Some problems for semiclosed subspaces

Go Hirasawa¹ Ibaraki University

1. INTRODUCTION AND PRELIMINARIES

Motivated by the paper [2] which are related with ranges of operator means, we introduce 'a path' for two given semiclosed subspaces by using Uhlmann's interpolation for a symmetric operator mean. The aim of this note is to show some properties of such a path and to pose several problems that are expected to be related to the invariant subspace problem.

Let H be an infinite dimensional, separable, complex Hilbert space with an inner product $(\cdot, \cdot) = \|\cdot\|^2$ and let $\mathcal{B}(H)$ be the set of all (linear) bounded operators on H. In particular, $\mathcal{B}_+(H)$ stands for the set of all positive (semi-definite) operators on H, and

$$\mathcal{B}_{+}^{-1}(H) = \{ A \in \mathcal{B}_{+}(H) : \exists A^{-1} \in \mathcal{B}(H) \}.$$

A subspace M in H is said to be semiclosed if there exists a Hilbert norm $\|\cdot\|_M$ on M such that $(M, \|\cdot\|_M) \hookrightarrow H$ (continuously embedded Hilbert space). It is easily shown that a semiclosed subspace is equivalent to an operator range, that is, a range of a bounded operator. Clearly, a closed subspace is semiclosed.

Theorem 1.1 (Douglas majorization). Let $A, B \in \mathcal{B}(H)$. The following conditions are equivalent.

- (1) $AH \subseteq BH$
- (2) $AA^* \leq kBB^*$ for some k > 0
- (3) A = BX for some $X \in \mathcal{B}(H)$

 $^{^{1}\}mathrm{This}$ work is supported by the Grant-in-Aid for Scientific Research, No.16K13760 from JSPS.

In the above cases, X in (3) uniquely determined with ker $X^* \supseteq \ker B$ and for such the X,

$$||X||^2 = \inf\{k : AA^* \le kBB^*\}.$$

Using Douglas majorization theorem, a parallel sum ([1]) can be defined explicitly for a general (i.e. non-invertible) case. For $A, B \in \mathcal{B}_+(H)$, since $A^{\frac{1}{2}}H \subseteq A^{\frac{1}{2}}H + B^{\frac{1}{2}}H = (A+B)^{\frac{1}{2}}H$, there uniquely exists $X \in \mathcal{B}(H)$ such that $A^{\frac{1}{2}} = (A+B)^{\frac{1}{2}}X$ with ker $X^* \supseteq \ker(A+B)$. Similarly, there uniquely exists $Y \in \mathcal{B}(H)$ such that $B^{\frac{1}{2}} = (A+B)^{\frac{1}{2}}Y$ with ker $Y^* \supseteq \ker(A+B)$. Then a parallel sum A: B is defined by

(1.1)
$$A: B = A^{\frac{1}{2}} X^* Y B^{\frac{1}{2}}.$$

If $A, B \in \mathcal{B}^{-1}_+(H)$, then $A : B = (A^{-1} + B^{-1})^{-1}$.

The following range equations are well known for $\mathcal{B}_+(H)$.

(1.2)
$$(A^2:B^2)^{\frac{1}{2}}H = AH \cap BH, \quad (A^2+B^2)^{\frac{1}{2}}H = AH + BH$$

Definition 1.1. A binary operation m from $\mathcal{B}_+(H) \times \mathcal{B}_+(H)$ to $\mathcal{B}_+(H)$

 $m: (A, B) \mapsto AmB,$

is said to be an operator mean if the following conditions are satisfied.

(m1) $A \leq C, B \leq D \Longrightarrow AmB \leq CmD.$ (monotone)

- (m2) $T^*(AmB)T \leq (T^*AT)m(T^*BT)$ for $T \in \mathcal{B}(H)$. (transformer)
- (m3) $A_n \downarrow A, B_n \downarrow B \Longrightarrow A_n m B_n \downarrow Am B.$ (upper semi-continuous)
- (m4) ImI = I.

Remark 1.1.

