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Abstract

We present an approach to construct order relations on semigroups via
inverses along elements and survey recent results on this topic.
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1 Introduction

Let  S be a semigroup. By  S^{1} we denote the monoid generated by  S . We denote
by  E(S) the set of idempotents of  S and by  2^{S} the set of subsets of  S.

 *

The work is supported by the grant RFBR 17‐01‐00895.

1

86



87

The detailed and self contained information on semigroup theory can be
found in [22].

An inverse of an element  a\in S is an element  a^{-1}\in S such that  a^{-1}a=
 aa^{-1}=1.

Generalized inverse of a given element  a\in S is an element  b\in S associated
with  a in the following way:

1. This element exists for a class of elements larger than the class of invertible
elements.

2. This element has some of the properties of the usual inverse.

3. This element equals to the usual inverse of  a if it exists.

The concept of a generalized inverse seems to have been first mentioned in
print in 1903 by Fredholm [12], where a particular generalized inverse (called by
him pseudoinverse) of an integral operator was given. The class of all pseudoin‐
verses was characterized in 1912 by Hurwitz [23], who used the finite dimen‐
sionality of the null spaces of the Fredholm operators to give a simple algebraic
construction. The detailed and self‐contained exposition on this subject can be
found for example in [2].

Definition 1.1. Let  a\in S.

1. We say that  a is (von Neumann) regular if  a\in aSa.

2. A particular solution to  axa=a is called an inner inverse of  a and is
denoted by  a^{-}

3. A solution of the equation  xax=x is called an outer inverse of  a and is
denoted by  a^{=}

4. An inner inverse of  a that is also an outer inverse is called a reflexive
inverse and is denoted by  a^{+}.

The set of all inner (resp. outer, resp. reflexive) inverses of  a is denoted by
 a\{1\} (resp.  a\{2\} , resp.  a\{1,2\} ).

Remark 1.2. Let  a\in S and  a^{-}\in a\{1\} . Then  aa^{-},  a^{-}a\in E(S) . Furthermore,
 a^{-}aa^{-}\in a\{1,2\}.

Definition 1.3. A semigroup  S is regular if all its elements are regular.

The definitions of group, Moore‐Penrose and Drazin inverses are standard
and can be found in the literature (see, for example, [2], [16], [8]). We provide
them here for the completeness.

Definition 1.4. Let  a\in S.

1. The element  a is group invertible if there is  a\#\in a\{1,2\} that commutes
with  a.
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2. The element  a is Drazin invertible if there is  a^{D}\in a\{2\} that commutes

with  a and  a^{k+1}a^{D}=a^{k}.

3.  If* is an involution in  S , then  a is Moore‐Penrose invertible if there is
 a\dagger\in a\{1,2\} such that   aa\dagger and   aa\dagger are symmetric with respect  to*.

Each of these inverses is unique if exists.

Theorem 1.5. [38] The element  a has a Drazin inverse  a^{D} if a positive power
 a^{n} of  a is group invertible and  a^{D}=(a^{n+1})^{\#}a^{n}.

Remark 1.6. If  e\in E(S) then  e\#=e^{D}=e . If, in addition,  e^{*}=e then
 e\dagger=e.

Example 1.7. Let  S=\mathbb{M}_{3}(\mathbb{Z}_{2}) , and pose

 a=(\begin{array}{ll}
1   0
0   0
\end{array}) ,  b=(\begin{array}{ll}
0   1
0   0
\end{array}), and  0=(\begin{array}{ll}
0   0
0   0
\end{array})  \in S . Then

1.  a\#=a\dagger=a^{D}=a,

2.  b\dagger=b^{t},

3.  b^{D}=0,

4. There is no  b\#.

Proof. 1. By Lemma above.

2. Easy to verify since  bb^{t}=a.

3. Since  b^{2}=0,0 is a Drazin inverse of  b with  k=2.

4. Suppose that there is  b\#=  (\begin{array}{ll}
x_{11}   x_{12}
x_{21}   x_{22}
\end{array}) . Then  bb\# b=  (\begin{array}{ll}
0   x_{21}
0   0
\end{array})  \Rightarrow

 b\#=(\begin{array}{ll}
x_{1l}   x_{12}
1   x_{22}
\end{array}). But then  bb\#=(\begin{array}{ll}
x_{2l}   x_{22}
0   0
\end{array}) and  b\# b=(\begin{array}{ll}
0   x_{11}
0   1
\end{array}),  a

contradiction.

 \square 

The inverse along an element was introduced in [26]. We recall the definition
and properties of this inverse. Note that in our paper, this new inverse is denoted
by  a^{-d} instead of  a^{\Vert d} , extending the case  d=1 . In this survey we follow the
outline of the works [14, 15].

Definition 1.8. [26, Definition 4] Given elements  a,  d\in S , we say that  a is
invertible along  d if there exists  b\in S such that  bad=d=dab and  b\in dS^{1}\cap S^{1}d.

If such an element  b exists then it is unique (see [26, Theorem 6]) and is denoted
by  a^{-d}.

Another characterization is the following:
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Lemma 1.9. [26, Lemma 3] An element  a\in S is invertible along  d\in S if and
only if there exists  b\in S such that  bab=b,  bS^{1}=dS^{1} and  S^{1}b=S^{1}d . In this
case  a^{-d}=b.

The inverse along an element is an outer inverse. It satisfies

 a^{-d}=d(ad)^{\#}=(da)^{\#}d

and belongs to the double centralizer (double commutant) of  \{a, d\} , see [26,
Theorem 10]. It exists if and only if  d\in dadS^{1}\cap S^{1} dad, for the details see [27].

Remark 1.10. For any  a^{=}\in a\{2\}a^{=}=a^{-a^{=}} It follows that any outer inverse
of  a is an inverse of  a along some element.

For specific choices of  d , we recover the classical generalized inverses:

Lemma 1.11. [26, Theorem 11]
1.  a\#=a^{-a}
2.  a\dagger=a^{-a^{*}} ’
3.  a^{D}=a^{-a^{n}}’ for a certain integer  n.

There is also another concept by Drazin [11]

Definition 1.12. Let  S be any semigroup and let  a,  b,  c,  y\in S . We call  ya

 (b, c) ‐inverse of  a if the following two conditions hold:

1.  y\in(bSy)\cap(ySc) ;

2.  yab=b,  cay=c.

The main difference is that this notion uses two parameters instead of one.
For example, (see [11, p. 2]), it can be useful when considering come parametric
inverses, such as Chipman’s “weighted inverse”’ ([3, pp. 114‐176] and also [2,
pp. 119‐120]) and Cline and Greville’s “  W‐weighted pseudo‐inverse”’ ([7]). We
prove that it is the only significant difference.

Lemma 1.13. Suppose that  b=yab and  c=cay . The following are equivalent:

 \bullet y\in(bSy)\cap(ySc) ;

 \bullet y\in bS^{1}\cap S^{1}c.

Proof. If  y=bny  =ymc for some  n,  m\in S then obviously  y\in bS^{1}\cap S^{1}c.
Now suppose that  y\in bS^{1}\cap S^{1}c . It follows that  y=bn  =mc for some

 m,  n\in S\cup\{1\} . So  y=bn=yabn  =yay  =b(na)y=y(am)c where am,  na\in S

as  a\in S.  \square 

Corollary 1.14. The  (d, d) inverse of  a is exactly the same as  a^{-d}.
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Our survey paper basically follows the recent papers [14, 15] by Mary and
the authors. It is divided to the parts described below. Section 2 is devoted
to the study of the classical partial orders on semigroups via outer inverses. In
particular, we give a new characterization of the Hartwig‐Nambooripad order.
In Section 3 we define new extensions of the Hartwig‐Nambooripad partial order
on arbitrary semigroups, and show that these extensions can be defined by outer
inverses in the case of epigroups. In Section 4, we discuss partial orders based
on outer inverses and inverses along an element and their connection to classical
orders. In Section 4.2 the most general definition is given, and Section 4.3 proves
the transitivity of the introduced relations. In Section 4.4 some of the introduced
orders are compared with the sharp and Drazin partial orders. Section 4.5
contains the discussion of some further properties of the introduced relations.
Finally in Section 5 we consider connection between introduced relations and
Mitra unified theory.

