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1 Introduction

Šemrl introduced the 2‐locality [1] and defined 2‐local automorphisms and 2‐local
derivations. For a given algebra  A,  a (not necessarily linear nor multiplicative) map
 T :  Aarrow A is said to be a 2‐local automorphism (resp. 2‐local derivation) if for

any  a,  b\in A , there exists an automorphism (resp. derivation)  T_{a,b} on Asuch that

 T(a)=T_{a,b}(a) and  T(b)=T_{a,b}(b) . Šemrl proved that every 2‐local automorphism
(resp. 2‐local derivation) of  B(H) , the algebra of all bounded linear operators on an

infinite dimensional separable Hilbert space  H , is an automorphism (resp. deriva‐

tion). After that, Molnár extended the concept of 2‐locality to isometries [2] and

studied 2‐local isometries of  B(H) . If  X is a Banach space,  a (not necessarily surjec‐

tive nor linear) map  T:Xarrow X is called a 2‐local isometry if for any  x,  y\in X , there

exists a surjective complex‐linear isometry  T_{x,y} on Xsuch that  T(x)=T_{x,y}(x) and

 T(y)=T_{x,y}(y) . Molnár showed that every 2‐local isometry is a complex‐linear isom‐

etry. Motivated by this result, Gyóry studied 2‐local isometries of the function space

 C_{0}(X)[3] , where  C_{0}(X) denotes the Banach algebra of all continuous complex‐valued

functions vanishing at infinity on a locally compact Hausdorff space  X . Gyó
 \acute{}

ry proved

that there exists a 2‐local isometry which is a non‐surjective complex‐linear isometry

on  C_{0}(X) for some  X . Gyó
 \acute{}

ry also proved that every 2‐local isometry of  C_{0}(X) is a
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surjective complex‐linear isometry in the case of  X is first countable a‐compact Haus‐

dorff space. We refer to other result [4, 5, 6, 7, 8]. By the Mazur‐Ulam theorem [9],

every surjective isometry between normed spaces which preserves the origin is real‐

linear. So it would be interesting to consider real‐linear isometries. We motivated

by a Kawamura, Koshimizu and Miura’s research of 2‐local isometries of  C^{n}([0,1])

equiped with the  C‐norm (or  \Sigma‐norm) [10] (notatations and the statement are in sec‐

tion 3) and studied 2‐local isometries of  C^{1}([0,1]) as the 2‐locality of the group of

all surjective “ real‐linear” isometries. We proved that every 2‐local isometries (as the

2‐local property for the group of surjective real‐linear isometries) of  C^{1}([0,1]) equiped

with the  C‐norm (or  \Sigma‐norm) is actually a surjective real‐linear isometry (Hosseini

studied in the case of different type norms [11]).

2 2‐local isometry

In this section, we prepare some definitions. We use the following notations for the

given Banach space  X.

 Iso_{\mathbb{C}}(X)  := { T:Xarrow X| T:surjective complex‐linear isometry}

 Iso_{\mathbb{R}}(X)  := { T:Xarrow X| T:surjective real‐linear isometry}

By these notations, we can rewrite the definition of 2‐local isometry as follows.

Definition 2.1 (2‐local isometry(Molnár)). Let  X be a Banach space. Then, a map
 T:Xarrow X is a 2‐local isometry if the following holds.

 \forall x,  y\in X\exists T_{x,y}\in Iso_{\mathbb{C}}(X) s.t.  T(x)=T_{x,y}(x)\wedge T(y)=T_{x,y}(y)

We want to consider 2‐local isometries as the 2‐local property for the group of all

surjective “real‐linear” isometries in the main theorem. To emphasize it, we write

“ 2‐local  Iso_{\mathbb{R}}(X) ” or “ 2‐local  Iso_{\mathbb{C}}(X) ” instead of“ 2‐local isometry”’

3 2‐local isometries of the space of continuously
differentiable functions

We need some preparations before writing the statement of a result of Kawamura,

Koshimizu and Miura on 2‐local isometries of  C^{n}([0,1]) equiped with the  C‐norm

(or  \Sigma‐norm). We denoted by  C^{n}([0,1]) the space of all complex‐valued  n‐times con‐
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tinuously differentiable functions on the closed unit interval  [0,1] . The  C‐norm and

 \Sigma‐norm on  C^{n}([0,1]) are as follows.