- $\cdot X_n \downarrow X \text{ means } 0 \leq X_{n+1} \leq X_n, \ X_n \to X \text{ (strongly)}.$
- \cdot m is symmetric $\iff AmB = BmA$ for $A, B \in \mathcal{B}_+(H)$.
- $\cdot k(AmB) = (kA)m(kB)$ for k > 0.

According to Kubo - Ando theory ([6]), an operator mean m is one to one corresponding to a continuous operator monotone function $f \ge 0$ on $[0,\infty)$ such that f(1) = 1. Such a function f is called the representing function of m. An operator mean m and its representing function f are connected by the relation $f(x)I = Im(xI), x \ge 0$. When f_1 and f_2 are representing functions of m_1 and m_2 respectively, then the order relation $m_1 \leq m_2$, that is, $Am_1B \leq Am_2B$ on $\mathcal{B}_+(H)$ if and only if $f_1(x) \leq f_2(x)$ for $x \in [0, \infty)$.

Typical examples of operator means are power means as follows. It is known that power means m_r are symmetric.

Example 1.1. Let $-1 \leq r \leq 1, r \neq 0$. Power means m_r on $\mathcal{B}^{-1}_+(H)$ is defined by

$$Am_rB := A^{\frac{1}{2}} \left(\frac{1}{2} + \frac{1}{2} (A^{-\frac{1}{2}} B A^{-\frac{1}{2}})^r \right)^{\frac{1}{r}} A^{\frac{1}{2}}.$$

For $A, B \in \mathcal{B}_+(H)$, by the definition 1.1 (m3),

$$Am_rB := \lim_{n \to \infty} A_n m_r B_n$$

If r = 1, then $m_1 = a$ (arithmetic mean). If $r \to 0$, then m_0 (:= $\lim_{r\to 0} m_r$) = g (geometric mean). If r = -1, then $m_{-1} = h$ (harmonic mean). We give here the form of above three operator means for following arguments. The arithmetic mean $AaB = \frac{A+B}{2}$ on $\mathcal{B}_+(H)$. The geometric mean $AgB = A^{\frac{1}{2}}(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{\frac{1}{2}}A^{\frac{1}{2}}$ on $\mathcal{B}_+^{-1}(H)$. Although AgB can be defined for $A \ge 0$ and $B \ge 0$ by the definition 1.1 (m3), we do not know the explicit form of AgB on $\mathcal{B}_+(H)$. The harmonic mean AhB = 2(A:B) on $\mathcal{B}_+(H)$.

Among any symmetric mean m, it is well known that

$$h \le m \le a.$$

That is,

(1.3)
$$XhY \le XmY \le XaY \text{ for } X, Y \in \mathcal{B}_+(H).$$

Put $X = A^2$ and $Y = B^2$ in (1.3) for $A, B \in \mathcal{B}_+(H)$. Then, by Douglas majorization theorem, we have that

$$(A^{2}hB^{2})^{\frac{1}{2}}H \subseteq (A^{2}mB^{2})^{\frac{1}{2}}H \subseteq (A^{2}aB^{2})^{\frac{1}{2}}H,$$

equivalently by (1.2)

$$AH \cap BH \subseteq (A^2 m B^2)^{\frac{1}{2}} H \subseteq AH + BH.$$

The previous relation holds for any symmetric operator means m. However, surprisingly, the next theorem says that the expression holds for any operator means. **Theorem 1.2** ([2]). For any (not necessarily symmetric) mean m, $AH \cap BH \subseteq (A^2mB^2)^{\frac{1}{2}}H \subseteq AH + BH.$

2. Uhlmann's interpolation m_t $(0 \le t \le 1)$

Firstly, we give the definition of Uhlmann's interpolation for a symmetric operator mean.

Definition 2.1. ([5]) A parametrized operator mean m_t $(0 \le t \le 1)$ on $\mathcal{B}_+(H)$ is said to be Uhlmann's interpolation for a symmetric operator mean m if the following conditions are satisfied.