2 Partial orders on semigroups and outer in‐
verses

The first partial order on semigroups was defined on inverse semigroups by
Vagner in 1952 [43], as the abtract counterpart of the inclusion of partial trans‐
formations in the case of the symmetric inverse semigroup.

Definition 2.1. Semigroup  S is an inverse semigroup if for every  a\in S there
exists  a^{+}\in a\{1,2\} and such  a^{+} is unique.

Let  S be an inverse semigroup. For  a,  b\in S Vagner defined the partial order
 \omega by  a\omega b if and only if (iff)  a^{+}a=a^{+}b . Its restriction to the commutative
subsemigroup of idempotents leads to the identification of commutative bands
with semilattices. More generally, the set  E(S) of idempotents of a semigroup
 S can be partially ordered by the rule: for all  e,  f\in E(S),  e\omega f if and only if
 e=ef  =fe (see Clifford and Preston [5] or Lyapin [25] for semigroups and
semilattices, see also Kaplansky [24] for the ring case).

Then in 1980 Hartwig [17] and Nambooripad [39] discovered independently
an extension of the previous partial orders for regular semigoups. Finally, in
1986, Mitsch [34] defined a partial order on arbitrary semigroups, that coincide
with the previous ones on regular semigroups.

Since we do not restrict our attention to regular semigroups, the classical
relations may fail to be reflexive. Therefore, we adopt in this paper the following
convention: by a partial order, we always mean an antisymmetric and transitive
relation only, no reflexivity is required. If it is needed, one can use the reflexive
closure  \overline{\mathcal{K}}=\mathcal{K}\cup\{(a, a)|a\in S\} of the relation  \mathcal{K}.

2.1 The natural partial order

The natural partial order on regular semigroups was defined in 1980 indepen‐
dently by Hartwig [17] and Nambooripad [39]. At this time, regular semigroups
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occupied already a prominent place within semigroup theory. This order was
later extended by Mitsch to non‐regular semigroups in [34]. If  S is a regular
semigroup then the relation  \omega can be defined by  a\omega b iff there exist  e,  f\in E(S)
such that  a= eb  = bf. For idempotents, the defined relation reduces to
 e\omega f\Leftrightarrow ef=fe  =e . In [34], one finds many different ways to express the
natural partial order (on regular semigroups). Some of them use reflexive in‐
verses.

Lemma 2.2. [34, Lemma 1] For a regular semigroup  S , the following conditions
are equivalent:

1.  a=eb=bf for some  e,  f\in E(S) ;

2.  a=aa'b=ba"a for some  a',  a"\in a\{1,2\} ;

3.  a=aa'b=ba'a for some  a'\in a\{1,2\} ;

4.  a'a=a'b and  aa'=ba' for some  a'\in a\{1,2\} , see also [17];

5.  a=ab'b=bb'a,  a=ab'a for some  b'\in b\{1,2\} ;

6.  a=axb  =bxa,  a=axa,  b=bxb for some  x\in S ;

7.  a=eb and  aS\subseteq bS for some idempotent  e such that  aS^{1}=eS^{1} , see also
[39];

8.  a=xb=by,  xa=a for some  x,  y\in S.

We also add the following equivalence due to Hartwig and Luh, see [28].

Lemma 2.3. Let  a,  b\in S and  b be regular. Then the following two conditions
are equivalent:

1.  a=xb=by,  xa=a for some  x,  y\in S;

2.  a=bzb for some  z\in S and  b\{1\}\subseteq a\{1\}.

Let  S be an arbitrary semigroup,  a,  b\in S . Following Drazin [9] and Petrich
[40] we introduce here the notations:

 \bullet  a\mathcal{J}b iff  a=eb=bf for some  e,  f\in E(S) ;

 \bullet  a<^{-}b iff  a^{-}a=a^{-}b and  aa^{-}=ba^{-} for some  a^{-}\in a\{1\} ;

 \bullet  a\mathcal{N}b iff  a=axa  =axb  =bxa for some  x\in S ;

 \bullet  a\mathcal{M}b iff  a=xb=by,  xa=a for some  x,  y\in S^{1} ;

 \bullet  a\mathcal{P}b iff  a=pa=pb=bp=ap for some  p\in S^{1} ;

 \bullet  a\mathcal{H}b iff  a=bxb for some  x\in S^{1} and  b\{1\}\subseteq a\{1\}.
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Here the relations  \mathcal{J},  \mathcal{N},  \mathcal{M},  \mathcal{P} and  \mathcal{H} are named after Jones, Nambooripad,
Mitsch, Petrich and Hartwig correspondingly. For any semigroup  S , it holds that
 \mathcal{N}\subseteq \mathcal{J}\subseteq \mathcal{M} , (  \mathcal{N} is stronger than  \mathcal{J} which is stronger than  \mathcal{M} ). In addition,  \mathcal{N},
 \mathcal{M} and  \mathcal{P} are partial orders, see Lemma 3.1 and Lemma 9.1 in [40]. Relations
 \mathcal{M} and  \mathcal{P} are always reflexive, but  \mathcal{N} is reflexive only on regular semigroups.
Actually, it holds that on regular semigroups, all the previous relations coincide.
Relation  <^{-} is due to Hartwig [17] and called the minus partial order.

Lemma 2.4. (Folklore) For any semigroup  S it holds  that<^{-}=\mathcal{N}.

Also this proves that  \mathcal{N} is a partial order (Lemma 3.1 in [40]).

The detailed account for properties of minus order on semigroups, monoids,
and rings can be found in [17, 6, 39]. An obvious advantage of this partial order
to compare with the others [1, 6, 10, 17, 19] is that its properties are strongly
improved if one improves the ring properties of the base algebraic structure,
namely, changes the semigroup  S to a monoid or to a ring satisfying certain
conditions. Finally, in the case of matrix ring over the field of complex numbers
the minus‐order has a lot of different equivalent characterizations. In particular,
Hartwig in [17] has considered the following binary relation called the rank‐
subtractivity. Let  M_{n}(\mathbb{F}) denote the set of all  n\cross n matrices with the coefficients
from an arbitrary field  \mathbb{F}.

Definition 2.5. A pair of matrices  A,  B\in M_{n}(\mathbb{F}) is called rank‐subtractive if

 rk(B-A)=rkB-rkA (1)

It worth to note that the equality 1 is equivalent to the inequality  rk(B-A)\leq
rk  B- rk  A since the inequality  rk(B-A)\geq rk  B- rk  A holds for arbitrary
matrices  A and  B.

This relation defines a partial order on matrices. Indeed, it is clearly reflexive
and anti‐symmetric, it is also transitive since if pairs  (A, B) and  (B, C) are rank‐
subtractive then one has

 rk(C-A)=rk((B-A)+(C-B))\leq rk(B-A)+rk(C-B)=

 =rkB- rk  A+rkC- rk  B=rkC-rkA,

i.e., the pair  (A, C) is rank‐subtractive.
In [17, Theorem 3.2] it is proved that rank‐subtractivity partial order is

equivalent to minus‐order on  M_{n}(\mathbb{F}) .
It is known that for matrices over a field,  a<^{-}b\Leftrightarrow b\{1\}\subseteq a\{1\} ([28,

Theorem 2.2]). Since its appearance, Mitsch’s partial order has been extensively
studied, see for example [34], [35], [21], [40], [36], [37]. Whereas relation  \mathcal{H}

appears implicitly in Hartwig’s work, it has not been studied as a relation on
arbitrary semigroups.
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2.2 Characterization of the relation  \mathcal{N} by means of outer
inverses

The known characterizations of the natural partial order on a regular semigroup
involve reflexive inverses (inner inverses do the same job since the minus order
coincide with the Nambooripad order). However, characterizations involving
outer inverses were usually not studied until recently, see [31], [4], [41]. The
following proposition gives equivalent characterizations of relation  \mathcal{N} in terms
of outer inverses (The equivalence  1.  \Leftrightarrow 4 . is stated in [31], where in fact the
implication  1.  \Rightarrow 4 . is proved, see [31, Lemma 4]).

Proposition 2.6. [14, Proposition 1] Let  a,  b\in S. Then the following state‐
ments are equivalent:

1.  a=bb^{=}b for some  b^{=}\in b\{2\} ;

2.  a=ab^{=}a=ab^{=}b=bb^{=}a for some  b^{=}\in b\{2\} ;

3.  a=ab_{l}^{=}a=ab_{l}^{=}b=bb_{r}^{=}a for some  b_{l}^{=},  b_{r}^{=}\in b\{2\} ;

4.  a=axa  =axb  =bya for some  x,  y\in S ;

5.  a=axa  =axb  =bxa for some  x\in S.

