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Abstract

A known number n of objects appear one at a time. Let  X_{k},   1\leq k\leq
 n , denote the value of the kth object and suppose that  X_{1},  X_{2},  X_{n}
are independent and identically distributed continuous random vari‐
ables with a known distribution function. Let  L_{k}= \max(X_{1}, \ldots, X_{k}) ,
and call the kth object a candidate if it is a relative maximum, i.e.
 X_{k}=L_{k} . We denote by  C_{j} the jth to last candidate,  j\geq 1 . Hence  C_{1}
is the last candidate and  C_{2} the penultimate candidate, etc. The prob‐
lem we consider here seeks a stopping rule that maximizes the proba‐
bility of choosing  C_{2} . We give the optimal rule and the corresponding
success probability. It can be shown that this success probability tends
to 0.416002 as   narrow\infty . Some comparisons with other related problems
are also made.

1 Introduction

We first review the ‘full‐information’ best‐choice problem originally studied
by Gilbert and Mosteller (1966, Sec.3) as a variation of the secretary prob‐
lem. A known number  n of objects appear one at a time. Let  X_{k},  1\leq k\leq n,
denote the value of the kth object and suppose that  X_{1},  X_{2} , . . . ,  X_{n} are in‐
dependent and identically distributed continuous random variables with a
known distribution function  F . As each object appears, we observe its value
and decide either to select or reject it based on the values observed so far.
The objective is to find a stopping rule that maximizes the probability of
choosing the best, i.e. stopping with the largest of  X_{1},  X_{2} , . . . ,  X_{n} , and com‐
pute the probability of choosing the best. We can assume without loss of
generality that  X_{1},  X_{2} , . . . ,  X_{n} are uniformly distributed on the interval  (0,
1), because order relationship is preserved under transformation  F(X_{k}) .

Let  L_{k}= \max(X_{1}, \ldots, X_{k}),  1\leq k\leq n , and call the kth object (or  X_{k} )
a candidate if it is a relative maximum, that is,  X_{k}=L_{k} . A candidate is
sometimes referred to as a record in the literature. Denote by  C_{j} the jth
to last candidate,  j\geq 1 . Hence  C_{1} is the last candidate (i.e. best overall)
and  C_{2} the penultimate candidate, etc. Then we are tempted to consider
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the problem of choosing  C_{j} if it exists. Since the problem of choosing  C_{1} is
just the best‐choice problem, we here try to solve the problem of choosing
 C_{2} as a first step toward these problems. Needless to say, this problem can
be viewed as a two‐choice problem of choosing both  C_{1} and  C_{2} , because
the identification of  C_{2} also identifies  C_{1} as the candidate next to  C_{2} with

certainty. The main results will be summarized in Section 2. In the ‘no‐
information’ analogue, where we can only observe the relative rank of the
current object with respect to its predecessors, Bruss and Paindaveine (2000)
solved the problem of choosing  C_{j} for all  j(\geq 1) . In Section 3, we compare
our problem with other related problems.

2 Main results

The objective of the problem we consider here is to find a stopping rule
that maximizes the probability of choosing  C_{2} , if any, and derive the corre‐
sponding success probability (if  C_{1} appears at the first stage, we do not have
 C_{2} , so, in such a case, our trial is unsuccessful). Our problem makes sense
for  n\geq 2 and the decision of selection takes place only when a candidate
appears.

For  n=2 , the optimal rule obviously stops with  X_{1} and yields the
success probability  P_{2}^{*}=P\{X_{1}<X_{2}\}=1/2 . For  n=3 , the optimal
rule also stops with  X_{1} and yields the success probability  P_{3}^{*}=1/2 . This
can be seen as follows. Suppose that we stop with  X_{1} . We then have
three cases with respect to the size of  X_{1} relative to  X_{2} and  X_{3} . Since the
respective success probabilities are 1/2, 1,  0 , depending on whether  X_{1} is
the smallest, middle or largest, and these three cases are equally likely, the
success probability is  (1/2)(1/3)+(1)(1/3)+(0)(1/3)=1/2 . On the other
hand, if we pass over  X_{1} , we succeed only when  X_{1}<X_{2}<X_{3} , implying
that the success probability is 1/6. Thus the maximal success probability is
 P_{3}^{*}= \max\{1/2,1/6\}=1/2.