 $(U1)_{+}: Am_{0}B = A, Am_{\frac{1}{2}}B = AmB \text{ and } Am_{1}B = B \text{ on } \mathcal{B}_{+}(H).$ $(U2)_{+}: (Am_{p}B)m(Am_{q}B) = Am_{\frac{p+q}{2}}B \text{ on } \mathcal{B}_{+}(H).$

 $(U3)^{-1}_+$: The mapping $t \mapsto Am_t B$ is norm continuous for each A, B. That is, for $t \ (0 \le t \le 1)$,

 $\lim_{s \to t} \|Am_t B - Am_s B\| = 0 \text{ for each } A, B \in \underline{\mathcal{B}_+^{-1}(H)}.$

The next theorem asserts that power means have the Uhlmann's interpolation.

Theorem 2.1. ([5]) Let m_r $(-1 \le r \le 1)$ be power means on $\mathcal{B}_+(H)$. For each r, Uhlmann's interpolation $m_{r,t}$ $(0 \le t \le 1)$ exists :

(2.1)
$$Am_{r,t}B := A^{\frac{1}{2}} \left(1 - t + t (A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^r \right)^{\frac{1}{r}} A^{\frac{1}{2}} \text{ for } A, B \in \mathcal{B}^{-1}_+(H).$$

We do not know that the explicit form of $Am_{r,t}B$ for $A, B \in \mathcal{B}_+(H)$. If r = 1 in (2.1), then $Am_{1,t}B = Aa_tB = (1-t)A + tB$ on $\mathcal{B}_+(H)$. If $r \to 0$, then $Am_{0,t}B = Ag_tB = A^{\frac{1}{2}}(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^tA^{\frac{1}{2}}$ on $\mathcal{B}_+^{-1}(H)$. If r = -1, then $Am_{-1,t}B = Ah_tB = ((1-t)A^{-1} + tB^{-1})^{-1}$ on $\mathcal{B}_+^{-1}(H)$. Note that explicit representation of harmonic mean h on $\mathcal{B}_+(H)$ is obtained. In fact, $AhB = 2(A : B) = 2(A^{\frac{1}{2}}X^*YB^{\frac{1}{2}})$ in (1.1). For this reason, I guess that the explicit form of $h_t(=m_{-1,t})$ exists on $\mathcal{B}_+(H)$.

Theorem 2.2. ([5]) For each t $(0 \le t \le 1)$, if $-1 \le r_1 \le r_2 \le 1$ implies

 $m_{r_1,t} \le m_{r_2,t}.$

In particular, $h_t \leq g_t \leq a_t$.

3. A path M_t between semiclosed subspaces

Motivated by a result of Theorem 1.2, we introduce a path between given two semiclosed subspaces.

Definition 3.1. Let m_t $(0 \le t \le 1)$ on $\mathcal{B}_+(H)$ be Uhlmann's interpolation for a symmetric operator mean m. For semiclosed subspaces M_0 and M_1 in H, we define the path (with respect to m_t) between them by

$$M_0 m_t M_1 := (A_0^2 m_t A_1^2)^{\frac{1}{2}} H$$

where $M_0 = A_0H$ and $M_1 = A_1H$ such that $A_0, A_1 \in \mathcal{B}_+(H)$.

Is the definition 3.1 well defined ? Is the path determined not depending on positive operators appearing in the range representation ? For above question, we reply yes, it is well defined. Let $M_0 = A_0H = B_0H$ and $M_1 = A_1H = B_1H$, where $A_i, B_i \in \mathcal{B}_+(H)(i = 0, 1)$. Then we want to show that

$$(A_0^2 m_t A_1^2)^{\frac{1}{2}} H = (B_0^2 m_t B_1^2)^{\frac{1}{2}} H.$$

Because, there exists invertible $X_0, X_1 \in \mathcal{B}^{-1}(H)$ such that

$$A_{0} = B_{0}X_{0}, \ A_{1} = B_{1}X_{1}.$$

$$A_{0}^{2}m_{t}A_{1}^{2} = (B_{0}X_{0}X_{0}^{*}B_{0})m_{t}(B_{1}X_{1}X_{1}^{*}B_{1})$$

$$\leq (\|X_{0}\|^{2}B_{0}^{2})m_{t}(\|X_{1}\|^{2}B_{1}^{2})$$

$$\leq \max\{\|X_{0}\|^{2}, \|X_{1}\|^{2}\}(B_{0}^{2}m_{t}B_{1}^{2})$$

This means that $(A_0^2 m_t A_1^2)^{\frac{1}{2}} H \subseteq (B_0^2 m_t B_1^2)^{\frac{1}{2}} H$ by Douglas majorization theorem. Converse inclusion follows from the invertibility of X_0 and X_1 .

