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1 Introduction

An embedding f of a finite graph  G into  \mathbb{R}^{3} is called a spatial embedding of  G , and the
image  f(G) is called a spatial graph of  G . A subgraph  \gamma of  G homeomorphic to the
circle is called a cycle of  G . A cycle of  G is also called a  k ‐cycle if it contains exactly
 k vertices, and a Hamiltonian cycle if it contains all of the vertices of  G . We denote
the set of all  k‐cycles of  G by  \Gamma_{k}(G) , and the set of all pairs of two disjoint cycles of  G

consisting of a  k‐cycle and an  l‐cycle by  \Gamma_{k,l}(G) . For a cycle  \gamma (resp. a pair of disjoint
cycles  \lambda ) and a spatial embedding  f of  G,  f(\gamma) (resp.  f(\lambda) ) is none other than a knot
(resp. a 2‐component link) in  f(G) . For a Hamiltonian cycle  \gamma of  G , we also call  f(\gamma)a
Hamiltonian knot in  f(G) .

Let  K_{n} be the complete graph on  n vertices, that is the graph consisting of  n vertices
such that each pair of its distinct vertices is connected by exactly one edge. Then let us
recall the following Conway‐Gordon theorems, which are very famous theorems in spatial
graph theory.

Theorem 1.1 (Conway‐Gordon [6])

(1) For any spatial embedding  f of  K_{6} , we have

  \sum_{\lambda\in\Gamma_{3,3}(K_{6})} lk  (f(\lambda))\equiv 1  (mod 2) ,

where lk denotes the linking number in  \mathbb{R}^{3}.

(2) For any spatial embedding  f of  K_{7} , we have

  \sum_{\gamma\in\Gamma_{7}(K_{7})}a_{2}(f(\gamma))\equiv 1 (mod 2) ,

where  a_{2} denotes the second coefficient of the Conway polynomial.

Theorem 1.1 implies that  K_{6} is intrinsically linked, that is, every spatial graph of  K_{6}
contains a nonsplittable 2‐component link, and  K_{7} is intrinsically knotted, that is, every
spatial graph of  K_{7} contains a nontrivial knot. Characterizing all intrinsically linked
graphs and intrinsically knotted graphs is an important research theme in spatial graph
theory, see for example [8, §§2‐6]. However, our interest in this article is in another
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direction; it is to generalize the Conway‐Gordon theorems to  K_{n} with arbitrary  n\geq 6.

As far as the author knows, there have been little results about a generalization of the
Conway‐Gordon type congruences on  K_{n} with  n\geq 8 . It is all with the following results.

Theorem 1.2 (1)  ( Foisy [10], Hirano [12]  )^{} For any spatial embedding  f of  K_{8} , we have

  \sum_{\gamma\in\Gamma_{8}(K_{8})}a_{2}(f(\gamma))\equiv 3 (mod 6) .

(2) (Hirano [12]) Let  n\geq 9 be an integer. For any spatial embedding  f of  K_{n} , we have

  \sum_{\gamma\in\Gamma_{n}(K_{n})}a_{2}(f(\gamma))\equiv 0 (mod 2) .

(3) (Kazakov‐Korablev [17]) Let  n\geq 7 be an integer. For any spatial embedding  f of
 K_{n} , we have

  \sum_{p+q=n}\sum_{\lambda\in\Gamma_{p,q}(K_{n})}1k(f(\lambda))\equiv 0 (mod 2) .

On the other hand, let us also recall integral lifts of the Conway‐Gordon theorems for
 K_{6} and  K_{7} proven by the author as follows.