3 Extending orders on arbitrary semigroups

The proofs of the results provided in this section can be found in [14].

3.1 Definitions

By definition, for  a,  b\in S,  a\mathcal{N}b implies that  a is regular. To compare non‐
regular elements, we define the relation  \Gamma as follows:

Definition 3.1. Let  a,  b\in S . Then  a\Gamma b if there exist  x,  y\in S^{1} such that

 a=axb  =bya and  b\{1\}\subseteq a\{1\}.

Obviously,  \Gamma\subseteq \mathcal{H} as  a\Gamma b implies  a= byaxb for  a,  b\in S.

To compare relation  \Gamma with Nambooripad’s relation  \mathcal{N} , we define the left,
right and the symmetric version of  \Gamma , in an apparently different form.

Definition 3.2. Let  a,  b\in S . We define relations  \Gamma_{l},  \Gamma_{r} , and  \Gamma_{\mathcal{P}} on  S\cross S as
follows:

1. If  b is not regular, then  a\Gamma_{l}b (resp.  a\Gamma_{r}b,  a\Gamma_{\mathcal{P}}b ) iff there exists  x\in S^{1}

such that  a=axb (resp. there exists  y\in S^{1} such that  a=bya , there exist
 x\in S^{1} such that  a=axb  =bxa);

2. If  b is regular, then  a\Gamma_{l}b (resp.  a\Gamma_{r}b,  a\Gamma_{\mathcal{P}}b ) iff there exist  x,  y\in S^{1} , such
that  a=axa  =axb  =bya (resp. there exist  x,  y\in S^{1} , such that  a=

 aya=axb  =bya , there exists  x\in S^{1} , such that  a=axa  =axb  =bxa).
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It happens that  \Gamma is the intersection of  \Gamma_{l} and  \Gamma_{r}.

Lemma 3.3. Let  a,  b\in S . The following statements are equivalent:

1.  a\Gamma b ;

2.  a\Gamma_{l}b and  a\Gamma_{r}b.

The derivation of  \Gamma_{\mathcal{P}} from  \Gamma is then similar to Petrich’s definition of partial
order  \mathcal{P} from Mitsch’s  \mathcal{M}.

Corollary 3.4. Let  a,  b\in S . The following statements are equivalent:

1.  a\Gamma_{\mathcal{P}}b ;

2. There exists  x\in S^{1} such that  a=axb  =bxa , and  b\{1\}\subseteq a\{1\}.

By Proposition 2.6, if  b is regular, then  a\Gamma_{l}b (resp.  a\Gamma_{r}b,  a\Gamma b,  a\Gamma_{\mathcal{P}}b ) if
and only if  a\mathcal{N}b (Lemma 3.5 below). It then holds trivially that  \mathcal{N}\subseteq\Gamma_{\mathcal{P}}\subseteq\Gamma
by Proposition 2.6, therefore  \Gamma may be seen as an extension of the Hartwig‐
Nambooripad order.

Lemma 3.5. Let  a,  b\in S such that  b is regular. Then the following statements
are equivalent;

1.  a\Gamma_{l}b ;

2.  a\Gamma.b ;

3.  a\mathcal{N}b ;

4.  a\Gamma_{\mathcal{P}}b ;

5. There exists  b^{+}\in b\{1,2\},  a=ab^{+}b=bb^{+}a=ab^{+}a.

Corollary 3.6. Let  S be a regular semigroup. Then  \Gamma=\Gamma_{l}=\Gamma_{r}=\Gamma_{\mathcal{P}} is the
natural partial order.

3.2 The orders  \mathcal{H},  \Gamma_{l},  \Gamma_{r},  \Gamma and  \Gamma_{\mathcal{P}}

Let  S be an arbitrary semigroup. Recall that partial orders are not assumed
reflexive in the paper. Actually, relations  \mathcal{H},  \Gamma_{l},  \Gamma_{r},  \Gamma and  \Gamma_{\mathcal{P}} are reflexive iff  S

is regular.

Lemma 3.7. Relations  \mathcal{H},  \Gamma_{l}\Gamma_{r},  \Gamma and  \Gamma_{\mathcal{P}} are partial orders.

The following example shows that the relations  \Gamma_{l} and  \Gamma_{r} are different in
general.

Example 3.8. Let  M=\langle a,  b|ab=a} be the free monoid generated by  a and
 b quotiented by the relation  ab=a . Elements of  M are of the form  b^{q}a^{p}

 (p\geq 0, q\geq 0) and  b^{q}a^{p}b^{n}a^{m}=b^{q}a^{p+m} if  p>0 and  b^{q+n}a^{m} when  p=0 . The

identity is the only regular element in  M . As  a=axb for  x=1 then  a\Gamma_{l}b . But
 a is not below  b for  \Gamma_{r}.

9
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Relations  \Gamma and  \mathcal{M} are not comparable in general. The first examples below
show that each of  \Gamma,  \Gamma_{l},  \Gamma_{r},  \Gamma_{\mathcal{P}} does not imply relation  \mathcal{M}.

Example 3.9. Let  S=\langle a,  b|ab=ba=a} be the free semigroup generated by
 a and  b quotiented by the relation  ab=ba=a . Elements of  S are of the form
 a^{p},  b^{q}(p>0, q>0) and  a^{p}b^{q}=b^{q}a^{p}=a^{p} . There are no regular elements in
 S . As  a=axb  =bxa for  x=1 then  a\Gamma b (also  a\Gamma_{\mathcal{P}}b). But  a is not below  b for
Mitsch’s partial order. Indeed, if  a=xb then  x=a and  xa=a^{2}\neq a.

Let us remind that a semigroup is nilpotent of degree  k if it has a zero, every
product of  k elements equals the zero, and some product of  (k-1) elements is
non‐zero.

Example 3.10. Let  S=N\cross G be the direct product of a commutative nilpo‐
tent semigroup  N by a group  G , and let  a=(a_{1}, a_{2}),  b=(b_{1}, b_{2})\in S . The only
regular element of  N is  0_{N}.

1. We first consider Mitsch’s order. Assume that  a\mathcal{M}b . Then there exist

 x=(x_{1}, x_{2}),  y=(y_{1}, y_{2})\in S^{1} such that  a=xa  =xb  =by. It follows

that  x_{1}^{p}a_{1}=a_{1} for all  p\geq 0 and  a_{1}=0_{N} , or  x_{1}=1 and  a=b . Also as
 a=xa then  a_{2}=x_{2}a_{2} and  x_{2}=1_{G} . Then  a_{2}=x_{2}b_{2}=b_{2} . As conversely
 (0_{N}, a_{2})\mathcal{M}(n, a_{2}) for any  n\in N then  a\mathcal{M}b if and only if  a_{1}=0_{N} and
 a_{2}=b_{2} , or  a=b.

2. We consider now the relation  \Gamma_{l} . Assume that  a\Gamma_{l}b . If  b is regular then
 b_{1}=0_{N} . There exist  x=(x_{1}, x_{2}),  y=(y_{1}, y_{2})\in S^{1} such that  a=axa  =

 axb=bya and therefore  a_{1}=0 and  a_{2}=b_{2} . But in this latter case

 a=b=(0, a_{2}) , thus  a=b . If  b_{1}\neq 0_{N} then  b is not regular. There
exists  x=(x_{1}, x_{2})\in S^{1} such that  a=axb. In this latter case  a_{1}=0 . But

conversely, for any  b such that  b_{1}\neq 0_{N} then  (0, a_{2})=(0, a_{2})(0, b_{2}^{-1})(b_{1}, b_{2})
and  a\Gamma_{l}b . As it also holds that  (0, a_{2})=(b_{1}, b_{2})(0, b_{2}^{-1})(0, a_{2}) then  \Gamma_{l}=
 \Gamma_{r}=\Gamma=\Gamma_{\mathcal{P}} . Note that  (0, b_{2}^{-1}) is an outer inverse of  b.

Next example shows that the relations  \mathcal{P},  \mathcal{M} , and  \mathcal{J} do not imply the order
 \Gamma.

