline{T(1)}T_{f,g}(v))
 =\alpha S_{f,g}(u)+\beta S_{f,g}(v) .

Consequently,  S_{f,g} is a real linear map. We get that for every  u\in C[0,1]

 \Vert S_{f,g}(u)\Vert_{\infty}=\Vert\overline{T(1)}T_{f,g}(u)\Vert_{\infty}
 =\Vert T_{f,g}(u)\Vert_{\infty}
 =\Vert u\Vert_{\infty}.

So  S_{f,g} is an isometry. Since  T_{f,g} is a surjective real linear isometry on  C[0,1],

 T_{f,g} is bijective. There exists a map  T_{f,g}^{-1} which is an inverse of  T_{f,g} . Define a map

 v by  v=T_{f,g}^{-1}T(1)u for every  u\in C[0,1] , then  v is an element of  C[0,1] . We get

 S_{f,g}(v)=\overline{T(1)}T_{f,g}T_{f,g}^{-1}T(1)u=u . We notice  S_{f,g} is surjentive. Therefore  S_{f,g} is

a surjective real linear isometry on  C[0,1] . By the assumption,  S_{f,g}=\overline{T(1)}T_{f,g}.
We have

 S_{f,g}f=\overline{T(1)}T_{f,g}f
 =\overline{T(1)}Tf
 =Sf.
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By the same way, we get  S_{f,g}g=Sg. Therefore  S is a 2‐local isometry. For the

constant function  1\in C[0,1] we get  S(1)=\overline{T(1)}T(1)=1.  \square 

Proof of Theorem 4.1. Let  S be a map  S=\overline{T(1)}T . By Proposition 4.3,  S is a

2‐local isometry of  C[0,1] such that  S(1)=1 . We apply Proposition 4.1 to  S,  S

satisfies that one of the following equalities

  \{_{Sf(t)=}^{Sf(t)=}\frac{f\circ\varphi(t)}{f\circ\varphi(t)} (t\in(t\in[0,1])
[0,1]) ,

where  \varphi is a homeomorphism on  [0,1] . Since  S=\overline{T(1)}T , we get  T(1)S=

 T(1)\overline{T(1)}T=T . Therefore  T satisfies that one of the following equalities

 \{\begin{array}{ll}
Tf(t)=T(1)f\circ\varphi(t)   (f\in C[0,1], t\in[0,1])
Tf(t)=T(1)f\circ\varphi(t)   (f\in C[0,1], t\in[0,1]) .
\end{array}
By Theorem 3.1,  T is a surjective real linear isometry. Therefore  Iso_{\mathbb{R}}(C[0,1]) is

2‐local reflexive.  \square 
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