Theorem 1.3 (Nikkuni [21])

(1) For any spatial embedding  f of  K_{6} , we have

  \sum_{\gamma\in\Gamma_{6}(K_{6})}a_{2}(f(\gamma))-\sum_{\gamma\in\Gamma_{5}(K_
{6})}a_{2}(f(\gamma))=\frac{1}{2}\sum_{\lambda\in\Gamma_{3,3}(K_{6})}
1k(f(\lambda))^{2}-\frac{1}{2} . (1.1)

(2) For any spatial embedding  f of  K_{7} , we have

  \sum_{\gamma\in\Gamma_{7}(K_{7})}a_{2}(f(\gamma))-2\sum_{\gamma\in\Gamma_{5}
(K_{7})}a_{2}(f(\gamma))

 =  \frac{1}{7}(2\sum_{\lambda\in\Gamma_{3,4}(K_{7})}1k(f(\lambda))^{2}+
3\sum_{\lambda\in\Gamma_{3,3}(K_{7})}1k(f(\lambda))^{2})-6 . (1.2)

Actually, Theorem 1.1 (1) can be recovered from Theorem 1.3 (1) by multiplying by 2
and taking the  mod 2 reduction, and Theorem 1.1 (2) can also be recovered from Theorem
1.3 (2) by multiplying by 7 and taking the  mod 2 reduction (note that   \sum_{\lambda\in\Gamma_{3,3}(K_{7})}1k(f(\lambda))^{2}
is odd as we will see later). Our purposes are to generalize the integral Conway‐Gordon
theorems to  K_{n} with arbitrary  n\geq 6 and to investigate the behavior of the nontrivial
Hamiltonian knots and links in a spatial graph of  K_{n} . This is a joint work with H.
Morishita.

lFor any spatial embedding  f of  K_{8} , Foisy showed that   \sum_{\gamma\in\Gamma_{8}(K_{8})}a_{2}(f(\gamma))\equiv 0(mod 3)[10] , and Hirano showed that

  \sum_{\gamma\in\Gamma_{8}(K_{8})}a_{2}(f(\gamma))\equiv 1(mod 2)[12].
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2 Generalizations of the Conway‐Gordon theorems

First, we generalize Theorem 1.3 to  K_{n} with arbitrary  n\geq 6 as follows.

Theorem 2.1 (Morishita‐Nikkuni [18]) Let  n\geq 6 be an integer. For any spatial embed‐
ding  f of  K_{n} , we have

  \sum_{\gamma\in\Gamma_{n}(K_{n})}a_{2}(f(\gamma))-(n-5)!\sum_{\gamma\in\Gamma_
{5}(K_{n})}a_{2}(f(\gamma))

 =  \frac{(n-5)!}{2}(\sum_{\lambda\in\Gamma_{3,3}(K_{n})}1k(f(\lambda))^{2}- 
(\begin{array}{ll}
n   -1
   5
\end{array}))
Example 2.2 (1) In the case of  n=6 in Theorem 2.1, we have (1.1).

(2) In the case of  n=7 in Theorem 2.1, we have

  \sum_{\gamma\in\Gamma_{7}(K_{7})}a_{2}(f(\gamma))-2\sum_{\gamma\in\Gamma_{5}
(K_{7})}a_{2}(f(\gamma))=\sum_{\lambda\in\Gamma_{3,3}(K_{7})}1k(f(\lambda))^{2}-
6 . (2.1)

Though (1.2) and (2.1) are slightly different, since   \sum_{\lambda\in\Gamma_{3,4}(K_{7})}1k(f(\lambda))^{2} is twice

  \sum_{\lambda\in\Gamma_{3,3}(K_{7})}1k(f(\lambda))^{2} (see Example 2.8 (1)), these equations are equivalent.

Note that any pair of two disjoint 3‐cycles  \lambda of  K_{n} is not shared by any two different sub‐
graphs of  K_{n} isomorphic to  K_{6} . Then Theorem 1.1 (1) implies that   \sum_{\lambda\in\Gamma_{3,3}(K_{n})}1k(f(\lambda))^{2}
is greater than or equal to the number of subgraphs of  K_{n} isomorphic to  K_{6} , that is equal
to  (\begin{array}{l}
n
6
\end{array}) . Thus by Theorem 2.1, we have the following.