Example 3.11. Let  S=\langle a,  e,  b|be=eb  =a,  e^{2}=e }. As  a=eb and  e^{2}=e

then  ea=a and it holds that  a=ea=eb=be , that is  a\mathcal{P}b (and in particular
 a\mathcal{M}b , also  a\mathcal{J}b). But  a may not be written as a product involving  a and  b and
 a is not below  b for the partial order  \Gamma . Indeed elements of  S are of the form  e,

 a^{p},  b^{q}(p>0, q>0) with the product  a^{p}b^{q}=b^{q}a^{p}=a^{p+q},  a^{p}e=ea^{p}=a^{p} and
 b^{q}e=eb^{q}=a^{q}(p>0, q>0) .

Below we show that the relation  \mathcal{H} implies neither  \Gamma_{l} , nor  \mathcal{M}.

Example 3.12. Let  S be the set of all nonnegative integers with an operation
of addition. The only regular element in  S is  0 . As  5=2+1+2 then  5\mathcal{H}2 but
5,Pí 2 as  5+x+2\neq 5 for all  x\in \mathbb{N} . Also 5  M^{\nearrow}2 as  x+2=2 implies  x=0.
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3.3 Characterization based on outer inverses

As we have seen in the case of a regular semigroup, the partial order  \Gamma(=\Gamma_{l}=
 \Gamma_{r}=\Gamma_{\mathcal{P}}) coincides with the natural partial order which admits characteriza‐
tions by means of outer inverses (Proposition 2.6).

More generally, for a regular element  a and an arbitrary element  b , the
relations  a\Gamma_{l}b (resp.  a\Gamma.b,  a\Gamma b,  a\Gamma_{\mathcal{P}}b ) can be defined by means of outer inverses
of  b.

Proposition 3.13. Let  a,  b\in S such that  a is regular. Then the following
statements are equivalent.

1.  a=axb for some  x\in S^{1} ;

2.  a=ab_{l}^{=}b for some  b_{l}^{=}\in b\{2\}.

If moreover  a=axa  =axb  =bya for some  x,  y\in S^{1} , then it actually holds that
 a=ab^{=}a=ab^{=}b=bb^{=}a for some  b^{=}\in b\{2\}.

Dual arguments give us the following corollary:

Corollary 3.14. Let  a,  b\in S such that  a is regular. Then the following state‐
ments are equivalent.

1.  a=bya for some  y\in S^{1} ;

2.  a=bb_{r}^{=}a for some  b_{r}^{=}\in b\{2\}.

Additional assumptions  a=axb  =bya  =aya for some  x,  y\in S^{1} leads to
 a=ab^{=}a=ab^{=}b=bb^{=}a for some  b^{=}\in b\{2\}.

Also the following statements are equivalent.

1.  a=axb  =bya for some  x,  y\in S^{1} ;

2.  a=ab_{l}^{=}b=bb_{r}^{=}a for some  b_{l}^{=},  b_{r}^{=}\in b\{2\}.

Additional assumption  axa=a leads to  a=ab^{=}a=ab^{=}b=bb^{=}a for some
 b^{=}\in b\{2\}.

Finally we consider the relation  \mathcal{H}.

Lemma 3.15. Let  a,  b\in S such that  a is regular. Then the following statements
are equivalent.

1.  a=bxb for some  x\in S^{1} ;

2.  a=ab_{l}^{=}b=bb_{r}^{=}a for some  b_{l}^{=},  b_{r}^{=}\in b\{2\}.

We deduce from the previous results the following corollary.

Corollary 3.16. Let  a,  b\in S such that  a is regular. Then the following state‐
ments are equivalent.

11
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1.  a\mathcal{H}b ;

2.  a=ab_{l}^{=}b=bb_{r}^{=}a for some  b_{l}^{=},  b_{r}^{=}\in b\{2\} , and moreover, if  b is regular,
then  a=ab^{=}a=ab^{=}b=bb^{=}a for some  b^{=}\in b\{2\} ;

3.  a\Gamma b.

In epigroups (in particular finite or periodic semigroups), the previous char‐
acterizations by outer inverses remain valid for a non‐regular element  a of  S.

Recall that for epigroups the Jones’s partial order  \mathcal{J} and the Mitsch’s partial
order  \mathcal{M} coincide ([21, Proposition 2.8]).

Proposition 3.17. Let  S be an epigroup, and  a,  b\in S. Then the following
statements are equivalent.

1.  a\Gamma_{l}b ;

2.  a=ab_{l}^{=}b for some  b_{l}^{=}\in b\{2\} and if  b is regular, then

 a=ab^{=}a=ab^{=}b=bb^{=}a

for some  b^{=}\in b\{2\}.

Proof. Let  a,  b\in S such that  a\Gamma_{l}b . Then there exists  x\in S^{1} , such that  a=axb.

As  a=axb then  a=a(xb)^{n} for all  n\geq 0 . Let  m be the Drazin index of xb. It

holds that  (xb)^{n+1}(xb)^{D}=(xb)^{n} for all  n\geq m , and  (xb)^{D}\in(xb)\{2\} commutes
with xb. It follows that  [(xb)^{D}x]b[(xb)^{D}x]=[(xb)^{D}x] and  (xb)^{D}x\in b\{2\} . But

also  a[(xb)^{D}x]b=axb[(xb)^{D}]=a(xb)^{m+1}(xb)^{D}=a(xb)^{m}=a . If  b is regular
and  a\Gamma_{l}b , then  a is regular and by Proposition 3.13  a=ab^{=}a=ab^{=}b=bb^{=}a

for some  b^{=}\in b\{2\} . The converse is straightforward.  \square 

By dual arguments, the same statement holds for  \Gamma_{r},  \Gamma and  \Gamma_{\mathcal{P}}.

Remark 3.18. If in Example 3.10 we take  N and  G finite, then semigroup
 S=N\cross G is finite whence  S is an epigroup, and still we can find elements
 a,  b\in S such that  a\Gamma b but  a\mathcal{M}'b . Also, assume that  N is of nilpotency index
more than 4, and let  b_{1}\in N,  b_{1}^{3}\neq 0_{N} . Then set  b=(b_{1},1_{G}) and  a=b^{3} . As  a

and  b are not regular, then  a\mathcal{H}b , but as  a_{1}=b_{1}^{3}\neq 0_{N} , then  a_{/}Kb.

4 Partial orders based on inverses and paramet‐
ric functions

There are many other partial orders on semigroups which can be defined via
the generalized inverse elements, so‐called  G‐based orders. Detailed and self‐
contained information on the topic can be found in the monograph [33]. Recently
unified approach to different generalized inverses via so‐called inverses along
elements was developed in the works [26, 11]. The nice feature of inverses
along elements is that this concept recovers classical generalized inverses by
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specification of the chosen elements. In particular, the group inverse, Drazin
inverse, Moore‐Penrose, etc. appear as particular cases.

The aim of the present section is to introduce a new family of partial order
relations on semigroups on the base of generalized inverses along the elements
and to investigate their algebraic properties. It turns out that this leads to
general unified theory of partial orders on semigroups and well‐known semigroup
order relations can be obtained using our approach. We recall that in order to
simplify definitions, by a partial order we always mean an antisymmetric and
transitive relation only.

This sections is based on results from [15]. Since original proofs can be found
there, most of them are omitted here.

4.1 Partial orders based on outer inverses and inverses

along an element

The orders which are finer than the minus partial order and which are based
on specific inner inverses have been extensively studied, see, for example [29],
[30], [31], [32], [20], [42], [41]. On the other hand, the study of partial orders
based on specific outer inverses (in the sense of Definition 1.1) is relatively new,
and goes back to Mitra and Hartwig [31]. In this paper,  \Theta :  Sarrow 2^{S} denotes
 a (multi‐valued) function. We will specifically study the case investigated in
[31] where  \Theta sends an element to  a (possibly empty) subset of its outer inverses:
 \Theta(x)\subseteq x\{2\} for any  x\in S . Mitra and Hartwig defined a relation  <^{\Theta} as follows.

Definition 4.1. [31] For  a,  b\in S  a<^{\Theta}b means that there exists an outer
inverse  b^{=} of  b,  b^{=}\in\Theta(b) , such that  a=bb^{=}b.

It is proved in [31, Lemma 6] that on regular semigroups, any partial order
finer than the minus partial order is of this form for a specific choice of function
 \Theta . The two drawbacks of this definition are:

 e if  a<^{\Theta}b then  a is regular, hence the relation is not suitable for comparing
non‐regular elements;

 \bullet<^{\Theta} is not a partial order in general, as next example shows.

