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Abstract

Let C^{(2)}([0,1]) be the Banach space of 2‐times continuously differentiable
functions on the closed unit interval  [0,1] equipped with the norm  \Vert f\Vert_{\sigma}=
 |f(0)|+|f'(0)|+\Vert f"\Vert_{\infty} , where   \Vert g\Vert_{\infty}=\sup\{|g(t)| : t\in[0,1]\} for  g . If  T :
 (C^{(2)}([0,1]), \Vert \Vert_{\sigma})arrow(C^{(2)}([0,1]), \Vert 
\Vert_{\sigma}) is a 2‐local isometry, then  T is a
surjective complex‐linear isometry.

1 Introduction

Let  (M, \Vert\cdot\Vert_{M}) and  (N, \Vert\cdot\Vert_{N}) be normed linear spaces over the complex number  \mathbb{C}.

A mapping  T :  Marrow N is called an isometry if  \Vert T(f)-T(g)\Vert_{N}=\Vert f-g\Vert_{M} for

all  f,  g\in M . The linear isometries on various function spaces have been studied by

many mathematicians (see [2]). The source of this subject is the classical Banach‐

Stone theorem, which characterizes the surjective complex‐linear isometry on  C(X) ,

the Banach space of all complex‐valued continuous functions on a compact Hausdorff

space  X with the supremum norm  \Vert .  \Vert_{\infty}.

Theorem 1.1 (Banach‐Stone). A mapping  T is a surjective complex‐linear isometry

on  C(X) if and only if there exist a unimodular continuous function  w :  Xarrow \mathbb{T}  :=

 \{z\in \mathbb{C} : |z|=1\} and a homeomorphism  \varphi :  Xarrow X such that  T(f)=w(f\circ\varphi) for

all  f\in C(X) .

In this paper, we treat with the space of continuously differentiable functions. Let

 C^{(n)}([0,1]) be the Banach space of all  n‐times continuously differentiable functions

on the closed unit interval  [0,1] with a norm. For example,  C^{(n)}([0,1]) with one of
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the following norms is a Banach space;

  \Vert f\Vert_{C}=\sup_{t\in[0,1]}\sum_{k=0}^{n}\frac{|f^{(k)}(t)|}{k!},
  \Vert f\Vert\Sigma=\sum_{k=0}^{n}\frac{\Vert f^{(k)}\Vert_{\infty}}{k!},
  \Vert f\Vert_{\sigma}=\sum_{k=0}^{n-1}|f^{(k)}(0)|+\Vert f^{(n)}\Vert_{\infty}
,

  \Vert f\Vert_{m}=\max\{|f(0)|, |f'(0)|, . . . |f^{(n-1)}(0)|, \Vert f^{(n)}
\Vert_{\infty}\},

for  f\in C^{(n)}([0,1]) . Among them,  (C^{(n)}([0,1]), \Vert \Vert_{C}) and  (C^{(n)}([0,1]), \Vert \Vert\Sigma) are

unital semisimple commutative Banach algebras. In 1965, Cambern [1] characterized

surjective complex‐linear isometries on  (C^{(1)}([0,1]), \Vert \Vert_{C}) . In 1981, Pathak [10]

extended this result to  (C^{(n)}([0,1]), \Vert \Vert_{C}) . On the other hand, Rao and Roy [11]

gave the characterization of surjective complex‐linear isometries on  (C^{(1)}([0,1]), \Vert\cdot\Vert_{\Sigma})
in 1971. Those results say that every surjective complex‐linear isometry has the

canonical form;  T(f)=w(f\circ\varphi) . However, the author [6, 7] proved that surjective

complex‐linear isometries on  (C^{(n)}([0,1]), \Vert\cdot\Vert_{\sigma}) or  (C^{(n)}([0,1]), \Vert\cdot\Vert_{7n}) have a different

form.