Corollary 2.3 Let  n\geq 6 be an integer. For any spatial embedding  f of  K_{n} , we have

  \sum_{\gamma\in\Gamma_{n}(K_{n})}a_{2}(f(\gamma))-(n-5)!\sum_{\gamma\in\Gamma_
{5}(K_{n})}a_{2}(f(\gamma))\geq\frac{(n-5)(n-6)(n-1)!}{2\cdot 6!}.
Remark 2.4 Endo‐Otsuki introduced a certain special spatial embedding  f_{b} of  K_{n},  a

canonical book presentation of  K_{n}[7] , and Otsuki also showed that  f_{b}(K_{n}) contains exactly
 (\begin{array}{l}
n
6
\end{array}) Hopf links as all of the nonsplittable triangle‐triangle links [22]. Thus the lower bound
of Corollary 2.3 is sharp. Furthermore, every 5‐cycle knot in  f_{b}(K_{n}) is trivial. Thus for
an integer  n\geq 6 , we have

  \sum_{\gamma\in\Gamma_{n}(K_{n})}a_{2}(f_{b}(\gamma))=\frac{(n-5)!}{2}( 
(\begin{array}{l}
n
6
\end{array})- (\begin{array}{l}
n-1
5
\end{array}))=\frac{(n-5)(n-6)(n-1)!}{2\cdot 6!} . (2.2)

Moreover, for  n\geq 7 , let  f and  g be two spatial embeddings of  K_{n} . Let us consider
the difference between   \sum_{\gamma\in\Gamma_{n}(K_{n})}a_{2}(f(\gamma)) and   \sum_{\gamma\in\Gamma_{n}(K_{n})}a_{2}(g(\gamma)) modulo  (n-5)! . By
Theorem 2.1, we have

  \sum_{\gamma\in\Gamma_{n}(K_{n})}a_{2}(f(\gamma))-\sum_{\gamma\in\Gamma_{n}(K_
{n})}a_{2}(g(\gamma))

  \equiv \frac{(n-5)!}{2}(\sum_{\lambda\in\Gamma_{3,3}(K_{n})}1k(f(\lambda))^{2}
-\sum_{\lambda\in\Gamma_{3,3}(K_{n})}1k(g(\lambda))^{2}) (mod (n-5) !) . (2.3)
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Note that both   \sum_{\lambda\in\Gamma_{3,3}(K_{n})}1k(f(\lambda))^{2} and   \sum_{\lambda\in\Gamma_{3,3}(K_{n})}1k(g(\lambda))^{2} have the same parity, that

is equal to the parity of  (\begin{array}{l}
n
6
\end{array}) . Thus by (2.3), we have

  \sum_{\gamma\in\Gamma_{n}(K_{n})}a_{2}(f(\gamma))
\equiv\sum_{\gamma\in\Gamma_{n}(K_{n})}a_{2}(g(\gamma)) (mod (n-5) !) . (2.4)

This shows that   \sum_{\gamma\in\Gamma_{n}(K_{n})}a_{2}(f(\gamma)) does not depend on an embedding  f of  K_{n} . Now let
us select a canonical book presentation  f_{b} of  K_{n} as  g . Then by (2.2) and (2.4), we have

  \sum_{\gamma\in\Gamma_{n}(K_{n})}a_{2}(f(\gamma))\equiv\frac{(n-5)!}{2}( 
(\begin{array}{l}
n
6
\end{array})- (\begin{array}{ll}
n   -1
   5
\end{array})) ( mod (n-5) !) . (2.5)

Then we also note that  (\begin{array}{l}
n
6
\end{array}) is odd if and only if  n\equiv 6,7(mod 8) , and  (\begin{array}{l}
n-1
5
\end{array}) is odd if and
only if  n\equiv 0,6(mod 8) . Thus by (2.5), we have the following congruence, that contains
Theorem 1.1 (2) and Theorem 1.2 (1) as the cases of  n=7,8 and also generalizes Theorem
1.2 (2) remarkably.

Corollary 2.5 Let  n\geq 7 be an integer. For any spatial embedding  f of  K_{n} , we have the
following congruence modulo  (n-5)! :

  \sum_{\gamma\in\Gamma_{n}(K_{n})}a_{2}(f(\gamma))\equiv\{\begin{array}{ll}
- \frac{(n-5)!}{2} [Matrix]   (n\equiv 0 (mod 8))
0   (n\not\equiv 0,7 (mod 8))
\frac{(n-5)!}{2} [Matrix]   (n\equiv 7 (mod 8)) .
\end{array}
Next, we also generalize Theorem 1.2 (3) from a viewpoint of the linking numbers of

2‐component “Hamiltonian” links as follows.