Example 4.2. Let  S=\mathbb{M}_{3}(\mathbb{Z}_{2}) , and pose

 a=  (\begin{array}{lll}
0   0   0
1   0   0
1   0   0
\end{array}) ,  b=  (\begin{array}{lll}
0   0   0
1   0   0
0   0   1
\end{array}) ,  c=  (\begin{array}{lll}
0   1   0
1   1   0
0   0   1
\end{array}) ,  d=  (\begin{array}{lll}
1   1   0
0   0   0
1   1   0
\end{array}) and

 \delta=  (\begin{array}{lll}
1   1   0
0   0   0
0   0   1
\end{array}) . Let  \Theta be a map such that  \Theta(c)=\{\delta\} and  \Theta(b)=\{d\} . It is

easy to verify that  \delta c\delta=\delta and  dbd=d . As  b=c\delta c and  a=bdb then  a<^{\Theta}b

and  b<^{\Theta}c . But  a\neq c\delta c hence  a 〈  \Theta_{C}.
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4.2 Definitions and general properties

Following the same lines as [31], given  a (multi‐valued) function  \Theta :  Sarrow 2^{S}

with values in the set of of outer inverses,  \Theta(a)\subseteq a\{2\}(\forall a\in S) , we define the
relation  \mathcal{N}^{\Theta} by replacing any instance of  x in the definition by elements of  \Theta(b) .

Definition 4.3. Let  a,  b\in S.

1.  a\mathcal{N}^{\Theta}b if there exists  b^{=}\in\Theta(b) , such that  a=ab^{=}a=ab^{=}b=bb^{=}a.

2.  a\Gamma^{\Theta}b if there exist  b_{l}^{=},  b_{r}^{=}\in\Theta(b) , such that  a=ab_{l}^{=}b=bb_{r}^{=}a and   b\{1\}\subseteq
 a\{1\}.

3. If  b is not regular, then  a\Gamma_{l}^{\Theta}b if there exists  b_{r}^{=}\in\Theta(b) , such that  a=ab_{r}^{=}b.

4. If  b is regular, then  a\Gamma_{l}^{\Theta}b if there exist  b_{l}^{=},  b_{r}^{=}\in\Theta(b) , such that  a=ab_{l}^{=}a=
 ab_{l}^{=}b=bb_{r}^{=}a.

5. If  b is not regular, then  a\Gamma_{r}^{\Theta}b if there exists  b_{r}^{=}\in\Theta(b) , such that  a=bb_{r}^{=}a.

6. If  b is regular, then  a\Gamma^{\Theta}b if there exist  b_{l}^{=},  b_{r}^{=}\in\Theta(b) , such that  a=ab_{r}^{=}a=
 ab_{l}^{=}b=bb_{r}^{=}a.

7. If  b is not regular, then  a\Gamma_{\mathcal{P}}^{\Theta}b if there exists  b^{=}\in\Theta(b) , such that  a=ab^{=}b=

 bb^{=}a.

8. If  b is regular, then  a\Gamma_{\mathcal{P}}^{\Theta}b if there exist  b^{=}\in\Theta(b), such that  a=ab^{=}a=

 ab^{=}b=bb^{=}a.

It happens that  \Gamma^{\Theta} is the intersection of  \Gamma_{l}^{\Theta} and  \Gamma_{r}^{\Theta}.

Lemma 4.4.  \Gamma^{\Theta}=\Gamma_{l}^{\Theta}\cap\Gamma_{r}^{\Theta}.

As a consequence, it always holds that

 \mathcal{N}^{\Theta}\subseteq\Gamma_{\mathcal{P}}^{\Theta}\subseteq\Gamma_{l}^{
\Theta}\cap\Gamma_{r}^{\Theta}=\Gamma^{\Theta}

Of special interest will be the following functions  \Theta :

 \bullet  \Theta :  b\mapsto b\{2\} . In this case we have  \mathcal{N}^{\Theta}=\mathcal{N}=<^{\Theta}.

 \bullet  \ominus\# :   b\mapsto {b#}, the group inverse of  b , or  \Theta^{D} :  b\mapsto\{b^{D}\} , the Drazin
inverse of  b.

 \bullet Let  \triangle :  Sarrow 2^{S} . We pose  \Theta_{\triangle} :  b\mapsto\{b^{-d}|d\in\triangle(b)\} . Here, for  b\in S,  \triangle(b)
is not included in  b\{2\} in general, but  \Theta(b) is. To simplify the notations,
we denote the relation  <^{-\triangle} (resp.  \mathcal{N}^{-\triangle},  \Gamma^{-\triangle},  \Gamma_{l}^{-\triangle},  \Gamma_{r}^{-\triangle},  \Gamma_{\mathcal{P}}^{-\triangle} ) instead
of  <^{\Theta_{\triangle}} (resp.  \mathcal{N}^{\Theta_{\Delta}},  \Gamma^{\Theta_{\triangle}},  \Gamma_{l}^{\Theta_{\triangle}},  \Gamma_{r}^{\Theta_{\Delta}},  \Gamma_{\mathcal{P}}^{\Theta_{\triangle}} ). For instance, if  \triangle\# is such
that  \triangle\#(b)=b for each  b\in S , then  \Theta_{\triangle\#}=\ominus\#.

Let us illustrate these notions.
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Example 4.5. Let  S=T_{3} be the semigroup, which consists of all maps from
the set {1, 2, 3} to itself with the composition operation. We write (mnk) for
the function which sends 1 to  m,  2 to  n , and 3 to  k.

Let  a= (333),  b= (131). Then there exists  b'= (222) such that  a=

ab’b  = bb’a  = ab’a or equally  a\Gamma_{\mathcal{P}}b . Let  \triangle :  Sarrow 2^{S} such that  \triangle(b)=
 \{x=(111), y=(333)\} . Obviously  x and  y are outer inverses of  b . Hence
 b^{-x}=x and  b^{-y}=y . But  bb^{-x}a=(131)(111)(333)=(131)(111)=(111)\neq a
and  bb^{-y}a=(131)(333)(333)=(131)(333)=(111) . Finally, there is no any

 d\in\triangle(b) such that  a=bb^{-d}a . Hence  aF\tau^{\approx K_{b}}.
Lemma 4.6. Let  a,  b\in S such that  a<^{\Theta}b for some  \Theta . Then  b\{1\}\subseteq a\{1\}.

Lemma 4.7. Let  \triangle=\Theta.  Then<^{-\triangle_{=<}\Theta} (resp.  \mathcal{N}^{-\triangle}=\mathcal{N}^{\Theta},  \Gamma^{-\triangle}=\Gamma^{\Theta},
 \Gamma_{l}^{-\triangle}=\Gamma_{l}^{\Theta},  \Gamma_{r}^{-\triangle}=\Gamma_{r}^{\Theta} and  \Gamma_{\mathcal{P}}^{-\triangle}=\Gamma_{\mathcal{P}}^{\Theta} ).

The following lemma is the direct consequence of the definitions:

Lemma 4.8. Let  a,  b\in S and  b^{=}\in b\{2\} such that  a=bb^{=}b . Then

1.  a=ab^{=}a=ab^{=}b=bb^{=}a ;

2. if, in addition,  b is invertible along  d and  a=bb^{-d}b then  a is invertible
along  d with  a^{-d}=b^{-d} and  a^{-d} is a reflexive inverse of  a.

Example 4.9. Let us show, that the expressions  ab^{-d}b,  bb^{-d}a,  ab^{-d}a and
 bb^{-d}b might be different elements of  S . Let  \mathbb{F} be an arbitrary field,  S=M_{3}(\mathbb{F}) ,

 a=  (\begin{array}{lll}
1   0   0
0   1   1
0   0   0
\end{array}) ,
 b=  (\begin{array}{lll}
0   1   0
1   0   0
0   0   0
\end{array}) ,

 c=  (\begin{array}{lll}
1   0   0
0   1   0
0   0   0
\end{array}) ,
 d=  (\begin{array}{lll}
0   1   1
1   0   0
0   0   0
\end{array})  \in S.

Then  dbd=d and therefore  b is invertible along  d . In this case  ab^{-d}b=c,
 bb^{-d}a=a,  ab^{-d}a=d and  bb^{-d}b=b.

