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Automorphisms on the ring of symmetric functions and stable and
dual stable Grothendieck polynomials

Motoki Takigiku

The stable Grothendieck polynomials G_{\lambda} and the dual stable Grothendieck polynomials  g_{\lambda} are certain
families of inhomogeneous symmetric functions parametrized by interger partitions  \lambda . They are certain
 K‐theoretic deformations of the Schur functions and dual to each other via the Hall inner product.

Historically the stable Grothendieck polynomials (parametrized by permutations) were introduced by
Fomin and Kirillov [FK96] as a stable limit of the Grothendieck polynomials of Lascoux Schützenberger
[LS82]. In [Buc02] Buch gave a combinatorial formula for the stable Grothendieck polynomials  G_{\lambda} for
partitions using so‐called set‐valued tableaux, and showed that their span  \oplus_{\lambda\in \mathcal{P}}\mathbb{Z}G_{\lambda} is a bialgebra and its
certain quotient ring is isomorphic to the  K‐theory of the Grassmannian Gr  =Gr(k, \mathbb{C}^{n}) .

The dual stable Grothendieck polynomials  g_{\lambda} were introduced by Lam and Pylyavskyy [LP07] as gener‐
ating functions of reverse plane partitions, and shown to be the dual basis for  G_{\lambda} via the Hall inner product.
They also showed there that  g_{\lambda} represent the  K‐homology classes of ideal sheaves of the boundaries of
Schubert varieties in the Grassmannians.

In this article we give the following properties of  g_{\lambda} and  G_{\lambda} :

(A) The linear map  I given by

 g_{\lambda} \mapsto\sum_{\mu\subset\lambda}g_{\mu}
is an algebra automorphism.

(B) The Pieri formulas for  G_{\lambda} (resp.  g_{\lambda} ) can be written as alternating sums of joins (resp. meets) of the
leading terms (i.e. the terms appearing in the Pieri formula for the Schur functions  s_{\lambda} ).

In Section 2 we explain that the ring automorphism in (A) is written as both

(a) the substitution  f(x)\mapsto f(1, x) , (that is,  f(x_{1}, x_{2}, \cdots)\mapsto f(1, x_{1}, x_{2}, \cdots) ), and

(b) the map  H(1)^{\perp} , where  H(1)= \sum_{i}h_{i},

where the linear map  F^{\perp} is the adjoint of the multiplication map  (F\cdot) . The equivalence of two maps in
(a) and (b) is previously known (more generally,  H(t)^{\perp}(f(x))=f(t, x) where  H(t)= \sum_{i}t^{i}h_{i} ). The key
observation to show  I(f(x))=f(1, x) is that the substitution  f\mapsto f(1,0,0, \cdots) maps  g_{\lambda/\mu} to 1 for any
skew shape  \lambda/\mu ; then since  I is a certain composition of this map and the coproduct on  \Lambda it follows that
 I=(f(x)\mapsto f(1, x)) .

In Section 3 we give an exposition for (B) without technical details of the proofs.

1 Stable and dual stable Grothendieck polynomials

For basic definitions for symmetric functions, see for instance [Mac95, Chapter I].
Let  \Lambda(=\Lambda(x)=\Lambda_{K}=\Lambda_{K}(x)) be the ring of symmetric functions, namely the set of all symmetric formal

power series of bounded degree in variable  x=(x_{1_{\rangle}}x_{2}, \ldots) with coefficients in  K . We omit the variable  x

when no confusion arise. Let  \hat{\Lambda} be its completion, consisting of all symmetric formal power series (with
possibly unbounded degree). Let  \mathcal{P} be the set of partitions. The Schur functions  s_{\lambda}(\lambda\in \mathcal{P}) are a family of
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homogeneous symmetric functions satisfying  \Lambda=\oplus_{\lambda\in \mathcal{P}}Ks_{\lambda} and   \hat{\Lambda}=\prod_{\lambda\in \mathcal{P}}Ks_{\lambda} . The Hall inner product

 (,  ) is a bilinear form on  \Lambda for which  (s_{\lambda}, s_{\mu})=\delta_{\lambda\mu} . This is naturally extended to  (,  ) :  \hat{\Lambda}\cross\Lambdaarrow K.