Theorem 2.6 (Morishita‐Nikkuni [19]) Let  n\geq 6 be an integer. Let  p and  q be two
positive integers satisfying  n=p+q , where  p,  q\geq 3 . For any spatial embedding  f of  K_{n},
we have

  \sum_{\lambda\in\Gamma_{p,q}(K_{n})}1k(f(\lambda))^{2}=\{\begin{array}{ll}
(n-6)! \sum 1k(f(\lambda))^{2}   (p=q)
2 (n-6)!\sum_{\lambda\in\Gamma_{3,3}(K_{n})}^{\lambda\in\Gamma_{3,3}}
1k(f(\lambda))^{2}(K_{n})   (p\neq q) .
\end{array}
In particular, we also have

  \sum_{p+q=n}\sum_{\lambda\in\Gamma_{p,q}(K_{n})}1k(f(\lambda))^{2}=(n-5)!\sum_
{\lambda\in\Gamma_{3,3}(K_{n})}1k(f(\lambda))^{2}.
Theorem 2.6 also implies that for any spatial embedding  f of  K_{n}(n\geq 6) , the sum of

 1k^{2} over all of the Hamiltonian 2‐component links is congruent to  0 modulo  (n-5) !.
As we have already seen,   \sum_{\lambda\in\Gamma_{3,3}(K_{n})}1k(f(\lambda))^{2} is greater than or equal to  (\begin{array}{l}
n
6
\end{array}) . Thus

by Theorem 2.6, we have the following.
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Corollary 2.7 Let  n\geq 6 be an integer. Let  p and  q be two positive integers satisfying
 n=p+q , where  p,  q\geq 3 . For any spatial embedding  f of  K_{n} , we have

  \sum_{\lambda\in\Gamma_{p,q}(K_{n})}1k(f(\lambda))^{2}\geq\{\begin{array}{ll}
\frac{n!}{6!}   (p=q)
2. \frac{n!}{6!}   (p\neq q) .
\end{array}
In particular,

  \sum_{p+q=n}\sum_{\lambda\in\Gamma_{p,q}(K_{n})}1k(f(\lambda))^{2}\geq(n-5)
\cdot\frac{n!}{6!}.
Example 2.8 (1) In the case of  n=7 in Corollary 2.7, we have

  \sum_{\lambda\in\Gamma_{3,4}(K_{n})}1k(f(\lambda))^{2}=
2\sum_{\lambda\in\Gamma_{33}(K_{n})}1k(f(\lambda))^{2}\geq 14.
It has been shown in Fleming‐Mellor [9] that every spatial graph of  K_{7} contains at
least 14 triangle‐square links with odd linking number.

(2) In the case of  n=8 in Corollary 2.7, we have

  \sum_{\lambda\in\Gamma_{3,5}(K_{n})}1k(f(\lambda))^{2}=
2\sum_{\lambda\in\Gamma_{4,4}(K_{n})}1k(f(\lambda))^{2}=4\sum_{\lambda\in\Gamma_
{3,3}(K_{n})}1k(f(\lambda))^{2}\geq 112 . (2.6)

It has also been shown in [9] that every spatial graph of  K_{8} contains at least 42
nonsplittable triangle‐pentagon links and 35 nonsplittable square‐square links. Based
on (2.6), we expect that every spatial graph of  K_{8} contains many more nonsplittable
triangle‐pentagon links and square‐square links.

3 Applications to rectilinear spatial complete graphs

A spatial embedding  f_{r} of a simple graph  G is said to be rectilinear if for any edge  e of
 G,  f_{r}(e) is a straight line segment in  \mathbb{R}^{3} . We can construct a special rectilinear spatial
embedding of  K_{n} by taking  n vertices of  K_{n} on the moment curve  (t, t^{2}, t^{3}) in  \mathbb{R}^{3} and
connecting every pair of two distinct vertices by a straight line segment, see Fig. 3.1 for
 n=6,7^{2} We say such a rectilinear spatial embedding of  K_{n} to be standard.