Before considering our problem for  n\geq 4 , we need some preparations.
We review the distribution of the number of relative maxima. Let  r_{m}(k)
be the probability that the total number of relative maxima is  k when we
observe  m independent and identically distributed continuous random vari‐
ables (or, equivalently, we observe the random permutation of  m rankable
objects). Then it is well known (see, e.g. Section 6.2 of Blom et a1.(1994))
that  r_{m}(k) satisfies the recursion

 r_{m}(k)= \frac{1}{m}r_{m-1}(k-1)+(1-\frac{1}{m})r_{m-1}(k) ,  1\leq k\leq m,  2\leq m,

with  r_{1}(1)=1 and  r_{m}(k)=0 for  k=0 or  k>m . In particular, we have by
induction

 r_{m}(1)= \frac{1}{m}, r_{m}(2)=\frac{h_{m-1}}{m} (1)
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where  h_{j}= \sum_{\dot{i}=1}^{j}1/i for  j\geq 1.
We denote by  (k, x) a state of the process where we have just observed

the kth object to be a candidate having value  x , i.e.  X_{k}=L_{k}=x . Let
 p_{k}(x) be the success probability by stopping immediately with the current
candidate in state  (k, x) and  q_{k}(x) be the one by stopping with the next
candidate (after leaving  (k, x) ), if any. These two quantities are expressed
as

 p_{k}(x) = P\{M_{k}(x)=1\} (2)

 q_{k}(x) = P\{M_{k}(x)=2\} , (3)

if we denote by  M_{k}(x) the number of future candidates. For further com‐
putation, we proceed by conditioning on  N_{k}(x) which denotes the number
of future observations that are bigger than  x . Since  N_{k}(x) is a binomial
random variable with parameters  (n-k, 1-x) and the conditional proba‐
bility  P\{M_{k}(x)=1|N_{k}(x)=m\} is given as  r_{m}(1) from the former half of
(1) regardless of  x , we have from (2)

 p_{k}(x) =  \sum_{m=1}^{n-k}P\{M_{k}(x)=1|N_{k}(x)=m\}P\{N_{k}(x)=m\}
 =   \sum_{m=1}^{n-k}\frac{1}{m}  (\begin{array}{l}
n-k
m
\end{array})  (1-x)^{m}x^{n-k-m}

for  k\leq n-1 with  p_{n}(x)=0 . In a similar manner, we have from (3)
combined with the latter half of (1)

 q_{k}(x)= \sum_{m=2}^{n-k}\frac{h_{m-1}}{m}  (\begin{array}{l}
n-k
m
\end{array})  (1-x)^{m}x^{n-k-m}

for  k\leq n-2 with  q_{n-1}(x)=q_{n}(x)=0.

We are now ready to state the main results for  n\geq 4.

Theorem 1. (a) Optimal stopping rule: Let, for  0<x<1,

  \phi_{r}(x)=\sum_{m=2}^{r}\frac{h_{m}-1}{(m+1)^{2}}  (\begin{array}{l}
r
m
\end{array})  (\begin{array}{l}
1-x
-
x
\end{array})  r\geq 2.

Then there exists an increasing sequence of the thresholds  \{b_{r}, r\geq 2\} with
 b_{r} defined as a unique solution  x\in(0,1) to the equation

 \phi_{r}(x)=1 (4)

such that the optimal rule is to choose the first candidate  X_{k}(=L_{k}) that
exceeds the threshold  b_{(n-1)-k} (note that  (n-1)-k denotes the remaining
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number of observations to the penultimate stage  n-1 ).

(b) Maximal success probability  P_{n}^{*} : We have that

 P_{n}^{*}= \int_{a}^{1}1p_{1}(x)dx+\sum_{k=2}^{n-1}\sum_{j=1}^{k-1}\int_{a_{k}}
^{1}p_{k}(x)\frac{[\min(x,a_{\dot{j}})]^{k-1}}{k-1}dx , (5)

where  a_{k}=b_{(n-1)-k} for  1\leq k\leq n-3 and  a_{k}=0 , otherwise.

(c) Asymptotics: Define  c^{*}(\approx 3.27201) as a unique  \mathcal{S} olution c to the equa‐
tion

  \sum_{m=2}^{\infty}\frac{h_{m}-1}{(m+1)^{2}}\cdot\frac{c^{m}}{m!}=1 . (6)

Then, using the exponential‐integral functions

 I(c) =  \int_{1}^{\infty}\frac{e^{-cx}}{x}dx
 J(c) =  \int_{0}^{1}\frac{e^{cx}-1}{x}dx=\sum_{j=1}^{\infty}\frac{c^{j}}{j!j},

we have that, as  narrow\infty,

 P_{n}^{*}arrow P^{*} = e^{-c^{*}}J(c^{*})-\{(1+c^{*})J(c^{*})+e^{c^{*}}J(-c^{*}
)\}I(c^{*})
 \approx 0.416002.