Remark 3.1. From $(U1)_+$ in the definition of Uhlmann's interpolation, we see that

$$t = 0 \implies M_0 m_0 M_1 = (A_0^2 m_0 A_1^2)^{\frac{1}{2}} H = (A_0^2)^{\frac{1}{2}} H = A_0 H = M_0.$$

$$t = 1 \implies M_0 m_1 M_1 = (A_0^2 m_1 A_1^2)^{\frac{1}{2}} H = (A_1^2)^{\frac{1}{2}} H = A_1 H = M_1.$$

Therefore, it is reasonable to put

(3.1)
$$M_t := M_0 m_t M_1. \quad (0 \le t \le 1)$$

Using the notation (3.1), the relation

$$A_0H \cap A_1H \subseteq (A_0^2m_tA_1^2)^{\frac{1}{2}}H \subseteq A_0H + A_1H$$

is simply represented by

$$M_0 \cap M_1 \subseteq M_t \subseteq M_0 + M_1.$$

If $M_0 \subseteq M_1$, then we see that $M_0 \subseteq M_t \subseteq M_1$.

The following examples are known facts.

Example 3.1. Let M_0 and M_1 be semiclosed subspaces. For a_t (0 < t < 1),

$$M_t = M_0 a_t M_1 = (A_0^2 a_t A_1^2)^{\frac{1}{2}} H$$

= $((1-t)A_0^2 + tA_1^2)^{\frac{1}{2}} H = A_0 H + A_1 H$
= $M_0 + M_1$.

Example 3.2. Let M_0 and M_1 be closed subspaces. For g_t and h_t (0 < t < 1),

$$M_t = M_0 g_t M_1 = M_0 h_t M_1 = M_0 \cap M_1$$

Example 3.3. Let M_0 and M_1 be semiclosed subspaces. For $h_{\frac{1}{2}} = h$,

$$M_{\frac{1}{2}} = M_0 h_{\frac{1}{2}} M_1 = (A_0^2 h A_1^2)^{\frac{1}{2}} H$$
$$= (2(A_0^2 : A_1^2))^{\frac{1}{2}} H = A_0 H \cap A_1 H$$
$$= M_0 \cap M_1.$$

In example 3.3, we do not know a form of the path $M_t = M_0 h_t M_1$ for 0 < t < 1.

4. $M^p \ (0 \le p \le 1)$ for a semiclosed subspace M

We introduce a concept of *p*-power of a semiclosed subspace.

Definition 4.1.

For semiclosed subspace M, we define M^p by

$$M^p := A^p H, \ (0 \le p \le 1)$$

where $A^0 := I$ and M = AH with $A \in \mathcal{B}_+(H)$. Note that $M^0 = H$.

Is the definition 4.1 well defined ? We reply yes, it is well defined. It is sufficient to show a case 0 . Let <math>M = AH = BH $(A, B \in \mathcal{B}_+(H))$. Then, by Douglas majorization theorem, the inequality

$$\frac{1}{k}B^2 \le A^2 \le kB^2$$

holds for some k > 0. Hence, by Löwner-Heinze inequality, we have

$$\frac{1}{k^p} B^{2p} \le A^{2p} \le k^p B^{2p} \quad (0$$

that means $A^p H = B^p H$.

Remark 4.1. *M* is closed if and only if $M = M^{\frac{1}{2}}$.

We give the form of the path $M_t = M_0 g_t H$ between M_0 and H.

Example 4.1. Let $M_0(=A_0H)$ and H(=IH) such that $M_0 \neq H$. Then $M_t = M_0 g_t H = (A_0^2 g_t I)^{\frac{1}{2}} H$ $= (Ig_{1-t}A_0^2)^{\frac{1}{2}} H = \left((A_0^2)^{1-t} \right)^{\frac{1}{2}} H$ $= A_0^{1-t} H = M_0^{1-t}. \quad (0 \le t \le 1)$

In example 4.1, we see that $M_t (= M_0^{1-t})$ is increasing if M_0 is not closed, that is,

$$M_t \subsetneq M_s. \quad (0 \le t < s \le 1)$$

If M_0 is closed, then $M_t = M_0$ for $0 \le t < 1$ and $M_1 = H$.