A rectilinear spatial graph appears in polymer chemistry as a mathematical model
for chemical compounds (see [1, §7], for example), and the range of rectilinear spatial
graph types is much narrower than the general spatial graphs. So we are interested in the
behavior of the nontrivial Hamiltonian knots and links in a rectilinear spatial graph of  K_{n}.
Note that knot and link types appearing as constituent knots and links in a rectilinear
spatial graph of  K_{n} are limited because they have the stick number  \leq n , where the stick
number of a link  L , denoted by  s(L) , is the minimum number of edges in a polygon

2In fact, the standard rectilinear spatiaı graph of  K_{7} is equivalent to the Conway‐Gordon’s spatial graph of  K_{7} in [6]
which contains exactly one trefoil knot as the nontrivial Hamiltonian knots.
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 f_{r}(K_{6}) f_{r}(K_{7})

Figure 3.1: Standard rectilinear spatial embedding  f_{r} of  K_{n}(n=6,7)

representing  L . We recall the following results on stick numbers (see [1], [20], [2], [5]),
where we denote each of knots and links appearing in the statement by using its label in
Rolfsen’s table.

Proposition 3.1 Let  L be a link. Then the following statements hold.

(1) If  L is a nontrivial knot, then  s(L)\geq 6.

(2)  s(L)=6 if and only if  L is equivalent to  3_{1},0_{1}^{2} or  2_{1}^{2}.

(3)  s(L)=7 if and only if  L is equivalent to  4_{1} or  4_{1}^{2}.

(4)  s(L)=8 if and only if  L is equivalent to  5_{1},5_{2},6_{1},6_{2},6_{3} , the granny knot  3_{1}\# 3_{1},
the square knot  3_{1}\# 3_{1}^{*},8_{19},8_{20} or  5_{1}^{2}.

Proposition 3.1 (1) says that every polygonal knot with five sticks is trivial. Thus for
rectilinear spatial graph of  K_{n} , by Theorem 2.1 we have the following immediately.

Theorem 3.2 Let  n\geq 6 be an integer. For any rectilinear spatial embedding  f_{r} of  K_{n},
we have

  \sum_{\gamma\in\Gamma_{n}(K_{n})}a_{2}(f_{r}(\gamma))=\frac{(n-5)!}{2} (   \sum_{\lambda\in\Gamma_{3,3}(K_{n})} lk  (f_{r}(\lambda))^{2}-  (\begin{array}{l}
n-1
5
\end{array}) ).
Also note that a 2‐component link with exactly six sticks is either a trivial link or a

Hopf link by Proposition 3.1 (2). Thus for any rectilinear spatial embedding  f_{r} of  K_{n},

  \sum_{\lambda\in\Gamma_{3,3}(K_{n})} lk  (f_{r}(\lambda))^{2} is equal to the number of triangle‐triangle Hopf links in  f_{r}(K_{n}) .
Namely, Theorem 3.2 says that for every rectilinear spatial graph of  K_{n}(n\geq 6) , the sum
of  a_{2} over all of the Hamiltonian knots is determined explicitly in terms of the number of
triangle‐triangle Hopf links.

In the same way as Corollary 2.3, we can obtain a lower bound of   \sum_{\gamma\in\Gamma_{n}(K_{n})}a_{2}(f_{r}(\gamma))
for all rectilinear spatial embeddings  f_{r} of  K_{n} . On the other hand, since the number of
triangle‐triangle Hopf links in a rectilinear spatial graph of  K_{6} is strongly limited, we can
also obtain an upper bound of   \sum_{\gamma\in\Gamma_{n}(K_{n})}a_{2}(f_{r}(\gamma)) . Actually, it is known the following.
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Proposition 3.3 (Hughes [15], Huh‐Jeon [14], Nikkuni [21]) Every rectilinear spatial
graph of  K_{6} contains at most three Hopf links.