In [9], Molnár introduced the notion of 2‐local isometry as follows. For a Banach

space  \mathcal{B} , a mapping  T :  \mathcal{B}arrow \mathcal{B} is called a 2‐local isometry if for each  f,  g\in \mathcal{B} there

exists a surjective complex‐linear isometry  T_{f,g} :  \mathcal{B}arrow \mathcal{B} such that  T(f)=T_{f,g}(f)
and  T(g)=T_{f,g}(g) . Note that no surjectivity or linearity of  T is assumed. Molnár

studied 2‐local isometries on  B(H) , the Banach algebra of all bounded linear operators

on an infinite dimensional separable Hilbert space  H . Let  C_{0}(X) be the Banach

algebra of all complex‐valued continuous functions on a locally compact Hausdorff

space  X which vanish at infinity equipped with the supremum norm  \Vert\cdot\Vert_{\infty} . For a first

countable a‐compact Hausdorff space  X , Gyó
 \acute{}

ry [3] showed that every 2‐local isometry

on  C_{0}(X) is a surjective complex‐linear isometry. Hosseini [4] studied generalized

2‐local isometries on  (C^{(n)}([0,1]), \Vert \Vert_{7r\iota}) . The authors, in [5, 8], considered 2‐local

isometries on the spaces  (C^{(n)}([0,1]), \Vert\cdot 1_{C}),  (C^{(1)}([0,1]), \Vert\cdot\Vert\Sigma) and  (C^{(1)}([0,1]), \Vert\cdot\Vert_{\sigma}) .

2 Results

The following theorem is the main result of this paper.
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Theorem 2.1. Every 2‐local isometry on  (C^{(2)}([0,1]), \Vert\cdot\Vert_{\sigma}) is a surjective complex‐

linear isometry.

The following characterization of surjective complex‐linear isometries on

 (C^{(2)}([0,1]), \Vert . \Vert_{\sigma}) is important to the proof of the theorem. For any  f\in C([0,1]) ,

define  Sf\in C^{(1)}([0,1]) by  (Sf)(t)= \int_{0}^{t}f(s)ds(\forall t\in[0,1]) .

Lemma 2.2 ([7]). A mapping  T is a surjective complex‐linear isometry on

 (C^{(2)}[0,1], \Vert . \Vert_{\sigma}) if and only  lf there exist unimodular constants  \lambda,  \mu\in \mathbb{T} , a unimod‐

ular continuous function  w :  [0,1]arrow \mathbb{T} and a homeomorphism  \varphi :  [0,1]arrow[0,1] such

that one of the following holds:

(i)  T(f)(t)=\lambda f(0)+\mu f'(0)t+(S^{2}(w(f^{\prime/}\circ\varphi)))(t)  (\forall f\in C^{(2)}([0,1]), \forall t\in[0,1]) .

(ii)  T(f)(t)=\lambda f'(0)+\mu f(0)t+(S^{2}(w(f"\circ\varphi)))(t)  (\forall f\in C^{(2)}([0,1]), \forall t\in[0,1]) .

From now on, we write simply  C^{(2)} for the Banach space  (C^{(2)}([0,1]), \Vert . \Vert_{\sigma}) . Let

 T be a 2‐local isometry on  C^{(2)} . We define the map  U :  C([0,1])arrow C([0,1]) by

 U(f)=(T(S^{2}f))" for all  f\in C([0,1]) .

Lemma 2.3. There exist a unimodular continuous function  w :  [0,1]arrow \mathbb{T} and a

homeomorphism  \varphi :  [0,1]arrow[0,1] such that  (T(f))  "=w(f"\circ\varphi) for all  f\in C^{(2)}.

Proof. Let  f,  g\in C([0,1]) . Since  T is a 2‐local isometry on  C^{(2)} , there exists a

surjective complex‐linear isometry  T_{S^{2}f,S^{2}g} on  C^{(2)} such that  T(S^{2}f)=T_{S^{2}f,S^{2}g}(S^{2}f)
and  T(S^{2}g)=T_{S^{2}f,S^{2}g}(S^{2}g) . By Lemma 2.2, there exist a unimodular continuous

function  w_{f,g} :  [0,1]arrow \mathbb{T} and a homeomorphism  \varphi_{f,g} :  [0,1]arrow[0,1] such that

 (T_{S^{2}f,S^{2}g}(h))"=w_{f,g}(h"o\varphi_{f,g}) for all  h\in C^{(2)} . Define  U_{f,g}(h)=w_{f,g}(ho\varphi_{f,g})
for all  h\in C([0,1]) . By the Banach‐Stone theorem, we see that  U_{f,g} is a surjective

complex‐linear isometry on  C([0,1]) . We have

 U(f)=(T(S^{2}f))"=(T_{S^{2}f,S^{2}g}(S^{2}f))"=w_{f,g}(f\circ\varphi_{f,g})=
U_{f,g}(f) .