  \Vert f\Vert_{C}:=\sup_{t\in[0,1]}\sum_{k=0}^{n}\frac{|f^{(k)}|}{k!}(f\in 
C^{n}([0, 1])) ,   \Vert f\Vert_{\Sigma}:=\sum_{k=0}^{n}\frac{\Vert f^{(k)}(t)\Vert_{\infty}}{k!}
(f\in C^{n}([0,1]))
Both norms make  C^{n}([0,1]) into a Banach algebra. Kawamura, Koshimizu and

Miura studied 2‐local isometries of this Banach algebra [10].

Theorem 3.1 (Kawamura, Koshimizu and Miura). Let  A be a Banach algebra

 (C^{n}([0,1]), \Vert\cdot\Vert_{C}) . Then every 2‐local  Iso_{\mathbb{C}}(A)T is of the following form:

 T(f)=c[f\circ\pi]^{\varepsilon} (f\in C^{n}([0,1])) ,

where  c\in \mathbb{T},  \pi\in  \{id, 1-id\},  \varepsilon\in\{\pm 1\} and  [f]^{\varepsilon}  :=Re(f)+i\varepsilon Im(f) .

So every 2‐local  Iso_{\mathbb{C}}  ((C^{n}([0,1]), \Vert . \Vert_{C})) map is in  Iso_{\mathbb{C}}((C^{n}([0,1]), \Vert . \Vert_{C})) . They

proved that this statement is also true for the  \Sigma‐norm in the case of  n=1 . Moti‐

vated by this result, we studied 2‐local  Iso_{\mathbb{R}}(C^{n}([0,1])) and proved that every 2‐local

 Iso_{\mathbb{R}}(C^{1}([0,1])) map is in  Iso_{\mathbb{R}}(C^{1}([0,1])) , where the norm is the  C‐norm or  \Sigma‐norm.

4 Main theorem

We want to prove that every 2‐local  Iso_{\mathbb{R}}(A) for  A with the  C‐norm (or  \Sigma‐norm) is

actually a surjective real‐linear isometry. Hereinafter, we denotes  C^{1}([0,1]) equiped

with the norm is  C‐norm or  \Sigma‐norm by  A.

Theorem 4.1 (Main theorem). Every 2‐local  Iso_{\mathbb{R}}(A) map  S is of the form

 S(f)=c[f\circ\pi]^{\varepsilon} (\forall f\in A) ,

where  c\in \mathbb{T},  \varepsilon\in\{\pm 1\} and  \pi\in\{1,1-id\}.

We applying two theorems in the proof of the main theorem. First one is a theorem

by Kawamura, Koshimizu and Miura [12]. This theorem gave the form of maps of

 Iso_{\mathbb{R}}(C^{1}([0,1])) .

Theorem 4.2 (Kawamura, Koshimizu and Miura). Let  B be  (C^{n}([0,1]), \Vert \Vert_{C}) or

 (C^{1}([0,1]), \Vert \Vert_{\Sigma}) . If  S :  Barrow B is a surjective real‐linear map, then there exists
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 c\in \mathbb{T},  \pi\in\{1,1-id\} and  \varepsilon\in\{\pm 1\} such that  S(f)=c[f\circ\pi]^{\varepsilon} for every  f\in B.

Second one is a theorem by Li, Peralta, Wang and Wang [13]. This theorem is an

extension of a Kowalski‐Slodkowski’s theorem [14].

Theorem 4.3 (Li, Peralta, Wang and Wang). Let  B be a unital Banach algebra on
 \mathbb{C} , and let  \triangle :  Barrow \mathbb{C} be a mapping sutisfying the following properties:

(1)  \triangle : 1‐homogeneous  (i.e. \triangle(\alpha x)=\alpha\triangle(x))

(2)  \triangle(x)-\triangle(y)\in \mathbb{T}\sigma(x-y)  (\forall x, y\in B)

Then  \triangle is linear, and there exists  c\in \mathbb{T} such that   c\triangle is multiplicative.