5. T-invariant property for a path M_t

Let $T \in \mathcal{B}(H)$. If two semiclosed subspaces are *T*-invariant, then each point on a path between them is also *T*-invariant.

Proposition 5.1. Put $T \in \mathcal{B}(H)$. Let M_0 and M_1 be nontrivial Tinvariant semiclosed subspaces in H. If m_t $(0 \le t \le 1)$ is Uhlmann's interpolation of a symmetric operator mean m, then a path M_t $(:= M_0 m_t M_1)$ is T-invariant for each t.

(Proof) let $M_0 = A_0H$ and $M_1 = A_1H$ for $A_0, A_1 \in \mathcal{B}_+(H)$. Suppose that

$$T(A_0H) \subseteq A_0H, \quad T(A_1H) \subseteq A_1H.$$

Then,
$$\exists X_0$$
 and $\exists X_1$ in $\mathcal{B}(H)$ s.t. $TA_0 = A_0 X_0$ and $TA_1 = A_1 X_1$.
 $T(A_0^2 m_t A_1^2) T^* \leq (TA_0^2 T^*) m_t (TA_1^2 T^*)$
 $= (A_0 X_0 X_0^* A_0) m_t (A_1 X_1 X_1^* A_1)$
 $\leq (\|X_0\|^2 A_0^2) m_t (\|X_1\|^2 A_1^2)$
 $\leq \max(\|X_0\|^2, \|X_1\|^2) (A_0^2 m_t A_1^2)$

By Douglas's majorization theorem,

$$T(A_0^2 m_t A_1^2)^{\frac{1}{2}} H \subseteq (A_0^2 m_t A_1^2)^{\frac{1}{2}} H.$$

This completes the proof.

According to [7], there exists many *T*-invariant semiclosed subspaces. Choose non-trivial *T*-invariant semiclosed subspaces M_0 and $M_1 (\neq \{0\}, H)$ such that $M_0 \subsetneq M_1$. If the interval of semiclosed subspaces

(5.1)
$$[M_0, M_1] := \{M : M_0 \subseteq M \subseteq M_1\}$$

contains a closed subspace, then does there exists Uhlmann's interpolation m_t such that a path $M_t (= M_0 m_t M_1)$ pass through the closed subspace? In particular, does the path $M_t (= M_0 g_t M_1)$ run through the closed subspace? If a path M_t is closed for some t' and $M_0 \subsetneq M_{t'} \subsetneq M_1$, then $M_{t'}$ is a nontrivial *T*-invariant closed subspace by Proposition 5.1.

6. Some Problems

Let S be the set of all semiclosed subspaces in H. For $M \in S$, it is known that there exists a bijective mapping $\|\cdot\|_M \to A$ from the set of Hilbert norms $\{\|\cdot\|_M : (M, \|\cdot\|_M) \hookrightarrow H\}$ to the set of positive bounded operators $\{A \ge 0 : M = AH\}$. When M is closed, the norm $\|\cdot\|$ restricted to M is corresponding to the orthogonal projection P_M onto M.

For each semiclosed subspace M, we choose a Hilbert norm $\|\cdot\|_M$ from the set of all Hilbert norms on M, and let α be its correspondence $M \to \|\cdot\|_M$, equivalently, $M \to A \ge 0$ from the above arguments. A correspondence α is a choice function to choose a positive bounded operator A from each semiclosed subspace M such that M = AH. We denote it $M \stackrel{\alpha}{=} AH$. Here we promise a rule to choose the orthogonal projection from a closed subspace. Then we define ([3]) a metric ρ_{α} on \mathcal{S} by

 $\rho_{\alpha}(M, N) := ||A - B|| \quad \text{for } M \stackrel{\alpha}{=} AH \text{ and } N \stackrel{\alpha}{=} BH.$

