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Some problems for semiclosed subspaces
Go Hirasawa1

Ibaraki University

1. INTRODUCTION AND PRELIMINARIES

Motivated by the paper [2] which are related with ranges of operator
means, we introduce ‘a path’ for two given semiclosed subspaces by us‐

ing Uhlmann’s interpolation for a symmetric operator mean. The aim

of this note is to show some properties of such a path and to pose sev‐

eral problems that are expected to be related to the invariant subspace

problem.

Let H be an infinite dimensional, separable, complex Hilbert space

with an inner product  (\cdot, \cdot)=\Vert\cdot\Vert^{2} and let  \mathcal{B}(H) be the set of all (linear)
bounded operators on  H . In particular,  \mathcal{B}_{+}(H) stands for the set of all
positive (semi‐definite) operators on  H , and

 \mathcal{B}_{+}^{-1}(H)=\{A\in \mathcal{B}_{+}(H):\exists A^{-1}\in \mathcal{B}
(H)\}.

A subspace  M in  H is said to be semiclosed if there exists a Hilbert norm

 \Vert\cdot\Vert_{M} on  M such that  (M, \Vert\cdot\Vert_{M})\mapsto H (continuously embedded Hilbert
space). It is easily shown that a semiclosed subspace is equivalent to an
operator range, that is, a range of a bounded operator. Clearly, a closed

subspace is semiclosed.

Theorem 1.1 (Douglas majorization). Let  A,  B\in \mathcal{B}(H) . The following
conditions are equivalent.

(1)  AH\subseteq BH

(2)  AA^{*}\leq kBB^{*} for some  k>0

(3)  A=BX for some  X\in \mathcal{B}(H)
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In the above cases,  X in (3) uniquely determined with  kerX^{*}\supseteq kerB

and for such the  X,

  \Vert X\Vert^{2}=\inf\{k:AA^{*}\leq kBB^{*}\}.

Using Douglas majorization theorem, a parallel sum ([1]) can be de‐
fined explicitly for a general (i.e. non‐invertible) case. For  A,  B\in \mathcal{B}_{+}(H) ,
since  A^{\frac{1}{2}}H\subseteq A^{\frac{1}{2}}H+B^{\frac{1}{2}}H=(A+B)^{\frac{1}{2}}
H , there uniquely exists  X\in \mathcal{B}(H)
such that  A^{\frac{1}{2}}=(A+B)^{\frac{1}{2}}X with  kerX^{*}\supseteq ker(A+B) . Similarly,

there uniquely exists  Y\in \mathcal{B}(H) such that  B^{\frac{1}{2}}=(A+B)^{\frac{1}{2}}Y with

 kerY^{*}\supseteq ker(A+B) . Then a parallel sum  A:B is defined by

(1.1)  A:B=A^{\frac{1}{2}}X^{*}YB^{\frac{1}{2}}.

If  A,  B\in \mathcal{B}_{+}^{-1}(H) , then  A :  B=(A^{-1}+B^{-1})^{-1}
The following range equations are well known for  \mathcal{B}_{+}(H) .

(1.2)  (A^{2}:B^{2})^{\frac{1}{2}}H=AH\cap BH, (A^{2}+B^{2})^{\frac{1}{2}}H=AH+BH

Definition 1.1. A binary operation  m from  \mathcal{B}_{+}(H)\cross \mathcal{B}_{+}(H) to  \mathcal{B}_{+}(H)

 m :  (A, B)\mapsto AmB,

is said to be an operator mean if the following conditions are satisfied.

(m1)  A\leq C,  B\leq D\Rightarrow AmB\leq CmD . (monotone)
(m2)  T^{*}(AmB)T\leq(T^{*}AT)m(T^{*}BT) for  T\in \mathcal{B}(H) . (transformer)
(m3)  A_{n}\downarrow A,  B_{n}\downarrow B\Rightarrow A_{n}mB_{n}\downarrow AmB . (upper semi‐continuous)
(m4)  ImI=I.

Remark 1.1.

 X_{n}\downarrow X means  0\leq X_{n+1}\leq X_{n},  X_{n}arrow X (strongly).
 m is symmetric  \Leftrightarrow AmB=BmA for  A,  B\in \mathcal{B}_{+}(H) .

 k(AmB)=(kA)m(kB) for  k>0.