In [Buc02, Theorem 3.1] Buch gave a combinatorial description of the stable Grothendieck polynomial  G_{\lambda}
as a generating function of so‐called set‐valued tableaux. We do not review the detail here and just recall
some of its properties:  G_{\lambda}\in\hat{\Lambda} (although   G_{\lambda}\not\in\Lambda if  \lambda\neq\emptyset ),  G_{\lambda} is an infinite linear combination of  \{s_{\mu}\}_{\mu\in \mathcal{P}}
whose lowest degree component is  s_{\lambda} . Hence   \hat{\Lambda}=\prod_{\lambda\in \mathcal{P}}KG_{\lambda} , i.e. every element in  \hat{\Lambda} is uniquely written as

an infinite linear combination of  G_{\lambda} . Moreover the span  \oplus_{\lambda}KG_{\lambda}(\subset\hat{\Lambda}) is a bialgebra, in particular the
expansion of the product

 G_{\mu}G_{\nu}= \sum_{\lambda}c_{\mu\nu}^{\lambda}G_{\lambda}
and the coproduct

  \triangle(G_{\lambda})=\sum d_{\mu\nu}^{\lambda}G_{\mu}\otimes G_{\nu}
 \mu,\nu

are finite.

Next we recall the dual stable Grothendieck polynomial  g_{\lambda/\mu} . For a skew shape  \lambda/\mu, a reverse plane
partition of shape  \lambda/\mu is a filling of the boxes in  \lambda/\mu with positive integers such that the numbers are weakly
increasing in every row and column.

Definition 1.1 ([LP07]). For a skew shape  \lambda/\mu , the dual  \mathcal{S}table Grothendieck polynomial  g_{\lambda/\mu} is defined by

 g_{\lambda/\mu}= \sum_{T}x^{T} , (1)

summed over reverse plane partitions  T of shape  \lambda/\mu , where  x^{T}= \prod_{i}x_{\dot{i}}^{T} (i) where  T(i) is the number of
columns of  T that contain  i.

When  \mu=\emptyset we write  g_{\lambda}=g_{\lambda/\emptyset} . It is shown in [LP07] that   g_{\lambda/\mu}\in\Lambda and  g_{\lambda} has the highest degree
component  s_{\lambda} and forms a basis of  \Lambda that is dual to  G_{\lambda} via the Hall inner product:

 (G_{\lambda}, g_{\mu})=\delta_{\lambda\mu} . (2)

Hence the product (resp. coproduct) structure constants for  \{G_{\lambda}\} coincide with the coproduct (resp. product)
structure constants for  \{g_{\lambda}\} :

 g_{\mu}g_{\nu}= \sum_{\lambda}d_{\mu\nu}^{\lambda}g_{\lambda} and   \triangle(g_{\lambda})=\sum_{\mu,\nu}c_{\mu\nu}^{\lambda}g_{\mu}\otimes 
g_{\nu}.
2 On the automorphism

2.1 Hopf structure of  \Lambda

The ring  \Lambda is a self‐dual Hopf algebra with a coproduct  \triangle:\Lambda=\Lambda(x)arrow\Lambda(x, y)\mapsto\Lambda(x)
\otimes\Lambda(y);f(x)\mapsto
 f(x, y) , a counit  \epsilon:\Lambdaarrow K;f\mapsto f(0,0, \ldots) , i.e.  \epsilon(s_{\lambda})=\delta_{\lambda\emptyset} , and an antipode  S:\Lambdaarrow\Lambda;s_{\lambda}\mapsto(-1)^{|\lambda|}s_{\lambda'}.
Here  \lambda' denotes the transpose of  \lambda\in \mathcal{P}.

For  F\in\hat{\Lambda} , we have linear maps

 \bullet  (F, -):\Lambdaarrow K;f\mapsto(F, f) , and
  eF^{\perp}:\Lambdaarrow\Lambda;f\mapsto\sum(F, f_{1})f_{2}

where we put   \triangle(f)=\sum f_{1}\otimes f_{2} for   f\in\Lambda by the Sweedler notation. It is known that the multiplication map
 (F\cdot) and the map  F^{\perp} are adjoint, i.e.  (FG, f)=(G, F^{\perp}(f)) for  \forall F,  G\in\hat{\Lambda} and  \forall f\in\Lambda.
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Note that