Proof. omitted.

We conclude this section with some comments concerning the approxi‐
mation for  b_{r} and the simplification of  P_{n}^{*} . It is easy to see from (4) that
 b_{2}=(3\sqrt{2}-1)/17\approx 0.1907 and  b_{3}\approx 0.3409 is a unique root  x(>0) of the
equation  85x^{3}+17x^{2}-x-5=0 . For large  r , we can give an asymptotic
approximation for the  b_{r} . Write  b_{r} as  1-c_{r}/r and write (4) in the form

  \sum_{m=2}^{r}\frac{h_{m}-1}{(m+1)^{2}m!}\prod_{k=0}^{m-1}[(1-\frac{k}{r})
(\frac{c_{r}}{1-c_{r}/r})]=1.
In order for this to stay equal to 1 as   rarrow\infty , the  c_{r} must converge to a
constant  c_{r}arrow c^{*} , where  c^{*} satisfies the equation (6). Thus  b_{r}\approx 1-3.272/r.

Performing integrations in (5) for  n=4 , we have

 P_{4}^{*}= \frac{11}{24}+\frac{1}{6}a_{1}-\frac{1}{4}a_{1}^{2}-\frac{5}{6}a_{1}
^{3}+\frac{17}{24}a_{1}^{4}\approx 0.47618
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because of  a_{1}=b_{2} . In a similar manner, we obtain another expression of
 P_{n}^{*} for general  n , as given in Corollary 1 below. Consider a binomial ran‐
dom variable with parameters  (r,p) and denote its cumulative distribution
function by

 B_{in}(m;r,p)= \sum_{k=0}^{m}  (\begin{array}{l}
r
k
\end{array})  p^{k}(1-p)^{r-k},  0\leq m\leq r.

Then, applying to (5) the well‐known formula

  \int_{0}^{a}x^{s-1}(1-x)^{t-1}dx=B(s, t)B_{in}(t-1;s+t-1,1-a) ,

where  0\leq a\leq 1 and  B(s, t) is the beta function defined as

 B(s, t)= \int_{0}^{1}x^{s-1}(1-x)^{t-1}dx=\frac{(s-1)!(t-1)!}{(s+t-1)!}
for positive integers  s and  t , we obtain the following result.

Corollary 1. We have

 n-1k-1

 P_{n}^{*}=A_{n}+ \sum\sum[B_{n}(j, k)+C_{n}(j, k)] ,

 k=2j=1

where

 A_{n}  =   \sum_{m=1}^{n-1}\frac{1}{m}  (\begin{array}{ll}
n   -1
   m
\end{array})  B(m+1, n-m)[1-B_{in}(m;n, 1-a_{1})]

 B_{n}(j, k)  =   \frac{1}{k-1}\sum_{m=1}^{n-k}\frac{1}{m}  (\begin{array}{l}
n-k
m
\end{array})  B(m+1, n-m)

 \cross[B_{in}(m;n, 1-a_{j})-B_{in}(m;n, 1-a_{k})]

 C_{n}(j, k)  =   \frac{a_{j}^{k-1}}{k-1}\sum_{m=1}^{n-k}\frac{1}{m}  (\begin{array}{l}
n-k
m
\end{array})  B(m+1, n-m-k+1)

 \cross[1-B_{in}(m;n-k+1,1-a_{j})].

3 Some comparisons

(a). In the no‐information problem of choosing  C_{2} , Bruss and Paindaveine
(2000) showed that there exists a threshold  r_{n} such that the optimal rule
stops with the first candidate that appears after time  r_{n} , if any. Moreover,
as  narrow\infty,  r_{n}/n tends to  e^{-2} and the corresponding success probability
tends to  2e^{-2}\approx 0.2707 (compare this with our value  P^{*}\approx 0.4160 ). It
is also interesting to observe that the same limiting values appear in two
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quite different optimal stopping problems; one is the best‐choice problem
with an unknown random number of objects having a uniform distribution
on  \{ 1, . . . ,  n\} considered by Presman and Sonin (1972) and the other the
duration problem considered in Section 2.2 of Ferguson et al. (1992), where
the objective is to maximize the time of possession of a candidate.
(b). In (a), we pointed out the coincidences among three problems in the
no‐information case. How about the corresponding triple coincidences in
the full‐information case? The answer is “ No” Samuels (2004) showed that
the best‐choice problem with uniform number of objects and the duration
problem have the same asymptotic optimal payoff

 \hat{P}=e^{-\hat{c}}J(\hat{c})+\{e^{\hat{c}}-1-\hat{c}J(\hat{c})\}I(\hat{c})
\approx 0.43517,
where  \hat{c}\approx 2.1198 is a unique solution  c to the equation

 -J(-c)e^{c}-J(c)=e^{c}-1.