According to Kubo‐ Ando theory ([6]), an operator mean  m is one to
one corresponding to a continuous operator monotone function  f\geq 0 on

 [0 , oo  ) such that  f(1)=1 . Such a function  f is called the representing

function of  m . An operator mean  m and its representing function  f are

connected by the relation  f(x)I=Im(xI),  x\geq 0 . When  f_{1} and  f_{2} are

representing functions of  m_{1} and  m_{2} respectively, then the order relation
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 m_{1}\leq m_{2} , that is,  Am_{1}B\leq Am_{2}B on  \mathcal{B}_{+}(H) if and only if  f_{1}(x)\leq f_{2}(x)
for  x\in[0, \infty) .

Typical examples of operator means are power means as follows. It is

known that power means  m_{r} are symmetric.

Example 1.1. Let  -1\leq r\leq 1,  r\neq 0 . Power means  m_{r} on  \mathcal{B}_{+}^{-1}(H) is

defined by

 Am_{r}B :=A^{\frac{1}{2}}( \frac{1}{2}+\frac{1}{2}(A^{-\frac{1}{2}}BA^{-
\frac{1}{2}})^{r})^{\frac{1}{r}}A^{\frac{1}{2}}.
For  A,  B\in \mathcal{B}_{+}(H) , by the definition 1.1 (m3),

 Am_{r}B := \lim_{narrow\infty}A_{n}m_{r}B_{n}.
If  r=1 , then  m_{1}=a (arithmetic mean). If  rarrow 0 , then  m_{0}(:=

  \lim_{rarrow 0}m_{r})=g (geometric mean). If  r=-1 , then  m_{-1}=h (harmonic
mean). We give here the form of above three operator means for following
arguments. The arithmetic mean  AaB= \frac{A+B}{2} on  \mathcal{B}_{+}(H) . The geometric

mean  AgB=A^{\frac{1}{2}}(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{\frac{1}{2}}A^{\frac{1}
{2}} on  \mathcal{B}_{+}^{-1}(H) . Although  AgB can be

defined for  A\geq 0 and  B\geq 0 by the definition 1.1 (m3), we do not know
the explicit form of  AgB on  \mathcal{B}_{+}(H) . The harmonic mean  AhB=2(A : B)
on  \mathcal{B}_{+}(H) .

Among any symmetric mean  m , it is well known that

 h\leq m\leq a.

That is,

(1.3)  XhY\leq XmY\leq XaY for  X,  Y\in \mathcal{B}_{+}(H) .

Put  X=A^{2} and  Y=B^{2} in (1.3) for  A,  B\in \mathcal{B}_{+}(H) . Then, by Douglas
majorization theorem, we have that

 (A^{2}hB^{2})^{\frac{1}{2}}H\subseteq(A^{2}mB^{2})^{\frac{1}{2}}
H\subseteq(A^{2}aB^{2})^{\frac{1}{2}}H,

equivalently by (1.2)

 AH\cap BH\subseteq(A^{2}mB^{2})^{\frac{1}{2}}H\subseteq AH+BH.
The previous relation holds for any symmetric operator means  m . How‐

ever, surprisingly, the next theorem says that the expression holds for

any operator means.
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Theorem 1.2 ([2]). For any (not necessarily symmetri  c) mean  m,

 AH\cap BH\subseteq(A^{2}mB^{2})^{\frac{1}{2}}H\subseteq AH+BH.

2. UHLMANN’S INTERPOLATION  m_{t}(0\leq t\leq 1)

Firstly, we give the definition of Uhlmann’s interpolation for a sym‐

metric operator mean.

Definition 2.1. ([5]) A parametrized operator mean  m_{t}(0\leq t\leq 1) on
 \mathcal{B}_{+}(H) is said to be Uhlmann’s interpolation for a symmetric operator

mean  m if the following conditions are satisfied.

 (U1)_{+} :  Am_{0}B=A , Am   \frac{1}{2}B=AmB and  Am_{1}B=B on  \mathcal{B}_{+}(H) .

 (U2)_{+} :  (Am_{p}B)m(Am_{q}B)=Am_{\frac{p+q}{2}}B on  \mathcal{B}_{+}(H) .