  F^{\perp}=((F, -)\otimes id)0\triangle=(id\otimes(F, -))0\triangle (3)

where the second equality is by cocommutativity. We also have

 (F, -)=\epsilon oF^{\perp} (4)

since  \epsilon oF^{\perp}=\epsilon o((F, -)\otimes id)\circ\triangle=((F, -)
\otimes\epsilon)\circ\triangle=(F, -)*\epsilon=(F, -) . The following lemma is standard:

Lemma 2.1. For  F,  G\in\hat{\Lambda},

(1)  (FG, -)=(F, -)*(G, -) where  * denotes the convolution product on  Hom(\Lambda, K) .
(2)  (FG)^{\perp}=G^{\perp}oF^{\perp}(=F^{\perp}oG^{\perp}) .

2.2 The maps  H(t)^{\perp} and  E(t)^{\perp}
There are well‐known generating functions

 H(t)= \sum_{i\geq 0}t^{i}h_{i}, E(t)=\sum_{i\geq 0}t^{i}e_{i}
where  t\in K (hence  H(t),  E(t)\in\hat{\Lambda}). Let

 H^{\perp}(t):=H(t)^{\perp}= \sum_{i\geq 0}t^{i}h_{\dot{i}}^{\perp}, E^{\perp}
(t):=E(t)^{\perp}=\sum_{\dot{i}\geq 0}t^{i}e_{\dot{i}}^{\perp}
It is known (see [Mac95, Chapter 1.5, Example 29]) that

 H^{\perp}(t),   E^{\perp}(t):\Lambdaarrow\Lambda are ring automorphisms, (5)

 H^{\perp}(t)(f(x_{1}, x_{2}, \cdots))=f(t, x_{1}, x_{2}, \cdots) for   f\in\Lambda . (6)

The proof of (5) was as follows: for  F\in\hat{\Lambda} , we can see that the map   F^{\perp}:\Lambdaarrow\Lambda is an algebra
automorphism if and only if  F(x, y)=F(x)F(y) and  F(0)=1 , and it is easy to see that  H(t) and  E(t)
satisfy them.

To show (6), it then suffices to show it when  f=h_{n} , which is straightforward.
From (5), (6) and (4) we have

 (H(t), -),  (E(t), -):\Lambdaarrow K are ring homomorphisms, (7)
 (H(t), f)=f(t, 0,0, \cdots) . (8)

Since  H(t)E(-t)=1 , by Lemma 2.1 and the fact that the counit is the identity with respect to the
convolution product we have

Lemma 2.2. (1)  (H(t), -)*(E(-t), -)=\epsilon, where  \epsilon:\Lambdaarrow K is the counit.
(2)  H(t)^{\perp}\circ E(-t)^{\perp}=id_{\Lambda}.

2.3 Descriptions of  H(t),  (H(t), -) and  H(t)^{\perp}
Let  c(\lambda/\mu) denote the number of columns in the skew shape  \lambda/\mu.

Proposition 2.3.  (H(t), g_{\lambda/\mu})=t^{c(\lambda/\mu)} for any skew shape  \lambda/\mu.

Proof. By (8) we have  (H(t), g_{\lambda/\mu})=g_{\lambda/\mu}(t, 0,0, \cdots) . By (1), it is the generating function of reverse plane
partitions on  \lambda/\mu filled with one alphabet 1. Clearly there is exactly one such filling, whose weight is  x_{1}

 c(\lambda/\mu)

Hence  g_{\lambda/\mu}(t, 0,0, \cdots)=t^{c(\lambda/\mu)}.  \square 
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Next we give another description of the map  I:g_{\lambda} \mapsto\sum_{\mu\subset\lambda}g_{\mu}.
For a skew shape  \lambda/\mu and a totally ordered set  X called alphabets (most commonly {1, 2, 3,  \ldots }), we

shall denote by  RPP(\lambda/\mu, X) the set of reverse plane partition of shape  \lambda/\mu where each box is filled with an
element of  X . The expression (1) of  g_{\lambda/\mu} as a generating function of reverse plane partitions implies

  \triangle(g_{\lambda/\mu})=\sum_{\mu\subset\nu\subset\lambda}g_{\lambda/\nu}
\otimes g_{\nu/\mu} , (9)

since we have a natural bijection between RPP  (\lambda/\mu, \{1,2, \cdots , 1', 2', \ldots\})
and\sqcup_{\mu\subset\nu\subset\lambda} RPP  (\nu/\mu, \{1,2, \cdots\})\cross
RPP  (\lambda/\nu, \{1', 2', \cdots\}) where  1<2<. . .  <1'<2'<. . .