Corollary 4.10.  <^{\Theta}\subseteq \mathcal{N}^{\Theta}.

In general  a\mathcal{N}^{\Theta}b does not imply  a<^{\Theta}b as the following example shows.

Example 4.11. Let  S=\mathbb{M}_{3}(\mathbb{Z}_{2}) . We consider  a=  (\begin{array}{lll}
0   0   0
1   0   0
1   0   0
\end{array})  b=  (\begin{array}{lll}
0   1   0
1   1   0
0   0   1
\end{array}) ,

 d=(\begin{array}{lll}
1   1   0
0   0   0
0   0   1
\end{array}), and the map  \triangle such that  \triangle(b)=\{d\} . Then it is easy to verify

that:

1.  b is invertible along  d with  b^{-d}=d.

2.  a=ab^{-d}b=bb^{-d}a=ab^{-d}a.

3.  a\neq bb^{-d}b.

Finally,  a\mathcal{N}^{-\triangle}b and  a 〈  -\triangle_{b}.
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Theorem 4.12. The relations  \mathcal{N}^{\Theta},  \Gamma_{l}^{\Theta},  \Gamma_{r}^{\Theta},  \Gamma_{\mathcal{P}}^{\Theta} and  \Gamma^{\Theta} are partial orders.

Next theorem gives an equivalent characterization of relation  <^{\Theta} in so‐called
 G‐based form (see [32]) and as the relation  \mathcal{N}^{\Theta} with an additional condition.

Theorem 4.13. The following are equivalent:

1.  a<^{\Theta}b ;

2. There exists  b^{=}\in\Theta(b)\cap a\{2\} such that  a=ab^{=}b=bb^{=}a=ab^{=}a ;

3. There exists  a^{+}\in\Theta(b)\cap a\{1,2\} such that:

 \bullet aa^{+}=ba^{+} ;

 \bullet a^{+}a=a^{+}b.

Finally we consider compatibility with multiplication by invertible elements.

Lemma 4.14. Let  b^{=}=b^{=}bb^{=} Then for any invertible  p\in S it holds that:

1.  (p^{-1}b^{=})=(p^{-1}b^{=})(bp)(p^{-1}b^{=}) or equally  p^{-1}b^{=}\in(bp)\{2\} ;

2.  (b^{=}p^{-1})=(b^{=}p^{-1})(pb)(b^{=}p^{-1}) or equally  b^{=}p^{-1}\in(pb)\{2\}.

Lemma 4.15. Let  a,  b,p\in S and  p be invertible.

If  p^{-1}\Theta(b)\subseteq\Theta(bp) , then  a<^{\Theta}b\Rightarrow ap<^{\Theta} bp.
In particular, if  \Theta(x)=x\{2\}\forall x\in S , the following are equivalent.

1.  a<^{\Theta}b ;

2.  ap<^{\Theta} bp;

3.  pa<^{\Theta} pb.

Corollary 4.16. By dual agruments, if  \Theta(b)p^{-1}\subseteq\Theta(pb) , then   a<^{\Theta}b\Rightarrow

 pa<^{\Theta} pb.

Corollary 4.17. The same statements hold  for\mathcal{N}^{\Theta}

4.3 Transitivity of  <^{-\triangle}

In [31], the question of transitivity of  <^{\Theta} was investigated. We specialize here
to the case where  \Theta(b)=\Theta_{\triangle}(b)=\{b^{-d}|d\in\triangle(b)\}.

Proposition 4.18. Assume that for all  b,  c,  d,  \delta\in S satisfying the conditions
1.  b invertible along  d\in\triangle(b) ,
2.  c invertible along  \delta\in\triangle(c) ,
3.  b<c with  b=cc^{-\delta}c,

there exists  t\in\triangle(c) such that  (c^{-\delta}cb^{-d}cc^{-\delta})S^{1}=tS^{1} and  S^{1}(c^{-\delta}cb^{-d}cc^{-\delta})=
 S^{1}t.

 Then<^{-\triangle} is transitive.
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Proof. Let  a,  b,  c\in S be such that  a<^{-\triangle}b and  b<^{-\triangle}c . Then there exists
 d\in\triangle(b) such that  b is invertible along  d and  a=bb^{-d}b , suppose that there
exists  \delta\in\triangle(c) , such that  c is invertible along  \delta and  b=cc^{-\delta}c.

Consider  x=c^{-\delta}cb^{-d}cc^{-\delta} , then  cxc=bb^{-d}b=a and

 xcx=c^{-\delta}cb^{-d}cc^{-\delta}cb^{-d}cc^{-\delta}=c^{-\delta}cb^{-d}bb^{-d}
cc^{-\delta}=x.

It follows that  x is an outer inverse of  c , and in particular  x=c^{-x} . Since
 xS^{1}=tS^{1} and  S^{1}t=S^{1}x,  c^{-x}=c^{-t} by Lemma 1.9. It follows that there exists
 t\in\triangle(c) such that  a=cc^{-t}c . Finally,  a<^{-\triangle}c.

 \square 

Corollary 4.19. Assume that  \triangle :  Sarrow 2^{S} is a constant function  (\triangle(x)=\triangle_{0}
for some fixed  \triangle_{0}\subseteq S) such that either

 \bullet  \triangle_{0}=\delta_{0}S^{1},  S^{1}\delta_{0},  S^{1}\delta_{0}S^{1} or  \delta_{0}S^{1}\cap S^{1}\delta_{0} for an element  \delta_{0}\in S(\triangle_{0} is
a right, left, two‐sided principal ideal, or the intersection of the left and
right principal ideals generated by  \delta_{0} );

 e if  c\in\triangle_{0} then  d\in\triangle_{0}\Leftrightarrow cS^{1}=dS^{1}(\triangle_{0} is an  R‐class, for Green’s relation
 R , see [13], [22, Chapter 2]);

 e if  c\in\triangle_{0} then  d\in\triangle_{0}\Leftrightarrow S^{1}c=S^{1}d(\triangle_{0} is an  L ‐class, for Green’s
relation  L);

 \bullet Of  c\in\triangle_{0} then  d\in\triangle_{0}\Leftrightarrow cS^{1}=dS^{1} and  S^{1}c=S^{1}d(\triangle_{0} is an  H ‐class,
for Green’s relation  H).

 Then<^{-\triangle} is a partial order.

Note that in the case of a single‐valued constant function, transitivity holds
in a trivial way.

Lemma 4.20. Let  \delta\in S and define  \delta :  Sarrow 2^{S} by  \delta(x)=\{\delta\} . Assume also
that  a,  b,  c\in S are such that  a<^{-\delta}b and  b<^{-\delta}c . Then  a=b.

But it also holds trivially in other cases.

Proposition 4.21. Define  \Theta^{D} :  Sarrow 2^{S} by  \Theta^{D}(x)=\{x^{D}\} , Drazin inverse of
 x , and let  a,  b,  c\in S such that  a<^{\Theta^{D}}b and  b<^{\Theta^{D}}c . Then  a=b.

The conclusion then also holds for  \ominus\# :   x\mapsto {x#}, as the group inverse is
a special Drazin inverse. More generally, if  \Theta(b)\subseteq b\{1\} , then  a<^{\Theta}b implies
 a=b.

4.4 Comparison with the sharp partial order and the Drazin
partial order

We now consider the case of special non‐constant functions. Recall that  C(x)
denotes the centralizer of  x and  CC(x)=C(C(x)) its double centralizer.
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Proposition 4.22. Let  \triangle :  Sarrow 2^{S} sends each  x to a subset of its centralizer
namely,  \triangle(x)\subset C(x) . Then  a<^{-\triangle}b implies that  ab=ba.

The sharp partial order is defined in [29] by  a<\# b iff  aa\#=ba\#=a\# b.

It actually coincides with the partial order on completely regular semigroups
(semigroups with all elements group invertible) defined by Drazin in [9] by  aSb

iff  a^{2}=ba=ab . (just multiply on the left and on the right either by  a^{2} or by
 (a\#)^{2}) .

Corollary 4.23. Let  C:b\mapsto C(b) .  Then<^{-C} is the sharp partial order.