(U3)  +-1 : The mapping  t\mapsto Am_{t}B is norm continuous for each  A,  B.

That is, for  t(0\leq t\leq 1) ,

  \lim_{sarrow t}\Vert Am_{t}B-Am_{s}B\Vert=0 for each  A,  B\in \mathcal{B}_{+}^{-1}(H) .

The next theorem asserts that power means have the Uhlmann’s in‐

terpolation.

Theorem 2.1. ([5]) Let  m_{r}(-1\leq r\leq 1) be power means on  \mathcal{B}_{+}(H) .
For each  r , Uhlmann’s interpolation  m_{r,t}(0\leq t\leq 1) exists:

(2.1)  Am_{r,t}B  :=A^{\frac{1}{2}}(1-t+t(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{r})^{\frac{1}{r}}A^
{\frac{1}{2}} for  A,  B\in \mathcal{B}_{+}^{-1}(H) .

We do not know that the explicit form of  Am_{r,t}B for  A,  B\in \mathcal{B}_{+}(H) . If
 r=1 in (2.1), then  Am_{1,t}B=Aa_{t}B=(1-t)A+tB on  \mathcal{B}_{+}(H) . If  rarrow 0,
then  Am_{0,t}B=Ag_{t}B=A^{\frac{1}{2}}(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{t}
A^{\frac{1}{2}} on  \mathcal{B}_{+}^{-1}(H) . If  r=-1,
then  Am_{-1,t}B=Ah_{t}B=((1-t)A^{-1}+tB^{-1})^{-1} on  \mathcal{B}_{+}^{-1}(H) . Note that

explicit representation of harmonic mean  h on  \mathcal{B}_{+}(H) is obtained. In

fact,  AhB=2(A:B)=2(A^{\frac{1}{2}}X^{*}YB^{\frac{1}{2}}) in (1.1). For this reason, I guess
that the explicit form of  h_{t}(=m_{-1,t}) exists on  \mathcal{B}_{+}(H) .

Theorem 2.2. ([5]) For each  t(0\leq t\leq 1), if −  1\leq r_{1}\leq r_{2}\leq 1 implies

 m_{r_{1},t}\leq m_{r_{2},t}.

In particular,  h_{t}\leq g_{t}\leq a_{t}.
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3. A PATH  M_{t} BETWEEN SEMICLOSED SUBSPACES

Motivated by a result of Theorem 1.2, we introduce a path between

given two semiclosed subspaces.

Definition 3.1. Let  m_{t}(0\leq t\leq 1) on  \mathcal{B}_{+}(H) be Uhlmann’s interpo‐

lation for a symmetric operator mean  m . For semiclosed subspaces  M_{0}

and  M_{1} in  H , we define the path (with respect to  m_{t} ) between them by

 M_{0}m_{t}M_{1} :=(A_{0}^{2}m_{t}A_{1}^{2})^{\frac{1}{2}}H,
where  M_{0}=A_{0}H and  M_{1}=A_{1}H such that  A_{0},  A_{1}\in \mathcal{B}_{+}(H) .

Is the definition 3.1 well defined? Is the path determined not depend‐

ing on positive operators appearing in the range representation? For

above question, we reply yes, it is well defined. Let  M_{0}=A_{0}H=B_{0}H

and  M_{1}=A_{1}H=B_{1}H , where  A_{i},  B_{i}\in \mathcal{B}_{+}(H)(i=0,1) . Then we want
to show that

 (A_{0}^{2}m_{t}A_{1}^{2})^{\frac{1}{2}}H=(B_{0}^{2}m_{t}B_{1}^{2})^{\frac{1}{2}
}H.
Because, there exists invertible  X_{0},  X_{1}\in \mathcal{B}^{-1}(H) such that

 A_{0}=B_{0}X_{0}, A_{1}=B_{1}X_{1}.