Now we prove the main theorem by applying above theorems.

Proof of Theorem 4.1. Recall that  A is  (C^{1}([0,1]), \Vert \Vert) , where the norm is the C‐

norm or  \Sigma‐norm. Let  S be a 2‐local  Iso_{\mathbb{R}}(A) map. For any pair  f,  g(\in A) , there exists

 T_{f,g}\in Iso_{\mathbb{R}}(A) such that  S(f)=T_{f,g}(f) and  S(g)=T_{f,g}(g) . Applying Theorem

4.2, there exists  c_{f,g}\in \mathbb{T},  \varepsilon_{f,g}\in\{\pm 1\} and  \pi_{f,g}\in\{1,1-id\} such that  T_{f,g} is of the

following form:
 T_{f,g}(h)=c_{f,g}[h\circ\pi_{f,g}]^{\varepsilon_{f,g}} (\forall h\in A) (1)

By this formula (1), we will show that the followings:

 S(\lambda f)=\lambda S(f)  (\forall f\in A\forall\lambda\in \mathbb{C}) or  S(\lambda f)=-\lambda S(f)  (\forall f\in A\forall\lambda\in \mathbb{C}) (2)

 \sigma(S(f)-S(g))\in \mathbb{T}\sigma(f-g) (\forall f, g\in A) (3)

 \sigma(\overline{S}(f)-\overline{S}(g))\in \mathbb{T}\sigma(f-g) (\forall f, 
g\in A) (4)

First, we show that (2) holds. Take any  \lambda\in \mathbb{C}\backslash \{0\} and fix it. By the 2‐locality of  S

and Theorem 4.2, for every  f(\in A) there exists  T_{f,\lambda f}\in Iso_{\mathbb{R}}(A) which satisfies

 S(\lambda f)=T_{f,\lambda f}(\lambda f)=c_{f}[(\lambda f)0\pi_{f}]
^{\varepsilon_{f}}=[\lambda]^{\varepsilon_{f}}T_{f,\lambda f}(f)=[\lambda]
^{\varepsilon_{f}}S(f) .

So  S(\lambda f)=\lambda S(f) or  S(\lambda f)=-\lambda S(f) holds. To show that (2), we suppose  S(\lambda 1_{A})=

 \lambda S(1_{A}) and show that  S(\lambda f)=\lambda S(f) holds for every  f(\in A) . If there exists   F\in

 A\backslash \{0\} such that  S(\lambda F)=-\lambda S(F) , this  F is not a real‐constant. We consider maps
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 h_{s}  :=sF+(1-s)1_{A}  (s\in[0,1]) . Because of  F is not a real‐constant,  h_{s} is also not

a real‐constant for all  s(\neq 0) . Now we define

 u= \sup\{t\in[0,1]|S(\lambda h_{s})=\lambda S(h_{s}) (0\leq\forall s\leq t)\}.

By the definition of  u , there exists two sequences  \{f_{n}\},  \{g_{n}\}\in A^{\mathbb{N}} such that  S(\lambda f_{n})=

 \lambda S(f_{n}),  S(\lambda g_{n})=-\lambda S(g_{n})  (\forall n\in \mathbb{N}) and  n arrow\infty 1\dot{{\imath}}mf_{n}=\lim_{narrow\infty}g_{n}=h_{u} . Since  S is an

isometry, the following equations hold:

 \Vert S(\lambda f_{n})-S(\lambda g_{n})\Vert=\Vert\lambda f_{n}-\lambda g_{n}
\Vert=|\lambda|\Vert f_{n}-g_{n}\Vertarrow 0 (narrow\infty) ,

 \Vert S(\lambda f_{n})+S(\lambda g_{n})\Vert=\Vert\lambda S(f_{n})-\lambda S(g_
{n})\Vert=|\lambda|\Vert f_{n}-g_{n}\Vertarrow 0  (narrow\infty) .