Since $H^{\sigma}(\mathbb{R}^d) \hookrightarrow L^2(\mathbb{R}^d)$ for $\sigma > 0$ and $d \ge 1$, Sobolev space $H^{\sigma}(\mathbb{R}^d)$ is a semiclosed subspace in $L^2(\mathbb{R}^d)$. Let α be the choice function that we choose the Sobolev norm $\|\cdot\|_{H^{\sigma}}$ from each semiclosed subspace

(6.1)
$$\{f \in L^2(\mathbb{R}^N) : (1+|\xi|^2)^{\frac{\sigma}{2}} \widehat{f} \in L^2(\mathbb{R}^N)\}, \quad (\sigma > 0)$$

and we suitably choose a Hilbert norm from each semiclosed subspace except for semiclosed subspaces (6.1) (\hat{f} is Fourier transform of f). Then the distance between Sobolev spaces is given as the following result.

Example 6.1 ([3]). Let $H^{\sigma_1}(\mathbb{R}^d)$ and $H^{\sigma_2}(\mathbb{R}^d)$ be Sobolev spaces in $L^2(\mathbb{R}^d)$. For $0 < \sigma_1 < \sigma_2$,

(1)
$$\rho_{\alpha}(H^1(\mathbb{R}^d), H^2(\mathbb{R}^d)) = 0.25$$

(2) $\rho_{\alpha}(H^{\sigma_1}(\mathbb{R}^d), H^{\sigma_2}(\mathbb{R}^d)) = \left(\frac{\sigma_1}{\sigma_2}\right)^{\frac{\sigma_1}{\sigma_2 - \sigma_1}} - \left(\frac{\sigma_1}{\sigma_2}\right)^{\frac{\sigma_2}{\sigma_2 - \sigma_1}}$

Now we focus on the path induced from the geometric interpolation $g_t \ (0 \le t \le 1)$. As stated in previous section, we are interested in an interval case (5.1), $[M_0, M_1] = \{M \in \mathcal{S} : M_0 \subseteq M \subseteq M_1\}$. Concerning an interval as like this, we ask some problems.

Problem 6.1. For non-trivial semiclosed subspaces $M_0 \subsetneq M_1$,

 $0 \le s < t \le 1 \quad \stackrel{?}{\Longrightarrow} \quad M_s \subseteq M_t.$

Problem 6.2. For non-trivial semiclosed subspaces $M_0 \subsetneq M_1$, does there exist a choice function α such that the path $M_t : [0,1] \rightarrow (S, \rho_{\alpha})$ is continuous?

Problem 6.3. For non-trivial semiclosed subspaces $M_0 \subsetneq M_1$, pick $M_{t'}$ (0 < t' < 1) on the path between M_0 and M_1 . Then, is the path connecting M_0 and $M_{t'}$ a part of the first path ?

Problem 6.4. $M_s \subsetneq M_t \implies \dim M_t/M_s = \infty$.

To study the invariant subspace problem, we are considering the application of method of diminishing intervals of semiclosed subspaces as described in [4]. For that purpose, the above problems are necessary.

Ibaraki University Colleage of Engineering Nakanarusawa 4-12-1 Hitachi 316-8511 Japan Email address : gou.hirasawa.529@vc.ibaraki.ac.jp

茨城大学工学部 平澤 剛

References

- P.A.Fillmore and J.P.Williams, On Operator Range, Adv. in Math.7 (1971) 254-281.
- [2] J.Fujii, Operator Means and Range Inclusion, Linear Algebra and its Applications 170 (1992) 137-146.
- [3] G.Hirasawa, A Metric for Unbounded Linear Operators in a Hilbert Space, Integr. Equ. Oper. Theory vol.70 (2011), 363-378.
- [4] _____, A method of diminishing intervals and semiclosed subspaces, RIMS Kôkyûroku No.1996 (2016), 113-120.
- [5] E.Kamei, Paths of Operators Parametrized by Operator Means, Math.Japonica 39 (1994) 395-400.
- [6] F.Kubo and T.Ando, Means of positive linear operators, Math. Ann. 246 (1980) 205-224.
- [7] E.Nordgren, M.Radjabalpour, H.Radjavi and P.Rosenthal, On Invariant Operator Ranges, Trans. Amer. Math. Soc. vol.251 (1979), 389-398.