 A_{0}^{2}m_{t}A_{1}^{2}=(B_{0}X_{0}X_{0}^{*}B_{0})m_{t}(B_{1}X_{1}X_{1}^{*}
B_{1})

 \leq(\Vert X_{0}\Vert^{2}B_{0}^{2})m_{t}(\Vert X_{1}\Vert^{2}B_{1}^{2})

  \leq\max\{\Vert X_{0}\Vert^{2}, \Vert X_{1}\Vert^{2}\}(B_{0}^{2}m_{t}B_{1}^{2}
)

This means that  (A_{0}^{2}m_{t}A_{1}^{2})^{\frac{1}{2}}H\subseteq(B_{0}^{2}m_{t}B_{1}^{2})
^{\frac{1}{2}}H by Douglas majorization

theorem. Converse inclusion follows from the invertibilty of  X_{0} and  X_{1}.

Remark 3.1. From  (U1)_{+} in the definition of Uhlmann’s interpolation,
we see that

 t=0\Rightarrow M_{0}m_{0}M_{1}=(A_{0}^{2}m_{0}A_{1}^{2})^{\frac{1}{2}}H=(A_{0}^
{2})^{\frac{1}{2}}H=A_{0}H=M_{0}.
 t=1\Rightarrow M_{0}m_{1}M_{1}=(A_{0}^{2}m_{1}A_{1}^{2})^{\frac{1}{2}}H=(A_{1}^
{2})^{\frac{1}{2}}H=A_{1}H=M_{1}.

Therefore, it is reasonable to put

(3.1)  M_{t} :=M_{0}m_{t}M_{1}. (0\leq t\leq 1)
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Using the notaion (3.1), the relation

 A_{0}H\cap A_{1}H\subseteq(A_{0}^{2}m_{t}A_{1}^{2})^{\frac{1}{2}}H\subseteq 
A_{0}H+A_{1}H
is simply represented by

 M_{0}\cap M_{1}\subseteq M_{t}\subseteq M_{0}+M_{1}.

If  M_{0}\subseteq M_{1} , then we see that  M_{0}\subseteq M_{t}\subseteq M_{1}.

The following examples are known facts.

Example 3.1. Let  M_{0} and  M_{1} be semiclosed subspaces. For  a_{t}(0<t<
1),

 M_{t}=M_{0}a_{t}M_{1}=(A_{0}^{2}a_{t}A_{1}^{2})^{\frac{1}{2}}H
 =((1-t)A_{0}^{2}+tA_{1}^{2})^{\frac{1}{2}}H=A_{0}H+A_{1}H
 =M_{0}+M_{1}.

Example 3.2. Let  M_{0} and  M_{1} be closed subspaces. For  g_{t} and  h_{t}(0<
 t<1) ,

 M_{t}=M_{0}g_{t}M_{1}=M_{0}h_{t}M_{1}=M_{0}\cap M_{1}

Example 3.3. Let  M_{0} and  M_{1} be semiclosed subspaces. For  h_{\frac{1}{2}}=h,

 M_{\frac{1}{2}}=M_{0}h_{\frac{1}{2}}M_{1}=(A_{0}^{2}hA_{1}^{2})^{\frac{1}{2}}H
 = (2 (A_{0}^{2} : A_{1}^{2}))^{\frac{1}{2}}H=A_{0}H\cap A_{1}H
 =M_{0}\cap M_{1}.

In example 3.3, we do not know a form of the path  M_{t}=M_{0}h_{t}M_{1} for
 0<t<1.

4.  M^{p}(0\leq p\leq 1) FOR A SEMICLOSED SUBSPACE  M

We introduce a concept of  p‐power of a semiclosed subspace.

Definition 4.1.

For semiclosed subspace  M , we define  M^{p} by

 M^{p}:=A^{p}H, (0\leq p\leq 1)

where  A^{0}  :=I and  M=AH with  A\in \mathcal{B}_{+}(H) . Note that  M^{0}=H.
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Is the definition 4.1 well defined? We reply yes, it is well defined. It
is sufficient to show a case  0<p<1 . Let  M=AH=BH(A,   B\in

 \mathcal{B}_{+}(H)) . Then, by Douglas majorization theorem, the inequality

  \frac{1}{k}B^{2}\leq A^{2}\leq kB^{2}
holds for some  k>0 . Hence, by Löwner‐Heinze inequality, we have

  \frac{1}{k^{p}}B^{2p}\leq A^{2p}\leq k^{p}B^{2p} (0<p<1)
that means  A^{p}H=B^{p}H.