Similarly,  U(g)=U_{f,g}(g) . Hence  U is a 2‐local isometry on  C([0,1]) . By [3, Theorem

2],  U is a surjective complex‐linear isometry on  C([0,1]) . Hence the Banach‐Stone

theorem implies that there exist a unimodular continuous function  w :  [0,1]arrow \mathbb{T} and

a homeomorphism  \varphi :  [0,1]arrow[0,1] such that

 U(f)=w(f\circ\varphi) (2.1)
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for all  f\in C([0,1]) .

Let  f\in C^{(2)} . Put  g=S^{2}(f") . Since  T is a 2‐local isometry on  C^{(2)} , there exists a

surjective complex‐linear isometry  T_{f,g} on  C^{(2)} such that  T(f)=T_{f,g}(f) and  T(g)=

 T_{f,g}(g) . By Lemma 2.2, there exist a unimodular continuous function  w_{f,g} :  [0,1]arrow \mathbb{T}

and a homeomorphism  \varphi_{f,g} :  [0,1]arrow[0,1] such that  (T_{f,g}(h))"=w_{f,g}(h"\circ\varphi_{f,g}) for

all  h\in C^{(2)} . Then we have

 (T(f))  "=(T_{f,g}(f))"=w_{f,g}(f"\circ\varphi_{f,g})=w_{f,g}(g"\circ\varphi_{f,g})=(T_
{f,g}(g))"=(T(g))

since  g"=(S^{2}(f"))"=f Substituting  f=f" into (2.1), we have

 (T(f)) "=(T(g))"=(T(S^{2}(f")))"=U(f")=w(f"\circ\varphi) .

Hence the lemma completes the proof.  \square 

We define the functions 1 and id by 1  (t)=1(\forall t\in[0,1]) and  id(t)=t(\forall t\in[0,1]) ,

respectively.

Lemma 2.4. There exist unimodular constants  \lambda,  \mu\in \mathbb{T} such that one of the following

holds:

(i)  T(1)=\lambda 1 and  T(id)=\mu id.

(ii)  T(1)=\mu id and  T(id)=\lambda 1.

Proof. Since  T is a 2‐local isometry, there exists a surjective complex‐linear isometry

 T_{1,id} on  C^{(2)} such that  T(1)=T_{1,id}(1) and  T(id)=T_{1,id}(id) . By Lemma 2.2, there

exist unimodular constants  \lambda,  \mu\in \mathbb{T} , a unimodular continuous function  w_{1,id} and a

homeomorphism  \varphi_{1,id} such that one of the following holds:

(i)  T_{1,id}(f)(t)=\lambda f(0)+\mu f'(0)t+(S^{2}(w_{1,id}(f"\circ\varphi_{1,id})))
(t)(\forall f\in C^{(2)}, \forall t\in[0,1]) .

(ii)  T_{1,id}(f)(t)=\lambda f'(0)+\mu f(0)t+(S^{2}(w_{1,id}(f"\circ\varphi_{1,id})))
(t)(\forall f\in C^{(2)}, \forall t\in[0,1]) .

If (i) holds, then we have   T(1)(t)=T_{1,id}(1)(t)=\lambda and  T(id)(t)=T_{1,id}(id)(t)=\mu t.

If (ii) holds, then we have  T(1)(t)=T_{1,id}(1)(t)=\mu t and  T(id)(t)=T_{1,id}(id)(t)=\lambda.
Hence the lemma is proven.  \square 

Lemma 2.5. One of the following holds:

(a)  T(f)(0)=T(1)(0)f(0)(\forall f\in C^{(2)}) and  (Tf)'(0)=(T(id))'(0)f'(0)(\forall f\in C^{(2)}) .

(b)  T(f)(0)=T(id)(0)f'(0)(\forall f\in C^{(2)}) and  (Tf)'(0)=(T(1))'(0)f(0)(\forall f\in C^{(2)}) .