This implies that   \sum_{\lambda\in\Gamma_{3,3}(K_{n})}1k(f_{r}(\lambda))^{2} is less than or equal to 3  (\begin{array}{l}
n
6
\end{array}) . Thus by Theorem
3.2, we have the following.

Corollary 3.4 Let  n\geq 6 be an integer. For any rectilinear spatial embedding  f_{r} of  K_{n},
we have

  \frac{(n-5)(n-6)(n-1)!}{2\cdot 6!}\leq\sum_{\gamma\in\Gamma_{n}(K_{n})}a_{2}
(f_{r}(\gamma))\leq\frac{3(n-2)(n-5)(n-1)!}{2\cdot 6!}.
Example 3.5 (1) In the case of  n=6 in Corollary 3.4, we have

 0 \leq\sum_{\gamma\in\Gamma_{6}(K_{6})}a_{2}(f_{r}(\gamma))\leq 1.
By Proposition 3.1 (2),  f_{r}(\gamma) is either a trivial knot or a trefoil knot. Since  a_{2}(3_{1})=1,
we have that every rectilinear spatial graph of  K_{6} contains at most one trefoil knot,
which was also observed in [14] in combinatorial way.

(2) In the case of  n=7 , by Corollary 3.4 and Theorem 1.1 (2), we have

 1 \leq\sum_{\gamma\in\Gamma_{7}(K_{7})}a_{2}(f_{r}(\gamma))\leq 15, 
\sum_{\gamma\in\Gamma_{7}(K_{7})}a_{2}(f_{r}(\gamma))\equiv 1 (mod 2) .

By Proposition 3.1 (2) and (3), if  f_{r}(\gamma) is a nontrivial knot then it is either a trefoil
knot or a figure eight knot. Since  a_{2}(4_{1})=-1 , we have that every rectilinear spatial
graph of  K_{7} contains a trefoil knot with 7 sticks, which was originally proven by
Brown [4] and Ramírez Alfonsı’n [24] in combinatorial and computational way.

(3) In the case of  n=8 , by Corollary 3.4 and Theorem 1.2 (1), we have

 21 \leq\sum_{\gamma\in\Gamma_{8}(K_{8})}a_{2}(f_{r}(\gamma))\leq 189, 
\sum_{\gamma\in\Gamma_{8}(K_{8})}a_{2}(f_{r}(\gamma))\equiv 3 (mod 6) .

By Proposition 3.1, all of the polygonal knots with 8 sticks are classified completely,
and, in addition, only  3_{1},5_{1},5_{2},6_{3},3_{1}\# 3_{1},3_{1}\# 3_{1}^{*},8_{19} and  8_{20} have  a_{2} with a positive
value. Thus every rectilinear spatial graph of  K_{8} contains one of these knots as a
Hamiltonian knot. Since the maximum value of  a_{2} for them is 5  (a_{2}(8_{19})=5) , we
have that the minimum number of nontrivial Hamiltonian knots with a positive value
of  a_{2} in every rectilinear spatial graph of  K_{8} is at least  \lceil 21/5\rceil=5 . However this
is not yet the sharp lower bound, see Remark 4.2. In Section 4, we will discuss the
minimum number of nontrivial Hamiltonian knots in a rectilinear spatial graph of
 K_{n} with arbitrary  n\geq 7.

Remark 3.6 The lower bound in Corollary 3.4 is also sharp, actually the standard rec‐
tilinear spatial embedding of  K_{n} realizes the lower bound. On the other hand, in the
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case of  n=7 , our upper bound is 15. However, according to a computer search in
[16] (by using the oriented matroid theory), there seems to be no rectilinear embed‐
ding  f_{r} of  K_{7} such that   \sum_{\gamma\in\Gamma_{7}(K_{7})}a_{2}(f_{r}(\gamma))=13,15 , or equivalently by Theorem 3.2,

  \sum_{\lambda\in\Gamma_{3,3}(K_{7})}1k(f_{r}(\gamma))^{2}=19,21 . Thus the author does not expect that the upper bound in
Corollary 3.4 is sharp if  n\geq 7.

