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1. INTRODUCTION

Bhaskar and Lakshmikantham [2] obtained some coupled fixed point results for
mixed monotone operators F' : X x X — X which satisfy a certain contractive type
condition, where X is a partially ordered metric space.

Definition 1. An element (z,y) € X x X is called a coupled fixed point of the
mapping F: X x X — X if F(xz,y) =2« and F(y,z) = y.

If (X, d) is a metric space and F : X x X — X is an operator, then, by definition,
a coupled fixed point for F' is a pair (z,y) € X x X satisfying the system ;

z = F(z,y)
(1) {y = F(y,).

In order to consider this in the ordered set, for the mapping F' we need the
following mixed monotone property.

Definition 2. We say that a mapping F' of X™ into X has mixed monotone prop-
erty, if it satisfies the following, see [1,4]: for any t1,ta,...,t,, € X,

111,56‘/1 EX,.Z'l tx’l,:> F(l’l,tg,tg,...,tn) tF(wll,tQ...,tn),
SCQ,SCé EX,SCQ i$/2,:>F(t1,fE2,t3,...,tn) iF(tl,IIQ,...,tn),

J:n,x% EX,.I'n i ZC;“:> F(tl,tQ,...,.’En) tF(tl,tQ,...,x;),
Using this, we have several results [1].

Theorem 3. Let (X,d, =) be a partially ordered set and suppose there is a metric
d on X such that (X,d) is a complete metric space. Let F : X x X — X be a mized
monotone mapping for which there exists a constant k € [0,1) such that for each
r<u,y>w,

d(F(z,y), F(u,v)) + d(F(y, z), F(v,u)) < kl[d(z,u) + d(y, v)].

If there exist xg, yo € X such that xg < F(xo,90) and yo > F(yo,xo), or g >
F(zo,y0) and yo < F(yo, o), then there exist z,y € X such that x = F(z,y) and

y=F(y,).
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However for the mapping F' : X x X — X there are some abstract concept
without mixed monotone.

It is easy to see that the above coupled fixed point problem can be represented
as a fixed point problem for the operator Ty : Z — Z defined by

TF(‘Tvy) = (F(,T’y),F(y,:L‘)),

where Z := X x X. On the other hand, any solution (z,y) of the coupled fixed
point problem with = = y gives a fixed point for F', i.e., a solution of the equation
x = F(z,x).

Moreover if we consider two operators F; : X x X — X and Fp : X x X - X
and define T': Z — Z by

T(z,y) = (Fi(z,y), F2(z,y))

where Z := X x X. Then if F(x,y) = « and F5(z,y) = y, then this result represent
ordinary fixed point theorem.

In this talk, according to the [4, 5, 6], we introduce several notions for the
mapping F' : X x X — X without mixed monotone property and consider the
coupled fixed point theorem. Moreover, we introduce these notion for the mapping
f: X — X and consider the fixed point theorem. And as a our result, we give
some application of the fixed point theorem.

2. COUPLED FIXED POINT THEOREM AND FIXED POINT THEOREM

Definition 4. (Samet and Vetro [6]) Let (X, d) be a metric space and F : X x X —
X be a given mapping. Let M be a nonempty subset of X x X. We say that M is
an F-invariant subset of X x X if, for all z,y, 2z, w € X,

(i) (z,y,z,w) € M = (w, z,y,x) € M;

(i) (z,y, z,w) € M = (F(x,y), F(y,x), F(z,w), F(w,z)) € M.

Theorem 5. (Samet and Vetro [6]) Let (X,d) be a complete metric space, F :
X x X — X be a continuous mapping and M be a nonempty subset of X. We
assume that
(i) M is F-invariant;
(ii) there exists (xo,yo) € X such that (F(xo,y0), F (Yo, o), To,Yo) € M;
(iii) for all (z,y,u,v) € M, we have

d(F(@,y), F(u,v)) < Sz, F(2,)) + d(y, F(y, o))

+ D, P () 4 dv, F(o,0))] + 5 d(e, Flus, ) + dly, F(v, )]

A 0
+ 2ld(u, F(z,y)) + d(v, Fy,2))] + 5 [d(z, w) + d(y, v));

where a, 3,0,7,6 are nonnegative constants such that a+5+0+~v+4§ < 1.
Then F has a coupled fixed point, i.e., there exists (x,y) € X xX such that F(z,y) =
x and F(y,x) =vy.