By (3) and Proposition 2.3, we apply  (H(t), -)\otimes id and  id\otimes(H(t), -) to (9) and obtain

Proposition 2.4. The algebra automorphism   H(t)^{\perp}:\Lambdaarrow\Lambda satisfies

 H(t)^{\perp}(g_{\lambda/\mu})= \sum_{\mu\subset\nu\subset\lambda}
t^{c(\lambda/\nu)}g_{\nu/\mu}=\sum_{\mu\subset\nu\subset\lambda}t^{c(\nu/\mu)}g_
{\lambda/\nu} (10)

for any  \mu\subset\lambda.

In particular, setting  \mu=\emptyset and  t=1 in (10), for any  \lambda\in \mathcal{P} we have

 H^{\perp}(1)(g_{\lambda})= \sum_{\nu\subset\lambda}g_{\nu},
hence

 I=H^{\perp}(1)=(f(x)\mapsto f(1, x)) . (11)

In particular (11) recovers that   I:\Lambdaarrow\Lambda is a ring automorphism. Moreover, (10) and (11) imply

 I(g_{\lambda/\mu})= \sum_{\mu\subset\nu\subset\lambda}g_{\nu/\mu}=
\sum_{\mu\subset\nu\subset\lambda}g_{\lambda/\nu} . (12)

2.3.1 Dual map

Next we recall that   H^{\perp}(t):\Lambdaarrow\Lambda and  (H(t)\cdot):\hat{\Lambda}arrow\hat{\Lambda} are adjoint. By (2) and  H(t)^{\perp}(g_{\mu})= \sum_{\lambda\subset\mu}t^{c(\mu/\lambda)}g_{\lambda}
(by setting  \mu=\emptyset in (10)) we have

 H(t)G_{\lambda}= \sum_{\lambda\subset\mu}t^{c(\mu/\lambda)}G_{\mu} . (13)

Setting  \lambda=\emptyset in (13) we get  H(t)= \sum_{\lambda\in \mathcal{P}}t^{c(\lambda)}G_{\lambda} , and by plugging it into (13) we have

 ( \sum_{\mu\in \mathcal{P}}t^{c(\mu)}G_{\mu})G_{\lambda}=
\sum_{\lambda\subset\mu}t^{c(\mu/\lambda)}G_{\mu} . (14)

Remark 2.5. Since  I=H^{\perp}(1) it follows that  I^{*}=(H(1) \cdot)=((\sum_{\lambda}G_{\lambda})\cdot) , and (14) specializes to

 (I^{*}(G_{\lambda})=) ( \sum_{\mu\in \mathcal{P}}G_{\mu})G_{\lambda}=
\sum_{\lambda\subset\mu}G_{\mu} (15)

which appeared in [Buc02, Section 8].
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2.4 Description of  E(t),  (E(t), -) and  E(t)^{\perp}
In this section we give descriptions using  G_{\lambda} and  g_{\lambda} for the element  E(t) and maps  (E(t), -) and  E^{\perp}(t) .
Note that by  I=H^{\perp}(1) and  I^{*}=(H(1)\cdot) it follows that  I^{-1}=E^{\perp}(-1) and  (I^{*})^{-1}=(E(-1)\cdot) .

By a tour‐de‐force combinatorial argument we can prove

Proposition 2.6. The ring homomorphism  (E(t), -):\Lambdaarrow K satisfies

 (E(t), g_{\lambda/\mu})=\{\begin{array}{ll}
t^{c(\lambda/\mu)}(t+1)^{|\lambda/\mu|-c(\lambda/\mu)}   if \lambda/\mu is a 
vertical strip,
0   otherwise
\end{array}
for any skew shape  \lambda/\mu . In particular, for any  \lambda\in \mathcal{P},