Proof. Let  a<^{-C}b . Then there exists  d\in C(b) such that  a=bb^{-d}b . By
Lemma 4.8,  b^{-d} is an inner and outer inverse of  a . As  b and  d commute, they
belong to  C(\{b, d\}) hence they commute with  b^{-d} . It follows that  a=bb^{-d}b

commutes with  b^{-d} , that is  a is group invertible with  a\#=b^{-d} . Then  aa\#=
  bb^{-d}bb^{-d}=bb^{-d}=ba\# and  aa\#=b^{-d}bb^{-d}b=b^{-d}b=a\# b , hence  a<\# b.

Conversely, assume  a<\# b , that is   aa\#=ba\# and  aa\#=a\# b . As  aa\#=aa\#,
then   a\# commute with  b . As also  a\#=b^{-a^{\#}} , then  bb^{-a^{\#}}b=ba\# b=baa\#=
 aaa\#=a . Finally  a<^{-C}b.  \square 

Corollary 4.24. Let  \Theta_{C} :  b\mapsto C(b)\cap b\{2\}.  Then<^{\ominus c} is the sharp partial
order.

Proposition 4.25. For all  b\in S,  \Theta_{C}(b)=\{b^{-d}|d\in C(b)\}.
As a consequence, all of the defined relations remain unchanged under the sub‐
stitution  \Theta_{C}  for-C.

Next, we give a third characterization of the sharp partial order based on
centralizers.

Proposition 4.26. Let  a,  b\in S . Then the following statements are equivalent:

1.  a<^{\ominus c}b ;

2.  a<\# b ;

3.  a<^{-}b in the semigroup  C(b) .

Since  <^{-C}\subseteq \mathcal{N}^{-C} , the sharp partial order is finer than  \mathcal{N}^{-C} . Next example
shows that in general it is strictly finer.

Example 4.27. Let  S=T_{3} and pose  a=(112),  b=(132) . Then a is not
group invertible. Indeed, suppose that there exists   a\# . Then  a=aaa\#=

 aaa\#=(111)a\#=(111)\neq a , contradiction. As a result a  t^{\#}b . But it is
easy to see that  b^{-1}=b . Let  b^{=}=b\in C(b) . Then  a=ab^{=}b=bb^{=}a and
 ab^{=}a=(112)(132)(112)=(112)=a.

Next we study relation  <^{-CC} based on the double centralizer. We start with
a useful lemma.

Lemma 4.28. Let  a\in S be invertible along  d\in CC(a) . Then  a^{-d}\in CC(a) .
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Corollary 4.29. Relation  <^{-CC} is a partial order.

As  CC(x)\subseteq C(x) for all  x\in S , then  <^{-CC}\subseteq<^{-C} and  <^{-CC} is finer than
the sharp partial order. Next example shows that it is strictly finer in general.

Example 4.30. Let  S=T_{3} and  b=(122) .
Then obviously (111), (122), (123), (222)  \in C(b) but (121)  \not\in C(b) and as a con‐
sequence (121)  \not\in CC(b) . Indeed (121)(122)  =(122)\neq(121)=(122)(121).Now
let  d= (mnk)  \in CC(b) . Then  d commutes with (111) and (222) or equally
 m=1,  n=2 . It follows that  CC(b)= {(123), (122)}.

As  b is not invertible,  b^{-(123)} doesn’t exists. But  b^{-b}=b . Then  bb^{-b}b=b.

It follows that if  a<^{-\triangle cc}b then  a=b . But for example (111)  <\# b.

Proposition 4.31. Let  \Theta_{CC} :  b\mapsto CC(b)\cap b\{2\} . Then for all  b\in S,
 \Theta_{CC}(b)=\{b^{-d}|d\in CC(b)\}.
As a consequence, all of the defined relations remain unchanged under the sub‐
stitution  \Theta_{CC}  for-CC.

Proposition 4.32. Let  a,  b\in S . Then the following statements are equivalent:

1.  a<^{-CC}b in  S ;

2.  a<\# b in  CC(b) ;

3.  a<^{-}b in  CC(b) ;

4.  a<^{\ominus cc}b in  S.

We finally consider the star and Drazin partial orders. Let  S be a semigroup
with a proper involution. The star partial order is defined by  a<^{*}b iff  aa^{*}=ba^{*}

and  a^{*}a=a^{*}b , and the Drazin partial order by  a<^{\dagger}b iff   aa\dagger=ba\dagger and
 a\dagger a=a\dagger b . It is stated in [10] that the two partial orders coincide on the set of
 * ‐regular (Moore‐Penrose invertible) elements.

Theorem 4.33. Let  S be a semigroup with a proper involution, and let

 \Theta^{*} :  b\mapsto\Theta^{*}(b)=\{b^{=}\in b\{2\}|b^{=}b=(b^{=}b)^{*} and  bb^{=}=(bb^{=})^{*}\}.

 Then<^{\Theta^{*}} is the Drazin partial order.

Proof. Let  a,  b\in S such that  a<^{\Theta^{*}}b . Then by Theorem 4.13 there exists   a^{+}\in

 \Theta^{*}(b) such that  aa^{+}=ba^{+} and  a^{+}a=a^{+}b . By Lemma 4.8  a^{+}\in a\{1,2\} . Since
 a^{+}\in\Theta^{*}(b),  aa^{+}=ba^{+}=(ba^{+})^{*}=(aa^{+})^{*} and  a^{+}a=a^{+}b=(a^{+}b)^{*}=(a^{+}a)^{*}.
It follows that   a^{+}=a\dagger and as a consequence  a<^{\dagger}b.

Now suppose that  a<^{\dagger}b . It follows that   aa\dagger=ba\dagger and  a\dagger a=a\dagger b . Then
  aba=aaa=a\dagger , (aa  \dagger )

 *  =aa\dagger=ba\dagger= (ba  \dagger )
 *

and dually,  a\dagger b=(a\dagger)^{*} . It
follows that  a\dagger\in\Theta^{*}(b) and as a consequence  a<^{\Theta^{*}}b.  \square 

Proposition 4.34. Consider  \triangle^{*} :  b\mapsto\triangle^{*}(b)=\{x\in S|  xb= (xb)
 *

and
 bx=(bx)^{*}\} . Then for all  b\in S,  \Theta^{*}(b)=\{b^{-d}|d\in\triangle^{*}(b)\}.
As a consequence, all of the defined relations remain unchanged under the sub‐
stitution  \Theta^{*}  for-\triangle^{*}
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Since  <^{\Theta^{*}}\subseteq \mathcal{N}^{\Theta^{*}} , the Drazin partial order is finer than  \mathcal{N}^{\Theta^{*}} Next example
shows that it is strictly finer in general.

Example 4.35. Let  S=\mathbb{M}_{3}(\mathbb{Z}_{2}) with a transposition as an involution. We

consider  a=  (\begin{array}{lll}
1   0   0
0   0   0
0   0   0
\end{array}) and  b=  (\begin{array}{lll}
1   1   0
0   1   0
0   0   0
\end{array}) . Then it is easy to verify that

 bbb=b,  a=bba  =abb  =aba . Since  bb=  (\begin{array}{lll}
1   0   0
0   1   0
0   0   0
\end{array}) is symmetric,  b\in\Theta^{*}(b)

and finally  a\mathcal{N}^{\Theta^{*}}b . Note that  a=aa  =a^{*}=a\dagger . Then  a\dagger a=a\neq a\dagger b=

 (\begin{array}{lll}
1   1   0
0   0   0
0   0   0
\end{array}) . It follows that  a\#^{*}b.

4.5 Other properties of the partial order  \mathcal{N}^{\Theta}

Proposition 4.36. Let  a,  b\in S and a  \mathcal{N}^{\Theta}b for some  \Theta . Then either  a=b or
 a^{-1} doesn’t exist.

Corollary 4.37. Any invertible  a\in S is a maximal element with respect to  \mathcal{N}^{\Theta}

Let us consider  \triangle\# such that  \triangle\#(b)=b for each  b\in S . It is evident

that  a<^{-\triangle^{\#}}b implies  a=b , so that  <^{-\triangle^{\#}}(=<^{\Theta^{\#}}) is the diagonal relation.

The next example shows that it doesn’t hold for  \mathcal{N}^{-\triangle^{\#}}

Example 4.38. Let  S=T_{3} be the semigroup, which consists of all maps from
the set {1, 2, 3} to itself with the composition operation. We write (mnk) for
the function which sends 1 to  m,  2 to  n , and 3 to  k.

Let  a=(323),  b=(321) . Then  b\#=(321) and  a=ab\# b=bb\# a=ab\# a or

equally  a\mathcal{N}^{-\triangle^{\#}}b.