Proof. Let  f\in C^{(2)} . Since  T is a 2‐local isometry, there exist surjective complex‐

linear isometries  T_{1,f} and  T_{id,f} such that  T(f)=T_{1,f}(f)=T_{id,f}(f),  T(1)=
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 T_{1,f}(1) and  T(id)=T_{id,f} (id). By Lemma 2.2, there exist unimodular constants

 \lambda_{1,f},  \mu_{1,f},  \lambda_{id,f},  \mu_{id,f}\in \mathbb{T} such that one of the following (i) and (ii) and one of the

following (I) and (II) hold:

(i)  T_{1,f}(g)(0)=\lambda_{1,f}g(0),  (T_{1,f}(g))'(0)=\mu_{1,f}g'(0) for all  g\in C^{(2)}.
(ii)  T_{1,f}(g)(0)=\lambda_{1,f}g'(0),  (T_{1,f}(g))'(0)=\mu_{1,f}g(0) for all  g\in C^{(2)}.

(I)  T_{id,f}(g)(0)=\lambda_{id,f}g(0),  (T_{id,f}(g))'(0)=\mu_{id,f}g'(0) for all  g\in C^{(2)}.
(II)  T_{id,f}(g)(0)=\lambda_{id,f}g'(0),  (T_{id,f}(g))'(0)=\mu_{id,f}g(0) for all  g\in C^{(2)}.

If (i) and (I) hold, we have  T(f)(0)=T_{1,f}(f)(0)=\lambda_{1,f}f(0) and  (T(f))'(0)=

 (T_{id,f}(f))'(0)  =\mu_{id,f}f'(0) . Also, we have  T(1)(0)  =T_{1,f}(1)(0)  =\lambda_{1,f} and

 (T(id))'(0)=(T_{id,f}(id))'(0)=\mu_{id,f} . Hence we obtain (a).

If (i) and (II) hold,  T(1)(0)=T_{1} ,  f(1)(0)=\lambda_{1,f}\in \mathbb{T} and  T(id)(0)=T_{id,f}(0)=

 \lambda_{id,f}\in \mathbb{T} . This contradicts Lemma 2.4.

If (ii) and (I) hold,  T(1)(0)=T_{1} ,  f(1)(0)=0 and  T(id)(0)=T_{id,f} (id)(0)  =0.

This contradicts Lemma 2.4.

If (ii) and (II) hold, we have  T(f)(0)  =  T_{id,f}(f)(0)  =  \lambda_{id,f}f'(0) and

 (T(f))'(0)=(T_{1,f}(f))'(0)=\mu_{1,f}f(0) . We also have  T(id)(0)=T_{id,f} (id)(0)  =\lambda_{id,f}

and  (T(1))'(0)=(T_{1,f}(1))'(0)=\mu_{1,f} . Hence we obtain (b).  \square 

Proof of Theorem 2.1. Let  T be a 2‐local isometry on  C^{(2)} . We note that if Lemma

2.4(i) holds, then Lemma 2.5(a) holds. Suppose that Lemma 2.5(b) holds. Then

 T(f)(0)=0 for all  f\in C^{(2)} , which is a contradiction. Similarly, we see that if

Lemma 2.4(ii) holds, then Lemma 2.5(b) holds.

By Lemmas 2.3, 2.4 and 2.5, we have

 T(f)(t)=T(f)(0)+(T(f))'(0)t+(S^{2}(T(f))")(t)
 =T(1)(0)f(0)+(T(id))'(0)f'(0)t+(S^{2}(w(f"\circ\varphi)))(t)
 =\lambda f(0)+\mu f'(0)t+(S^{2}(w(f"\circ\varphi)))(t)

or

 T(f)(t)=T(f)(0)+(T(f))'(0)t+(S^{2}(T(f))")(t)
 =T(id)(0)f'(0)+(T(1))'(0)f(0)t+(S^{2}(w(f"\circ\varphi)))(t)
 =\lambda f'(0)+\mu f(0)t+(S^{2}(w(f"\circ\varphi)))(t) .

Hence Lemma 2.2 implies that  T is a surjective complex‐linear isometry on  C^{(2)}.  \square 
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