Remark 4.1.  M is closed if and only if  M=M^{\frac{1}{2}}.

We give the form of the path  M_{t}=M_{0}g_{t}H between  M_{0} and  H.

Example 4.1. Let  M_{0}(=A_{0}H) and  H(=IH) such that  M_{0}\neq H . Then

 M_{t}=M_{0}g_{t}H=(A_{0}^{2}g_{t}I)^{\frac{1}{2}}H

 =(Ig_{1-t}A_{0}^{2})^{\frac{1}{2}}H=((A_{0}^{2})^{1-t})^{\frac{1}{2}}H
 =A_{0}^{1-t}H=M_{0}^{1-t} (0\leq t\leq 1)

In example 4.1, we see that  M_{t}(=M_{0}^{1-t}) is increasing if  M_{0} is not

closed, that is,

 M_{t}\subset M_{s}<. (0\leq t<s\leq 1)

If  M_{0} is closed, then  M_{t}=M_{0} for  0\leq t<1 and  M_{1}=H.

5.  T‐INVARIANT PROPERTY FOR A PATH  M_{t}

Let  T\in \mathcal{B}(H) . If two semiclosed subspaces are  T‐invariant, then each

point on a path between them is also  T‐invariant.

Proposition 5.1. Put  T\in \mathcal{B}(H) . Let  M_{0} and  M_{1} be nontrivial T‐

invariant semiclosed subspaces in H. If  m_{t}(0\leq t\leq 1) is Uhlmann’s in‐

terpolation of a symmetric operator mean  m , then a path  M_{t}  (:=M_{0}m_{t}M_{1})
is  T ‐invariant for each  t.

(Proof) let  M_{0}=A_{0}H and  M_{1}=A_{1}H for  A_{0},  A_{1}\in \mathcal{B}_{+}(H) . Suppose
that

 T(A_{0}H)\subseteq A_{0}H, T(A_{1}H)\subseteq A_{1}H.
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Then,  \exists X_{0} and  \exists X_{1} in  \mathcal{B}(H) s.t.  TA_{0}=A_{0}X_{0} and  TA_{1}=A_{1}X_{1}.

 T(A_{0}^{2}m_{t}A_{1}^{2})T^{*}\leq(TA_{0}^{2}T^{*})m_{t}(TA_{1}^{2}T^{*})

 =(A_{0}X_{0}X_{0}^{*}A_{0})m_{t}(A_{1}X_{1}X_{1}^{*}A_{1})

 \leq(\Vert X_{0}\Vert^{2}A_{0}^{2})m_{t}(\Vert X_{1}\Vert^{2}A_{1}^{2})

  \leq\max(\Vert X_{0}\Vert^{2}, \Vert X_{1}\Vert^{2})(A_{0}^{2}m_{t}A_{1}^{2})

By Douglas’s majorization theorem,

 T(A_{0}^{2}m_{t}A_{1}^{2})^{\frac{1}{2}}H\subseteq(A_{0}^{2}m_{t}A_{1}^{2})
^{\frac{1}{2}}H.
This completes the proof.

According to [7], there exists many  T‐invariant semiclosed subspaces.
Choose non‐trivial  T‐invariant semiclosed subspaces  M_{0} and  M_{1}(\neq\{0\}, H)
such that  M_{0}\subset<M_{1} . If the interval of semiclosed subspaces

(5.1)  [M_{0}, M_{1}] :=\{M : M_{0}\subseteq M\subseteq M_{1}\}

contains a closed subspace, then does there exists Uhlmann’s interpo‐

lation  m_{t} such that a path  M_{t}(=M_{0}m_{t}M_{1}) pass through the closed

subspace? In particular, does the path  M_{t}(=M_{0}g_{t}M_{1}) run through the

closed subspace? If a path  M_{t} is closed for some  t' and  M_{0}\subset<M_{t'}\subset<M_{1},

then  M_{t'} is a nontrivial  T‐invariant closed subspace by Proposition 5.1.