Our payoff  P^{*} is obviously different from  \hat{P} . See also Porosinski (1987,
2002), Petruccelli (1980), Gnedin (2004) and Mazalov and Tamaki (2006)
for  \hat{P}.

(c). Finally we compare our problem with two related problems. One is the
best‐choice problem. Its asymptotic optimal payoff is

 P_{1}=e^{-c_{1}}+(e^{c_{1}}-c_{1}-1)I(c_{1})\approx 0.58016,

where  c_{1}\approx 0.80435 is a unique solution  c to the equation  J(c)=1 . For
these, see Gilbert and Mosteller (1966), Samuels (1982), (1991), (2004),
Gnedin (2004) and Berezovsky and Gnedin (1984). The other is a one‐
choice problem of choosing either  C_{1} or  C_{2} , considered by Tamaki (2010)
(see Theorem 4.1 and Table 2 for  m=2 ). The asymptotic optimal payoff
is given by

 P_{2} = [e^{c_{2}}\{1-J(-c_{2})\}-(1+c_{2})\{1+J(c_{2})\}]I(c_{2})

 +e^{-c_{2}}\{1+J(c_{2})\}
 \approx 0.8424,

where  c_{2}\approx 1.5151 is a unique solution  c to the equation

  \int_{0}^{c}\frac{-J(-x)e^{x}-J(x)}{x}dx=1.
Note that  P_{2} here is denoted by  P_{2}^{*} in Tamaki (2010) and that (7) follows
since the functions  J_{2}(t) and  K_{2}(t) in Tamaki (2010) can be expressed as

 J_{2}(t) = 1+J(t)

 K_{2}(t) = e^{t}-1+\{-J(-t)e^{t}-J(t)\}
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in terms of  J(\cdot) . To derive (8) and (9), we have used Gnedin’s identity (2004,
p.322). Incidentally the asymptotic optimal payoff of the corresponding no‐
information problem is  (1+\sqrt{2})e^{-\sqrt{2}}\approx 0.5869 (see Tamaki (2010)).
(d). Let  T_{j} be the random arrival time of  C_{j} and  Y_{j} be its random value on
the PPP defined in the proof (c) of Theorem 1. Then random atom of  C_{j}
is identified as  (T_{j}, Y_{j}),  j\geq 1 . From the property of PPP, we easily find

 T_{j} = U_{1}U_{2}\cdots U_{j}

 Y_{j} = E_{1}+ \frac{E_{2}}{U_{1}}+\cdots+\frac{E_{j}}{U_{1}U_{2}\cdots U_{j-1}
},
where  U_{1},  U_{2} , . . . ,  U_{j} and  E_{1},  E_{2} , . . . ,  E_{j} are all independent and  U_{k} are uni‐
form on  (0,1) and  E_{k} are exponential with parameter 1. For the best‐choice
problem, Samuels (2004) showed that, in his Section 10.3,  P_{1} has another
expression

 P_{1}=P {  Y_{1}< \frac{c_{1}}{1-T_{1}} and  Y_{2}> \frac{c_{1}}{1-T_{2}} },
because we succeed if  C_{1} is below the optimal threshold  y=c_{1}/(1-t) and
 C_{2} is above. Similarly we have, as another expression for  P^{*},

 P^{*}=P {  Y_{2}< \frac{c^{*}}{1-T_{2}} and  Y_{3}> \frac{c^{*}}{1-T_{3}} },
because we succeed if  C_{2} is below the optimal threshold  y=c^{*}/(1-t) and
 C_{3} is above. This is equivalently written as

 P^{*}=P \{(E_{1}+\frac{E_{2}}{U_{1}})(1-U_{1}U_{2})<c^{*}<(E_{1}+\frac{E_{2}}
{U_{1}}+\frac{E_{3}}{U_{1}U_{2}})(1-U_{1}U_{2}U_{3})\}.
See also Gnedin (2004) for EU‐representation.
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