Let (X, d) be a metric space and M be a subset of X*. We say that M satisfies the
transitive property if, for all z,y, z,w,a,b € X, (x,y,z,w) € M and (z,w,a,b) €
M = (z,y,a,b) € M.

Theorem 6. (Sintunavarat et al. [7]) Suppose that either
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(a) F is continuous or
(b) if for any two sequences Ty, Ym With (Tmi1, Ymt1, Tm, Ym) € M, {zm} —
x, {ym} — vy, for allm > 1, then (x,y, Tm,Ym) € M for all m > 1.
If there exists (zo,yo) € X x X such that (F(zo,yo), F (Y0, o), %0, Y0) € M and M is
an F-invariant set which satisfies the transitive property, then there exvist x,y € X
such that x = F(x,y) and y = F(y, x), that is, F has a coupled fized point.

Definition 7. Let (X, d) be a complete metric space endowed with a partial order
<. We say that
(i) (X,d,=) is nondecreasing-regular (nd-M-regular) if a nondecreasing se-
quence {z,} C X with (2,,z,41) € M converges to z, then (z,,x) € M
for all n;
(ii) (X,d, =) is nonincreasing-regular (ni-M-regular) if a nonincreasing sequence
{zn} C X with (2, 2n11) € M converges to z, then (z,z,) € M for all n.
Definition 8. (Sintunavarat et al. [7]) Let (X,d) be a metric space and F :
X x X — X be a given mapping and M be a subset of X% ~We say that
M is an F-closed subset of X* if, for all z,y,u,v € X, (z,y,u,v) € M =
(F(z,y), F(y,x), F(u,v), F(v,u)) € M. Obviously, every F-invariant set is an F-
closed set. In particular, § and X are F-closed sets.

The definition of F-closed is obtained to the mapping f: X — X.

Definition 9. Let (X, d) be a metric space and f : X — X be a given mapping
and M be a subset of X x X. We say that M is an f-closed subset of X x X if,
for all z,y € X, (z,y) € M = (F(x),F(y)) € M.

Then we have the following fixed point theorem.
Theorem 10. Let (X, d) be a complete metric space, let f : X — X be a continuous
mapping, and let M be a subset of X x X. Assume that:
(i) M is f-closed;
(ii) there exists xg € X such that (f(xo),x0) € M;
(iii) there exists k € [0,1) such that for all (x,y) € M, we have

d(f(z), f(y)) < kd(z,y).
Then f has a fixed point z* and {f™(x)} converges to x*.

3. APPLICATION

As an application of Theorem 2.8, we consider the following fractional boundary
value problems of cantilever beam type equations.
Dg,u(t) = f(t,u(t), D5y ult), Dot D ult)),
(3.1) 0<t<1,
u(0) = «/(0) = u”(1) =u"'(1) = 0.
where Dg, is the Riemann-Liouville fractional derivative and f is a function of

[0,1] x R into R. Let & > 0. The Riemann-Liouville fractional derivative of order
a of a function u of (0,00) into R is given by

1 ar

D¢, u(t) = Tn — o) " /0 (t —s)" " tu(s)ds,



where n = [a] + 1 ([o] denotes the integer part of o) and I'(«r) denotes the gamma
function; see [3, 8].

We denote by R the set of all real numbers, NV by natural numbers and Ny =
NU{0}. Let AC[0,1] be the space of functions which are absolutely continuous on
0,1],

AC™0,1] = {y :[0,1] — R and D" 'y(t) € AC[0,1],D = %} .

First we have the following lemma, see Lemma 2.22 of [3]
Lemma 11. Let o > 0. If u(t) € AC™[0,1] or y(t) € C™[0,1], then
15, Dgyy(t) = y(t).

Lemma 12. Let g € C™(0,1). Then the unique solution to problem Dy(t) = g(t)
together with the boundary conditions in (3.1) is

u(t) = / G(t, 5)g(s)ds,

where
)Gt s) (0<s<t<1),
(3:2) Gt ) = {GQ(t,s) 0<t<s<l1
In this case
Gi(t,s) = ﬁ (t—s)* "+t ((4—a)s —1)(1 —s)**

+t (= 1)(1 = 5)*1s)

and
1 —1 a—4
Ga(t,s) = m (to‘ (1—13s) (4—a)s—1)

+a—1t* (1 —s)*1s) .