6. SOME PROBLEMS

Let  S be the set of all semiclosed subspaces in  H . For  M\in \mathcal{S} , it

is known that there exists a bijective mapping  \Vert  \Vert_{M}arrow A from the

set of Hilbert norms  \{\Vert \Vert_{M} : (M, \Vert \Vert_{M})\mapsto H\} to the set of positive

bounded operators  \{A\geq 0 : M=AH\} . When  M is closed, the norm

 \Vert  \Vert restricted to  M is corresponding to the orthogonal projection  P_{M}

onto  M.

For each semiclosed subspace  M , we choose a Hilbert norm  \Vert  \Vert_{M}
from the set of all Hilbert norms on  M , and let  \alpha be its correspondence

  Marrow\Vert  \Vert_{M} , equivalently,  Marrow A\geq 0 from the above arguments.

A correspondence  \alpha is a choice function to choose a positive bounded

operator  A from each semiclosed subspace  M such that  M=AH . We
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denote it  M=\alpha AH . Here we promise a rule to choose the orthogonal

projection from a closed subspace. Then we define ([3]) a metric  \rho_{\alpha} on
 S by

 \rho_{\alpha}(M, N)  :=\Vert A-B\Vert for  M=\alpha AH and  N=\alpha BH.

Since  H^{\sigma}(\mathbb{R}^{d})\mapsto L^{2}(\mathbb{R}^{d}) for  \sigma>0 and  d\geq 1 , Sobolev space  H^{\sigma}(\mathbb{R}^{d})
is a semiclosed subspace in  L^{2}(\mathbb{R}^{d}) . Let  \alpha be the choice function that we

choose the Sobolev norm  \Vert  \Vert_{H^{\sigma}} from each semiclosed subspace

(6.1)  \{f\in L^{2}(\mathbb{R}^{N}) : (1+|\xi|^{2})^{\frac{\sigma}{2}}\hat{f}\in L^{2}
(\mathbb{R}^{N})\}, (\sigma>0)
and we suitably choose a Hilbert norm from each semiclosed subspace

except for semiclosed subspaces (6.1) (  \hat{f}is Fourier transform of  f ). Then
the distance between Sobolev spaces is given as the following result.

Example 6.1 ([3]). Let  H^{\sigma_{1}}(\mathbb{R}^{d}) and  H^{\sigma_{2}}(\mathbb{R}^{d}) be Sobolev spaces in  L^{2}(\mathbb{R}^{d}) .
For  0<\sigma_{1}<\sigma_{2},

(1)  \rho_{\alpha}(H^{1}(\mathbb{R}^{d}), H^{2}(\mathbb{R}^{d}))=0.25
(2)   \rho_{\alpha}(H^{\sigma_{1}}(\mathbb{R}^{d}), H^{\sigma_{2}}(\mathbb{R}^{d}))=
(\frac{\sigma_{1}}{\sigma_{2}})^{\frac{\sigma 1}{\sigma-\sigma}}-
(\frac{\sigma_{1}}{\sigma_{2}})^{\frac{\sigma 2}{\sigma-\sigma}}

Now we focus on the path induced from the geometric interpolation

 g_{t}(0\leq t\leq 1) . As stated in previous section, we are interested in an

interval case (5.1),  [M_{0}, M_{1}]=\{M\in \mathcal{S} : M_{0}\subseteq M\subseteq M_{1}\} . Concerning
an interval as like this, we ask some problems.

Problem 6.1. For non‐trivial semiclosed subspaces  M_{0}\subset<M_{1},

 0\leq s<t\leq 1 \Rightarrow^{?} M_{S}\subseteq M_{t}.

Problem 6.2. For non‐trivial semiclosed subspaces  M_{0}\subset<M_{1} , does there

exist a choice function  \alpha such that the path  M_{t} :  [0,1]arrow(S, \rho_{\alpha}) is
continuous?

Problem 6.3. For non‐trivial semiclosed subspaces  M_{0}\subset<M_{1} , pick  M_{t'}

 (0<t'<1) on the path between  M_{0} and  M_{1} . Then, is the path connecting

 M_{0} and  M_{t'} a part of the first path?

Problem 6.4.  M_{S}\subset<M_{t}  \Rightarrow^{?}  \dim M_{t}/M_{S}=\infty.
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To study the invariant subspace problem, we are considering the ap‐

plication of method of diminishing intervals of semiclosed subspaces as

described in [4]. For that purpose, the above problems are necessary.
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