 (E(t), g_{\lambda})=\{\begin{array}{ll}
1   if \lambda=\emptyset,
t(t+1)^{n-1}   if \lambda=(1^{n})(n\geq 1) ,
0   otherwise.
\end{array}
Later We give a sketch of the proof of Proposition 2.6, and beforehand give as its corollaries descriptions

for  E(t) and  E(t)^{\perp}

Proposition 2.7. The ring automorphism   E(t)^{\perp}:\Lambdaarrow\Lambda satisfies

 E(t)^{\perp}(g_{\lambda/\mu})=  \sum t^{c(\lambda/\nu)}(t+1)^{|\lambda/\nu|-
c(\lambda/v)}g_{\nu/\mu}
 \mu\subset\nu\subset\lambda

 \lambda/\nu : vertical strip

  \sum t^{c(\nu/\mu)}(t+1)^{|\nu/\mu|-c(\nu/\mu)}g_{\lambda/\nu}
 \mu\subset v\subset\lambda

 \nu/\mu : vertical strip

for any skew shape  \lambda/\mu . In particular, for any  \lambda\in \mathcal{P},

 E(t)^{\perp}(g_{\lambda})=  \sum t^{c(\lambda/\nu)}(t+1)^{|\lambda/\nu|-
c(\lambda/\nu)}g_{\nu} (16)
 v\subset\lambda

 \lambda/\nu : vertical strip

 =\{\begin{array}{ll}
g_{\lambda}+\sum_{k=1}^{l(\lambda)}t(t+1)^{k-1}g_{\lambda/(1^{k})}   \dot{i}
f\lambda\neq\emptyset,
g_{\emptyset}   \dot{i}f\lambda=\emptyset.
\end{array}
Proof. Proved similarly to Proposition 2.4, with Proposition 2.6 in hand.  \square 

Now we have a description of  E(-1)^{\perp}=I^{-1} by setting  t=-1 in the proposition above.

Corollary 2.8. The ring automorphism   E(-1)^{\perp}=I^{-1}:\Lambdaarrow\Lambda satisfies

 I^{-1}(g_{\lambda/\mu})=   \sum  ( —1  )^{|\lambda/\nu|}g_{\nu/\mu}=   \sum  ( —1  )^{|\nu/\mu|}g_{\lambda/\mu}.
 \mu\subset\nu\subset\lambda \mu\subset\nu\subset\lambda

 \lambda/\nu : rook strip  \nu/\mu : rook strip

In particular, when  \mu=\emptyset we have

  I^{-1}(g_{\lambda})=\lambda/\nu : rook strip  g_{\nu}=\{  \sum (-1)^{|\lambda/\nu|}  g_{\lambda}-g_{\lambda/(1)} \dot{i}f\lambda\neq\emptyset,
 1 \dot{i}f\lambda=\emptyset.

(17)

Since  E^{\perp}(t) and  (E(t)\cdot) are adjoint, by (16) and (2) we have the following:
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Proposition 2.9. The element  E(t)= \sum_{i\geq 0}t^{i}e_{i}\in\hat{\Lambda} satisfies

 E(t)G_{\lambda}= \mu/\lambda:\sum_{vertical} strip  t^{c(\mu/\lambda)}(t+1)^{|\mu/\lambda|-c(\mu/\lambda)}G_{\mu} (18)
In particular, setting  \lambda=\emptyset we have

 E(t)=1+ \sum_{n\geq 1}t(t+1)^{n-1}G_{(1^{n})},
and hence

 (1+ \sum t(t+1)^{n-1}G_{(1^{n})})G_{\lambda}= \sum t^{c(\mu/\lambda)}(t+1)
^{|\mu/\lambda|-c(\mu/\lambda)}G_{\mu} . (19)
 n\geq 1  \mu/\lambda : vertical strip

2.5 Sketch of the proof of Proposition 2.6

We recall the incidence algebras (see [Sta12, Chapter 3.6] for details). Let Int  (\mathcal{P})=\{(\mu, \lambda)\in \mathcal{P}\cross \mathcal{P}
|\mu\subset\lambda\},
consisting of all comparable (ordered) pairs in  \mathcal{P} (or equivalently all skew shapes, by identifying  (\mu, \lambda)
with  \lambda/\mu ). The incidence algebra  I(\mathcal{P})=I(\mathcal{P}, K) is the algebra of all functions  f:Int(\mathcal{P})arrow K where
multiplication is defined by the convolution

 (fg)( \mu, \lambda)=\sum_{\mu\subset\nu\subset\lambda}f(\mu, \nu)g(\nu, 
\lambda) . (20)

Then  I(\mathcal{P}, K) is an associative algebra with two‐sided identity  \delta  :=((\mu, \lambda)\mapsto\delta_{\mu\lambda}) .
A linear function  f:\Lambdaarrow K can be considered as an element of  I(\mathcal{P}, K) by setting  f(\mu, \lambda)=f(g_{\lambda/\mu}) .