Hence we have

 \Vert 2S(\lambda f_{n})\Vert=\Vert S(\lambda f_{n})-S(\lambda g_{n})+S(\lambda 
f_{n})+S(\lambda g_{n})\Vert

 \leq\Vert S(\lambda f_{n})-S(\lambda g_{n})\Vert+\Vert S(\lambda f_{n})+
S(\lambda g_{n})\Vertarrow 0 (narrow\infty) ,

so  0= \lim_{narrow\infty}2S(\lambda f_{n})=2\lambda_{narrow\infty}1\dot{{\imath}}
mS(f_{n})=2\lambda h_{u} holds. Hence we have  h_{u}=0 and

 u\neq 0 , this is a contradiction. We have proved (2). Next, we prove that (3) holds.

Take any pair  f,  g\in A and fix them. By the 2‐locality of  S and (1), There exists

 T_{f,g}\in Iso_{\mathbb{R}}(A) such that

 S(f)-S(g)=T_{f,g}(f)-T_{f,g}(g)=T_{f,g}(f-g)=c_{f,g}[(f-g)0\pi_{f,g}]
^{\varepsilon_{f,g}}

Hence we have

 \sigma(S(f)-S(g))=\sigma(c_{f,g}[(f-g)0\pi_{f,g}]^{\varepsilon_{f,g}})
 =c_{f,g}[\sigma(f-g)]^{\varepsilon_{f,g}}\subset \mathbb{T}\sigma(f-g) .

Now we have proved (3) holds. Similarly, one can prove that (4) holds. Next, we

define a map  U:Aarrow A by

 U:=\{\begin{array}{l}
S, ifS(i1_{A})=iS(1_{A})
\overline{S}, ifS(i1_{A})=-iS(1_{A})
\end{array}
Clearly  U is also an isometry. We consider the composition mapping of  U and eval‐

uation functional  \tau_{t} :  Aarrow \mathbb{C},  \tau_{t}(f)  :=f(t)  (t\in[0,1]) , and define  U_{t}(=\tau_{t}\circ U) :

 Aarrow \mathbb{C} . By (2),(3) and (4), each  U_{t} satisfies the assumptions of Theorem 4.4. So

 \overline{U_{t}(1_{A})}U_{t} is multiplicative. We prove that  U(1_{A}) is a constant.  \sigma(U(1_{A}))\subset \mathbb{T} by
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(3) and (4), so  \Vert U(1_{A})\Vert_{\infty}=1 . Hence we have   1=\Vert 1_{A}\Vert=\Vert U(1_{A})\Vert , and by the

definition of the norm of  A , we have  \Vert U(1_{A})'\Vert_{\infty}=0 . This yields  U(1_{A}) is a constant.

Now we proved that there exists  c\in \mathbb{T} such that each  cU_{t} is multiplicative. Since

the maximal ideal space  M_{A} is homeomorphic to the under lying space  [0,1] , we can

define a map  \pi :  [0,1]arrow[0,1] satisfying  cU_{t}=\tau_{\pi(t)} . Now  U is represented by

 U(f)=c(f\circ\pi) (f\in A) .

Because  U equals to  S or  \overline{S} , it suffices to prove that  \pi is id or  1-id to complete

the proof. By  \pi=\overline{c}U(id),  \pi is differentiable and  \Vert\pi\Vert=\Vert U(id)\Vert=\Vert id\Vert=2 holds.

Because  \pi is continuous,  \pi must be surjective. Suppose not, we can take a point

 s\in[0,1]\backslash {\rm Im}(\pi) and its neighborhood  V such that   Vn{\rm Im}(\pi)=\emptyset . We can choose

 f_{0}\in A\backslash 0 as  f_{0}=0 on  V , and  0\neq\Vert f_{0}\Vert=\Vert U(f_{0})\Vert=\Vert c(f_{0}\circ\pi)\Vert=\Vert 
0\Vert=0 holds

because  U is an isometry. This is a contradiction. So  \pi is surjective. We also have

 \Vert\pi'\Vert_{\infty}=1 . Hence, by the mean value theorem,  \pi is contractive. By surjectivity and

contractivity of  \pi , one can prove that  \pi is id or  1-id.  \square 
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