Remark 4.39. In the Example above   a\#=a\# bb\#=bba=a\# ba\# that is
  a\#\mathcal{N}^{-\triangle_{b}^{\#}}\# . But the equivalence   a\#=a\# ba\# may not holds in general as the
following example shows.

Example 4.40. Let  S=T_{3},  a=(211) and  b=(231) . Then  a\#=a and  b\#=

(312). In this case we obtain the following equations:  a=ab\# b=bb\# a=ab\# a.
But   a\# ba\#=(111)\neq a\#

Proposition 4.41. Let  a,  b\in S such that  a is group invertible, and assume
that function  \triangle :  Sarrow 2^{S} satisfies  \triangle(b)\subseteq C(b) . If  a\mathcal{N}^{-\triangle}b with  a=ab^{-d}b=
 bb^{-d}a=ab^{-d}a for some  d\in\triangle(b) , then  a\#=a\# bb^{-d}=b^{-d}ba\#.

Remark 4.42. We note that  \triangle\# satisfies the hypothesis of Proposition 4.41.

Lemma 4.43. Let  a,  b\in S and  a\mathcal{N}^{\Theta}b with  a=ab^{=}b=bb^{=}a=ab^{=}a . Then

 ab^{=},  b^{=}a\in E(S) .
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 ab^{=}=(ab^{=}a)b^{=},  b^{=}a=b^{=}(ab^{=}a) .

Lemma 4.44. Let  a,  b\in S. If  a\mathcal{N}^{\Theta}b and  b is an idempotent in  S then  a is
idempotent and  a=ab=ba=a^{2}.

Proposition 4.45. Let  S=T_{n} . Then the  n‐tuple  (i\ldots i) for each  i\in\{1, n\}
are minimal elements with respect to  \mathcal{N}^{\Theta}

In [18] different cases of maximal elements under the minus partial order
were studied. Since  <^{\Theta}\subseteq \mathcal{N}^{\Theta}\subseteq<^{-} , all results obtained for the minus order
hold for  <^{\Theta} and  \mathcal{N}^{\Theta} , and all the results obtained in this section for  \mathcal{N}^{\Theta} hold
for  <^{\Theta}.

5 Connection to Mitra  s unified theory

It was Mitra who suggested a unified approach to matrix partial orderings via
generalized inverses in [30].

Let  G :  Sarrow 2^{S} denote  a (multi‐valued) function. Mitra defined a relation
 <^{G} as follows.

Definition 5.1. [30] For  a,  b\in S  a<^{G}b means that there exists an inner
inverse  a^{-} of  a,  a^{-}\in G(a) , such that  aa^{-}=ba^{-} and  a^{-}a=a^{-}b.

There is a strong connection between  <^{G} and  <^{\Theta} , see Theorem 4.13. In this
section we investigate it further.

Theorem 5.2. Suppose  that< is some order, possibly, non‐transitive, such
that  a<b\Rightarrow a<^{-}b.  Then<can be represented in the  form<^{\Theta} for some
 \Theta:Sarrow 2^{S}.

Proof. Let  a,  b\in S such that  a<b . By conditions  a<^{-}b that is  aa^{-}=ba^{-}

and  a^{-}a=a^{-}b for some  a^{-}\in a\{1\} . Then  a^{-}aa^{-}ba^{-}aa^{-}=a^{-}aa^{-}aa^{-}aa^{-}=

 a^{-}aa^{-} It follows that  a^{-}aa^{-}\in b\{2\} . Also  ba^{-}aa^{-}b=aa^{-}aa^{-}a=a.

Define  \Theta in the following way:  \Theta(b)= {  a^{-}aa^{-}| for every  a\in S with  a<b},
where  a^{-} is chosen from  a\{1\} as above, that is  aa^{-}=ba^{-} and  a^{-}a=a^{-}b.

Thus we obtain that  \Theta satisfies the condition  x<y\Rightarrow x<^{\Theta}y for every
 x,  y\in S . Suppose that there exist  x,  y\in S such that  x<^{\Theta}y for  x\# y . Then
there exists some  y^{=}\in\Theta(y) such that  x=yy^{=}y . By the definition of  \Theta we
have that  y^{=}=a^{-}aa^{-} for some  a<y and  a^{-} is such that  a^{-}a=a^{-}y and

 aa^{-}=ya^{-} Then  x=yy^{=}y=ya^{-}aa^{-}y=a<y , a contradiction. It follows
that  <^{\Theta} is equivalent to  <.  \square 

Note that the definition of  a<^{G}b uses a function of  a as far as  a<^{\Theta}b uses

a function of  b . As a consequence of the theorem above we obtain:

Corollary 5.3. Let  G :  Sarrow 2^{S} . Then we may find  \Theta :  Sarrow 2^{S} such that
 a<^{G}b\Leftrightarrow a<^{\Theta}b.

Remark 5.4. The above theorem is not valid for  <^{G} as the following example
shows.
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Example 5.5. Let  S=T_{3},  a=(111),  b=(122),  c=(133) . Then  aa=a=

 ab=ba=ac=ca . Thus  q so  a<^{-}b and  a<^{-}c . Suppose that we want to find
 G such that  a<^{G}b but a  t^{G}c . Let us find all  a^{-}\in a\{1\} with  aa^{-}=ba^{-} It

follows that  aa^{-}=(111)=ba^{-}=(122)a^{-}\Rightarrow a^{-}=(111)=a . Then  a\in G(a) .

But  aa=ca=ac\Rightarrow a<^{G}c , a contradiction.

Corollary 5.6. It follows that there exists  \Theta :  Sarrow 2^{S} such that there is no
 <^{G} equivalent  to<^{\Theta}.  Thus<^{\Theta} is more general relation.

We now compare  <^{G} and  \mathcal{N}^{\Theta} . Recall that relation  \mathcal{N}^{\Theta} is transitive.

Remark 5.7. The following example shows that the relation  a<^{G}b is not
transitive in general:

Example 5.8. [30, Example 1]

Let  S=M_{3}(\mathbb{R}) and  a=(\begin{array}{lll}
1   0   0
0   0   0
0   0   0
\end{array}),  b=(\begin{array}{lll}
1   0   0
0   1   0
0   0   0
\end{array}),  c=(\begin{array}{lll}
1   0   1
0   1   0
0   0   1
\end{array}).
Put  G(x)=\{x\dagger\} if rank  (x)=1 and  G(x)=\{x\{1\}\} otherwise. Here

rank  (a)=1,  a\dagger=a and  aa=ab=ba . It follows that  a<^{G}b.

Let  b^{-}=  (\begin{array}{lll}
1   0   -1
0   1   0
0   0   0
\end{array}) . It is easy to see that  bb^{-}b=b and as a consequence

 b^{-}\in b\{1\} and  b^{-}\in G(b) since rank b)  =2 . Also  bb^{-}=b^{-}=cb^{-} and
 b^{-}b=b=b^{-}c . It follows that  b<^{G}c.

Finally,  a<^{G}b<^{G}c . However, one can check that  a=aa\dagger\neq ac\dagger=ac  =

 (\begin{array}{lll}
1   0   1
0   0   0
0   0   0
\end{array}) . Thus  a\#^{G}c and  <^{G} is not transitive.

We conclude our analysis by the following:

Corollary 5.9.
1. There exists  G such that there is no  \Theta  with<^{G}=\mathcal{N}^{\Theta}.
2. There exists  \Theta such that there is no  G  with<^{G}=\mathcal{N}^{\Theta}.

Proof. 1. In Example 5.8 relation  <^{G} is not transitive and as a consequence
there is no  \Theta with  <^{G}=\mathcal{N}^{\Theta}.

2. In Example 5.5  a<^{G}b\Rightarrow a<^{G}c for any  G . Let  \Theta be such that
 \Theta(b)=\{a\} and  \Theta(c)=\emptyset . Then  a\mathcal{N}^{\Theta}b but  a\mathcal{N}^{\theta}c and as a consequence there
is no  G with  <^{G}=\mathcal{N}^{\Theta}.  \square 

The authors are grateful to Xavier Mary for fruitful discussions. Also the
first author wishes to thank the organizers of the RIMS workshop “Researches
on isometries as preserver problems and related topics”’ for the interesting con‐
ference and inspiring atmosphere.
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