Then the convolution product  *onHom(\Lambda, K) coincides with the multiplication on  I(\mathcal{P}) due to (9), i.e. this
inclusion  Hom(\Lambda, K)arrow I(\mathcal{P}) is as algebras. Note that the counit  \epsilon\in Hom(\Lambda, K) is mapped to  \delta\in I(\mathcal{P}) .

Define  i_{t},j_{t}\in I(\mathcal{P}) by
 i_{t}(\mu, \lambda)=t^{c(\lambda/\mu)}

and

 j_{t}(\mu, \lambda)=\{\begin{array}{ll}
(-1)^{|\lambda/\mu|}t^{c(\lambda/\mu)}(t-1)^{|\lambda/\mu|-c(\lambda/\mu)}   if 
\lambda/\mu is a vertical strip,
0   otherwise.
\end{array}
By Proposition 2.3  (H(t), -)\in Hom(\Lambda, K) corresponds to  i_{t}\in I(\mathcal{P}) . Since  (H(t), -)*(E(-t), -)=\epsilon,

it suffices to show that   i_{t}j_{t}=\delta in order to prove that  (E(-t), -) corresponds to  j_{t} , whence Proposition 2.6
follows by replacing  t with  -t.

By the definitions of  i_{t} and  j_{t} and (20)

 (i_{t}j_{t})( \mu, \lambda)= \sum t^{c(\nu/\mu)}(-1)^{|\lambda/\nu|}
t^{c(\lambda/\nu)}(t-1)^{|\lambda/\nu|-c(\lambda/\nu)} . (21)
 \mu\subset\nu\subset\lambda

 \lambda/\nu : vertical strip

Now it suffices to show that the value of the right‐hand side of (21) is  \delta_{\mu\lambda} , which is not hard.

3 On the Pieri rules for  G_{\lambda} and  g_{\lambda}

The (row) Pieri formula for  G_{\lambda} was given by Lenart [LenOO, Theorem 3.2]: for any partition  \lambda\in \mathcal{P} and
integer  a\geq 0,

 G_{(a)}G_{\lambda}=   \sum  (-1)^{|\mu/\lambda|-a}  (\begin{array}{ll}
r(\mu/\lambda)-   1
|\mu/\lambda|-a   
\end{array})  G_{\mu} , (22)
 \mu/\lambda : horizontal strip

121



122

where  r(\mu/\lambda) denotes the number of the rows in the skew shape  \mu/\lambda . Namely,

 c_{(a),\lambda}^{\mu}=(-1)^{|\mu/\lambda|-a}  (\begin{array}{ll}
r(\mu/\lambda)-   1
|\mu/\lambda|-a   
\end{array}) .

Subsequently, the (row) Pieri formula for  g_{\lambda} is given in [Buc02, Corollary 7.1] (as a formula for  d^{\mu} the \lambda,(a)

coproduct structure constants for  G_{\lambda} ):

 g_{(a)}g_{\lambda}=   \sum  (-1)^{a-|\mu/\lambda|}  (\begin{array}{l}
r(\lambda/\overline{\mu})
a-|\mu/\lambda|
\end{array})  g_{\mu} , (23)
 \mu/\lambda : horizontal strip

where  \overline{\mu}=(\mu_{2}, \mu_{3}, \ldots) . Namely,

 d_{(a),\lambda}^{\mu}=(-1)^{a-|\mu/\lambda|}  (\begin{array}{l}
r(\lambda/\overline{\mu})
a-|\mu/\lambda|
\end{array}) .