Problem 3.7 Determine the sharp upper bound of   \sum_{\gamma\in\Gamma_{n}(K_{n})}a_{2}(f_{r}(\gamma)) for all rectilinear
spatial embeddings  f_{r} of  K_{n} for each  n\geq 7 , or equivalently by Theorem 3.2, determine
the maximum number of triangle‐triangle Hopf links in  f_{r}(K_{n}) for each  n\geq 7.

Example 3.8 Let us consider two spatial embeddings of  K_{8} as illustrated in Fig. 3.2.
The left one was given in [3], and the right one is the standard rectilinear spatial em‐
bedding of  K_{8} . It is known that, they are not equivalent3 but each of them contains
exactly 21 trefoil knots as all of the nontrivial Hamiltonian knots [3], [25]. We did not
understand the meaning of this number 21” over ten years. In our current research, we
have that for any spatial embedding  f of  K_{8} , if every 5‐cycle knot in  f(K_{8}) is trivial then

  \sum_{\gamma\in\Gamma_{8}(K_{8})}a_{2}(f(\gamma))\geq 21 . This also implies that if every nontrivial Hamiltonian knot is a
trefoil knot, then there must exist at least 21 trefoil knots as Hamiltonian knots.

8

Figure 3.2: Two spatial embeddings of  K_{8}

4 Further applications

In the rest of this article, we shall mention further two applications. First, let us consider
the minimum number of nontrivial Hamiltonian knots in a rectilinear spatial graph of
 K_{n} . Note that we can obtain an estimate of  a_{2} over Hamiltonian knots in a rectilinear

spatial graph of  K_{n} from above as follows. The crossing number of a link  L is the minimum
number of crossings in a regular diagram of  L on the plane, denoted by  c(L) . In particular

3The ıeft spatial graph of  K_{8} contains a triangle‐pentagon ıink with nonzero even ık (actuaıly  [257]\cup[13846] ), but the
right spatial graph of  K_{8} does not contain such a triangle‐pentagon link.
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for a knot  K , it has been shown that

 c(K) \leq\frac{(s(K)-3)(s(K)-4)}{2} (4.1)

by Calvo [5], and also has been shown that

 a_{2}(K) \leq\frac{c(K)^{2}}{8} (4.2)

by Polyak‐Viro [23]. By combining (4.1) and (4.2), for a polygonal knot  K with  \leq n

sticks, we have

  a_{2}(K) \leq\lfloor\frac{(n-3)^{2}(n-4)^{2}}{32}\rfloor , (4.3)

where  \lfloor\cdot\rfloor denotes the floor function. Then by the lower bound in Corollary 3.4 and (4.3),
we have the following estimate of the minimum number of nontrivial Hamiltonian knots
in every rectilinear spatial graph of  K_{n} from below.

Corollary 4.1 Let  n\geq 7 be an integer. The minimum number of nontrivial Hamiltonian
knots with a positive value of  a_{2} in every rectilinear spatial graph of  K_{n} is at least

 r_{n}= \lceil\frac{(n-5)(n-6)(n-1)!/(2\cdot 6!)}{\lfloor(n-3)^{2}(n-4)^{2}
/32\rfloor}\rceil,
where  \lceil\cdot\rceil denotes the ceiling function.

The concrete values of  r_{n} for  7\leq n\leq 16 are given in the following table.

Remark 4.2 For every spatial embedding  f of  K_{n} (which does not need to be rectilinear),
Hirano showed that there exist at least three nontrivial Hamiltonian knots with an odd

value of  a_{2} in  f(K_{8})[13] , and Foisy showed that there exist at least  (n-1)(n-2)\cdots 9\cdot 8
nontrivial Hamiltonian knots with an odd value of  a_{2} in  f(K_{n}) if  n\geq 9[3] . We see that