Put Fi(a,t,s) = Gi(t,s). Then Fi(a,t,s) is continuous with respect to a.
There exists to and sg such that Fy(3,to,s0) < 0, Fi(4,tp,s0) > 0. In fact
F1(3,1/4,1/8) = —5/192, F,(4,1/4,1/8) = 5/112. Moreover there exists o*, t*, s*
with 3 < o* <4 t*,s* € [0,1] such that F}(a*,t*,s*) = 0. Let

N = {(et,s) | G(t,s) <0 or Dy °G(t,s) < 0or Do D§*G(t,s) <0}.

Thus if (a,t,s) ¢ N, then for any f € C*[0,1], fo G*(t,s)f(s)ds > 0. The
following argument we assume that;

(A0) (o, t,s) ¢ N.
Next we consider the following assumptions (A1) and (A2).
(A1) There exists w € 2 such that for all ¢ € I and for all (a1, az, ag), (b1, b2, b3) €
R3, with (a1, az,a3) < (b1, ba, b3),
0 S f(t7alaa2aa3) - f(t7b17b27b3) S w<a/1 - bl)

(33) —l—w(ag —52)+w(a3 —bg).
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(A2) There exist a, 8,7 € C(I,R) which are solutions of

(3.4) aft) < / G(t,5)f(s, (), B(s),7(s))ds, t € T,
(3.5) ﬁ(t)</0 Dy f(s,a(s), B(s),(s))ds,t € I,
(36) 10 < [ Doy D f(sv0(), )2 (st € 1

We define the subset M of C[0,1] by
M ={(f,9) € C0,1] x C0,1] [ f = g or f < g}.
Consider the natural partial order relation < on X = C(I, R), that is,
u,v € X,u <v < u(t) <o(t) forall t € I.
It is well known that X is a complete metric space with respect to the metric
d(u,v) = mazxier|u(t) —v(t)| =] v — v ||oo, u, v € C(I,R).

It is easy to show that (X, d, <) is nondecreasing-regular and nonincreasing-regular
(T)-regular), and that every pair of elements in X x X has either a lower bound or
an upper bound. Let (X,d, <) is an ordered complete metric space. Moreover in
X3 define the metric D by

1
D((,y, 2), (u,v,w)) = (d(z,u) + d(y,v) + d(z,w)).
Also define the order < in X? by
(2,y,2) < (u,v,w) iff 2 Su,y v,z 2w

Then (X3, D, <) is an ordered complete metric space.
The boundary problem (3.1) is equivalent to the following integral equation form.

fol (s,u(s),v(s),w(s))ds,
fo Da 3G (t,8)f(s,u(s),v(s),w(s))ds,
= Y Duy DS ) (s, u(s),v(s) w(a))ds.
where the green function G is given by (3.2) . We define the operator F}, F» and
F3 by

1(u(t),v(t),w(t)) fo (s,u(s),v(s),w(s))ds
Fa(u(t),v(t), w(t)) fo D3+3G(t ) f(s,u(s),v(s), ( ))ds
(u(t), v(t), w(t)) = [} Doy DET3G(t, ) f(s,u(s), v(s »w(S))ds,

where v(t) = Dy u(t) and w(t) = Doy DS %u(t). We define the operator A :
X3 — X3 by
A((u(t), v(t), w(t)))
= (Fr(u(®), v(t), w(t), Fa(u(t), v(t), w(t)), Fs(u(t), v(t), w(t))).
Then M is A-closed. In fact let u < v, we have D§ *u(t) < D§’v(t) and
Doy D§ P u(t) < Doy D v(t). Thus
U = (u,D§;*u, Doy DG °u), V = (v, D§y v, Doy D§;v) € M.
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Then by assumption (A.1),
f(tu(t), 0+3U( )s DO+D0+ U( )

f( ,’U(t aDtON-; U( ) D0+D0+ U( ))
Then by assumption (A.0), that is, for any (a,t,s) ¢ N, we have

AU / GO (£, ) (t, ult), D33 u(t), Doy D=3 u(t))ds

/ G2 (t, 5) (1, 0(t), DE20(t), Doy DE=3v(t))ds = Fyo(t).
Also FoU < F5V and F3U < F3V. Then we have
AU = (FlU,FQU,FgU) < (F1V,F2V, F3V) = AV.
We have the following:

Theorem 13. Under the assumptions (A0), (A1) and (A2), the fourth-order two-
point boundary value problem (3.1) has a solution.
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