Example 3.1. For  \lambda=(2,1) and  a=2,

 G_{(2)}GH=GE\infty+ ,

 g(

By the example above we can observe

  \sum_{\nu\subset\mu}c_{(a),\lambda}^{\nu}=1 (24)

for each  \mu such that  \mu/\lambda is a horizontal strip of size  \geq a , and

  \sum_{\nu\supset\mu}d_{(a),\lambda}^{\nu}=1 (25)

for each  \mu such that  \mu/\lambda is a horizontal strip of size  \leq a.

(24) and‐(25) can be shown through a tour de force argument, which we omit here.
Letting  G_{\kappa}= \sum_{\kappa\subset\eta}G_{\eta} and   \overline{g}_{\kappa}=\sum_{\eta\subset\kappa}g_{\eta} , we see (24) and (25) are equivalent to

  \sum c_{(a),\lambda}^{\mu}\overline{G}_{\mu}= \sum G_{\mu} , (26)
 \mu  \mu\supset\exists (  h.s./\lambda of size a)

  \sum d_{(a),\lambda}^{\mu}\overline{g}_{\mu}= \sum g_{\mu} . (27)
 \mu  \mu\subset\exists (  h.s./\lambda of size a)

Since  H(1)G_{\lambda}=\overline{G}_{\lambda} and  H(1)^{\perp}(g_{\lambda})=\overline{g}_{\lambda} (shown in Section 2),

since  G_{(a)}G_{\lambda}= \sum_{\mu}c_{(a),\lambda}^{\mu}G_{\mu} we have  G_{(a)} \overline{G}_{\lambda}=\sum_{\mu}c_{(a),\lambda}^{\mu}\overline{G}
_{\mu} , (28)

 \since  g_{(a)}g_{\lambda}= \sum_{\mu}d_{(a),\lambda}^{\mu}g_{\mu} we have   \overline{g}_{(a)}\overline{g}_{\lambda}=\sum_{\mu}d_{(a),\lambda}^{\mu}
\overline{g}_{\mu} . (29)

Let  \lambda^{(1)},  \lambda^{(2)},  \cdot\cdot\cdot be the list of all horizontal strips over  \lambda of size  a . Combining (26) and (28), we have

Proposition 3.2. We have

 G_{(a)} \overline{G}_{\lambda}=\sum_{f\mu\supset\lambda(\dot{i})or\exists i}G_{
\mu} (30)

 = \sum_{\dot{l}}\overline{G}_{\lambda(i)}-\sum_{i<\dot{J}}\overline{G}_{\lambda
(i)_{\cup}\lambda(j)}+\sum_{i<j<k}\overline{G}_{\lambda(i)_{\cup}\lambda(j)
_{\cup}\lambda(k)}-\cdots , (31)
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and

  G_{(a)}G_{\lambda}= \sum_{\dot{l}}G_{\lambda(i)}-\sum_{i<J}G_{\lambda(i)
_{\cup}\lambda(j)}+\sum_{i<j<k}G_{\lambda(\dot{i})_{\cup}\lambda(j)_{\cup}
\lambda(k)}-\cdots (32)

Note that the right‐hand sides of (30) and (31) are equal by the Inclusion‐Exclusion Principle, and the
equivalence of (31) and (32) follows from that  H(1)G_{\lambda}=G_{\lambda}.

Similarly, by (27) and (29) we have

Proposition 3.3. We have

  \overline{g}(a)\overline{g}_{\lambda}=\mu\subset\lambda for\exists 
i\sum_{(\dot{i})}g_{\mu} (33)

 = \sum\overline{g}_{\mu^{(i)}}-\sum_{j\dot{i}l<}\overline{g}_{\mu^{(i)}\cap\mu^
{(j)}}\prime\prime+\sum_{i<\dot{j}<k}\overline{g}_{\mu^{(\dot{i})}\cap\mu^{(j)}
\cap\mu^{(k)}}-\cdots , (34)

and

  g_{(a)}g_{\lambda}= \sum_{\dot{l}}g_{\lambda(i)}-\sum_{\prime,l<\dot{j}}
g_{\lambda(i)}\cap\lambda(j)+ \sum_{\prime,i<j<k}\cap\lambda(k)\ldots (35)

Similarly, the right‐hand sides of (33) and (34) are equal by the Inclusion‐Exclusion Principle, and the
equivalence of (34) and (35) follows from that  H(1)^{\perp}:g_{\lambda}\mapsto\overline{g}_{\lambda} is an algebra morphism.
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