 r_{n} is greater than Foisy’s lower bound of the minimum number of nontrivial Hamiltonian
knots with an odd value of  a_{2} if  n=9,10,11 . On the other hand, in the case of  n=8 , as
we have already seen in Example 3.5 (3), we can obtain an estimate 5” from below better
than  r_{8} . Moreover, it is known that every rectilinear spatial graph of the complete four‐
partite graph  K_{3,3,1,1} contains at least one nontrivial Hamiltonian knot with a positive
value of  a_{2} (Hashimoto‐Nikkuni [11]). Since there are 280 subgraphs of  K_{8} isomorphic to
 K_{3,3,1,1} and for any 8‐cycle  \gamma of  K_{8} there exist 36 subgraphs of  K_{8} isomorphic to  K_{3,3,1,1}
containing  \gamma , we have that there are at least  \lceil 280/36\rceil=8 nontrivial Hamiltonian knots
with a positive value of  a_{2} in every rectilinear spatial graph of  K_{8}.

Problem 4.3 Determine the minimum number of nontrivial Hamiltonian knots (with a
positive value of  a_{2} ) in every rectilinear spatial graph of  K_{n} for each  n\geq 8.
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Next, we can also obtain the result about the maximum value of  a_{2} for all of the
Hamiltonian knots in a rectilinear spatial graph of  K_{n} as follows.

Theorem 4.4 (Morishita‐Nikkuni [19]) Let  n\geq 6 be an integer. For any rectilinear
spatial embedding  f_{r} of  K_{n} , we have

  \max_{\gamma\in\Gamma_{n}(K_{n})}\{a_{2}(f_{r}(\gamma))\}\geq\frac{(n-5)(n-6)}
{6!}.
Actually, by Corollary 3.4 we have

  \max_{\gamma\in\Gamma.(K_{n})}\{a_{2}(f_{r}(\gamma))\}\cdot\#\Gamma_{n}(K_{n})
\geq\sum_{\gamma\in\Gamma_{n}(K_{n})}a_{2}(f_{r}(\gamma))\geq\frac{(n-5)(n-6)(n-
1)!}{2\cdot 6!},
and since  \#\Gamma_{n}(K_{n})=(n-1)!/2 , we have the result.4 Theorem 4.4 implies that if  n is
sufficiently large then every rectilinear spatial graph of  K_{n} contains a Hamiltonian knot
with arbitrary large value of  a_{2} . By Theorem 4.4, we also have the following corollary.

Corollary 4.5 Let  m be a positive integer. If  n>(11+\sqrt{2880m-2879})/2 , then for
any rectilinear spatial embedding  f_{r} of  K_{n} , there exists a Hamiltonian cycle  \gamma\in\Gamma_{n}(K_{n})
such that  a_{2}(f_{r}(\gamma))\geq m.

Remark 4.6 It has been shown in Shirai‐Taniyama [26] that

(1) For any spatial embedding  f of  K_{482^{k}} , there exists a cycle  \gamma of  K_{48\cdot 2^{k}} such that
 |a_{2}(f(\gamma))|\geq 2^{2k},

(2) Let  m be a positive integer. If  n\geq 96\sqrt{m} , then for any spatial embedding  f of  K_{n},
there exists a cycle  \gamma of  K_{n} such that  |a_{2}(f(\gamma))|\geq m.

If we restrict ourselves to rectilinear spatial graphs of  K_{n} , Corollary 4.5 is better than
Shirai‐Taniyama’s result, see the following table.

For any knot (resp. link) type  L , Negami proved in [20] that there exists a positive
integer  n such that every rectilinear spatial graph of  K_{n} contains a knot (resp. link)
equivalent to  L . The minimum value of such  n is called the Ramsey number of  L , denoted
by  R(L) . For a positive integer  m , let us define  R(m) by the minimum value of  n such
that every rectilinear spatial graph of  K_{n} contains a knot with  a_{2}\geq m . For example,
since the standard rectilinear spatial graph of  K_{6} (Fig. 3.1) does not contain a trefoil
knot, we have  R(1)=7 . Note that for a knot type  K with  a_{2}(K)>0,  R(K) is evaluated
by  R(a_{2}(K)) from below.

Problem 4.7 Determine  R(m) for each  m\geq 2.

4Though we can also obtain a simiıar resuıt about the maximum value of  1k^{2} for all of the Hamiltonian links, we omit it.
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